首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recent researches shed light on B cell role on various autoimmune diseases, including autoantibody-mediated diseases as well as T cell-mediated autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. B cells play a critical role in the immune response beyond the production of antibodies through mechanisms such as antigen presentation and cytokine production. Furthermore, B cells have recently been recognized to play a role in promoting tumor immunity against cancer. However, not all B cells positively regulate immune responses. Regulatory B cells negatively regulate immune responses by the production of anti-inflammatory cytokines such as interleukin (IL)-10, IL-35, and transforming growth factor-beta. Thus, a balance between effector and regulatory B cells regulates the immune response through the release of cytokines. In this review, we highlight the main emerging roles of B cells in tumor immunity with a focus on the T cell response. These findings can guide a protocol for selectively depleting regulatory B cells as a potential therapeutic strategy for patients with cancer.  相似文献   

3.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

4.
Yang HZ  Li Z  Liu HZ  Mi S  Hu ZW 《生理科学进展》2009,40(4):297-302
B细胞主要通过呈递抗原和产生抗体发挥免疫调节作用.新近研究表明,一种全新的B细胞亚群--调节性B细胞(regulatory B cell,Bregs),可通过产生白细胞介素10(IL-10)或转化生长因子β1(TGF-β1)等抑制性细胞因子介导免疫耐受,抑制过度炎症反应.Bregs在一些慢性炎性疾病包括肠炎、类风湿性关节炎、实验性自身免疫脑脊髓炎、多发性硬化症、感染和肿瘤等发生、发展和转归过程起重要调节作用.Bregs的发现和作用机制的阐明,将为全面、深入了解免疫耐受的机制,寻找和开发更合理治疗慢性炎性疾病的策略提供理论依据.本文综述了Bregs的发现、生物学特征、发育调节及其参与炎性疾病发病的作用和机制.  相似文献   

5.
A case for regulatory B cells   总被引:11,自引:0,他引:11  
B cells are typically characterized by their ability to produce Abs, including autoantibodies. However, B cells possess additional immune functions, including the production of cytokines and the ability to function as a secondary APC. As with T cells, the B cell population contains functionally distinct subsets capable of performing both pathogenic and regulatory functions. Recent studies indicate that regulatory B cells develop in several murine models of chronic inflammation, including inflammatory bowel disease, rheumatoid arthritis, and experimental autoimmune encephalomyelitis. The regulatory function may be directly accomplished by the production of regulatory cytokines IL-10 and TGF-beta and/or by the ability of B cells to interact with pathogenic T cells to dampen harmful immune responses. In this review, we make a case for the existence of regulatory B cells and discuss the possible developmental pathways and functional mechanisms of these B cells.  相似文献   

6.
7.
B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.  相似文献   

8.
Once considered to be predominantly a positive regulator of immune function, B cells are increasingly getting attributed with new and diversified functions. In recent years a number of reports indicate that a definite regulatory function of B cell exists. A number of B cell subsets that shares various developmental markers shown to have the ability to produce the suppressive cytokine IL-10. A particularly strong candidate with distinct IL-10 production profile is CD19hiCD1dhiCD5+ population, which constitutes about 1–2 % of splenic B cells. These B cells are also called B10 cells as they produce large amount of IL-10. Increasingly it is becoming clear that a variety of regulatory B cell population exists and expands during inflammatory condition and autoimmune disease. A detailed study of development and mechanism that governs B reg generation may provide us with valuable information for therapeutic intervention.  相似文献   

9.
The immune system contains natural regulatory cells important in the maintenance of tolerance. Although this suppressive function is usually attributed to CD4 regulatory T cells, recent reports have revealed an immunoregulatory role for IL-10-producing B cells in the context of several autoimmune diseases including collagen-induced arthritis. In the present study, we attribute this suppressive function to a B cell subset expressing high levels of CD21, CD23, and IgM, previously identified as transitional 2-marginal zone precursor (T2-MZP) B cells. T2-MZP B cells are present in the spleens of naive mice and increase during the remission phase of arthritis. Following adoptive transfer to immunized DBA/1 mice, T2-MZP B cells significantly prevented new disease and ameliorated established disease. The suppressive effect on arthritis was paralleled by an inhibition of Ag-specific T cell activation and a reduction in cells exhibiting Th1-type functional responses. We also provide evidence that this regulatory subset mediates its suppression through the secretion of suppressive cytokines and not by cell-to-cell contact. The ability to regulate an established immune response by T2-MZP B cells endows this subset of B cells with a striking and previously unrecognized immunoregulatory potential.  相似文献   

10.
Although recent animal studies have fuelled growing interest in Ab-independent functions of B cells, relatively little is known about how human B cells and their subsets may contribute to the regulation of immune responses in either health or disease. In this study, we first confirm that effector cytokine production by normal human B cells is context dependent and demonstrate that this involves the reciprocal regulation of proinflammatory and anti-inflammatory cytokines. We further report that this cytokine network is dysregulated in patients with the autoimmune disease multiple sclerosis, whose B cells exhibit a decreased average production of the down-regulatory cytokine IL-10. Treatment with the approved chemotherapeutic agent mitoxantrone reciprocally modulated B cell proinflammatory and anti-inflammatory cytokines, establishing that the B cell cytokine network can be targeted in vivo. Prospective studies of human B cells reconstituting following in vivo depletion suggested that different B cell subsets produced distinct effector cytokines. We confirmed in normal human B cell subsets that IL-10 is produced almost exclusively by naive B cells while the proinflammatory cytokines lymphotoxin and TNF-alpha are largely produced by memory B cells. These results point to an in vivo switch in the cytokine "program" of human B cells transitioning from the naive pool to the memory pool. We propose a model that ascribes distinct and proactive roles to memory and naive human B cell subsets in the regulation of memory immune responses and in autoimmunity. Our findings are of particular relevance at a time when B cell directed therapies are being applied to clinical trials of several autoimmune diseases.  相似文献   

11.
12.
Regulation of cytokine production during phagocytosis of apoptotic cells   总被引:11,自引:0,他引:11  
Chung EY  Kim SJ  Ma XJ 《Cell research》2006,16(2):154-161
  相似文献   

13.
IL-10-producing regulatory B cells have been undoubtedly identified in mice and shown to downregulate inflammation, making them potentially important for maintenance of tolerance. Several recent works have also identified IL-10 producing regulatory B cells in humans and have begun to unravel their phenotype and mode of suppression. Cell surface phenotype of human Bregs includes CD38, CD27, CD24 and CD5. Mechanisms of suppression may imply inhibition of CD4+ T proliferation, inhibition of Th1 differentiation, induction of regulatory T cells and suppression of monocytes activation. These recent findings imply that manipulating IL-10 production by human B cells could be a useful therapeutic strategy for modulating immune responses in humans.  相似文献   

14.
Dendritic cells (DCs) are professional APCs which have the unique ability to present both foreign and self-Ags to T cells and steer the outcome of immune responses. Because of these characteristics, DCs are attractive vehicles for the delivery of therapeutic vaccines. Fully matured DCs are relatively well-defined and even used in clinical trials in cancer. DCs also have the potential to influence the outcome of autoimmunity by modulating the underlying autoimmune response. To gain a better appreciation of the abilities and mechanisms by which immunomodulatory DCs influence the outcome of T cell responses, we studied several immunomodulatory DCs (TNF-, IL-10-, or dexamethasone-stimulated bone marrow-derived DCs) side by side for their ability to modulate T cell responses and autoimmune diseases. Our data show that these differentially modulated DCs display a different composition of molecules involved in T cell activation. Although, all DC subsets analyzed were able to inhibit the induction of collagen-induced arthritis, the modulation of the underlying immune response was different. Vaccination with TNF- or IL-10-modulated DCs altered the Th1/Th2 balance as evidenced by the induction of IL-5- and IL-10-secreting T cells and the concomitant reduction of the IgG2a-IgG1 ratio against the immunizing Ag. In contrast, DCs modulated with dexamethasone did not affect the ratio of IL-5-producing vs IFN-gamma-producing T cells and tended to affect the Ab response in a nonspecific manner. These data indicate that distinct mechanisms can be used by distinct DC subsets to change the outcome of autoimmunity.  相似文献   

15.
Vgamma9Vdelta2 T lymphocytes recognize nonpeptidic Ags and mount effector functions in cellular immune responses against microorganisms and tumors, but little is known about their role in Ab-mediated immune responses. We show here that expression of CXCR5 identifies a unique subset of Vgamma9Vdelta2 T cells which express the costimulatory molecules ICOS and CD40L, secrete IL-2, IL-4, and IL-10 and help B cells for Ab production. These properties portray CXCR5+ Vgamma9Vdelta2 T cells as a distinct memory T cell subset with B cell helper function.  相似文献   

16.
B cells regulate autoimmune pathologies and chronic inflammatory conditions such as autoimmune encephalomyelitis and inflammatory bowel disease. The potential counterregulatory role of B cells in balancing pathogen-specific immune responses and the associated immunopathology is less well understood owing to the lack of appropriate persistent infection models. In this paper, we show that B cells have the ability to negatively regulate adaptive immune responses to bacterial pathogens. Using mouse models of infection with Helicobacter felis, a close relative of the human gastrointestinal pathogen H. pylori, we found that B cells activated by Helicobacter TLR-2 ligands induce IL-10-producing CD4(+)CD25(+) T regulatory-1 (Tr-1)-like cells in vitro and in vivo. Tr-1 conversion depends on TCR signaling and a direct T-/B-interaction through CD40/CD40L and CD80/CD28. B cell-induced Tr-1 cells acquire suppressive activity in vitro and suppress excessive gastric Helicobacter-associated immunopathology in vivo. Adoptive cotransfer of MyD88-proficient B cells and Tr-1 cells restores a normal gastric mucosal architecture in MyD88(-/-) and IL-10(-/-) mice in a manner that depends on T cellular, but not B cellular, IL-10 production. Our findings describe a novel mechanism of B cell-dependent Tr-1 cell generation and function in a clinically relevant disease model. In conclusion, we demonstrate that the B cell/Tr-1 cell axis is essential for balancing the control of Helicobacter infection with the prevention of excessive Th1-driven gastric immunopathology, promoting gastric mucosal homeostasis on the one hand and facilitating Helicobacter persistence on the other.  相似文献   

17.

Background

Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154TG) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22−/−) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154TGCD22−/− mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.

Methodology/Principal Findings

CD154TGCD22−/− mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154TGCD22−/− mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154TGCD22−/− mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×106±6 in CD154TGCD22−/− mice; 1.7×106±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×106±3 in CD154TGCD22−/− mice; 6.1×106±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.

Conclusions/Significance

These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.  相似文献   

18.
The absence of regulatory T cells (Tregs) results in significant immune dysregulation that includes autoimmunity. The mechanism(s) by which Tregs suppress autoimmunity remains unclear. We have shown that B cell anergy, a major mechanism of B cell tolerance, is broken in the absence of Tregs. In this study, we identify a unique subpopulation of CD4(+) Th cells that are highly supportive of Ab production and promote loss of B cell anergy. Notably, this novel T cell subset was shown to express the germinal center Ag GL7 and message for the B cell survival factor BAFF, yet failed to express markers of the follicular Th cell lineage. We propose that the absence of Tregs results in the expansion of a unique nonfollicular Th subset of helper CD4(+) T cells that plays a pathogenic role in autoantibody production.  相似文献   

19.
T regulatory-1 cells induce IgG4 production by B cells: role of IL-10   总被引:2,自引:0,他引:2  
The study was aimed to find out whether T cells with a regulatory profile could regulate the secretion of IgG4. Using tetanus Ag we found that PBMC of healthy human donors responded to exogenous IL-10 by down-regulating IgG1 and increasing IgG4 secretion. IgE was not affected. To investigate the direct effect of IL-10-producing T cells on B cells, we generated T cell clones (TCC) with two different cytokine profiles: first, IL-10high, IL-2low, IL-4low TCC, and second, IL-10low, IL-2high, IL-4high. The T cell-dependent Ab secretion was measured by coculturing purified CD19+ B cells and the TCC. Interestingly, we found that IgG4 production in the coculture correlated with the TCC production of IL-10 (r2 = 0.352, p = 0.0001), but not with IL-2, IL-4, nor IFN-gamma. IgE showed only a trend with regard to IL-4. Further, there was decreased Ab secretion in the absence of T-B cell contact. IL-10 also induced IgG4 when added to a Th1 TCC-B cell coculture system. The present study thus shows that in T-B cell coculture, IL-10, if induced by the TCC or added to the system, down-regulates the immune response by inducing IgG4 secretion. This establishes a direct implication of IL-10 in humoral hyporesponsiveness, particularly in compartments where the T-B cell interplay determines the subsequent immune response. The correlation between IgG4 and IL-10 (r2 = 0.352) indicates that IL-10 is an important but not the only factor for IgG4 induction.  相似文献   

20.
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency in adults. CVID patients often present changes in the frequency and function of B lymphocytes, reduced number of Treg cells, chronic immune activation, recurrent infections, high incidence of autoimmunity and increased risk for malignancies. We hypothesized that the frequency of B10 cells would be diminished in CVID patients because these cells play an important role in the development of Treg cells and in the control of T cell activation and autoimmunity. Therefore, we evaluated the frequency of B10 cells in CVID patients and correlated it with different clinical and immunological characteristics of this disease. Forty-two CVID patients and 17 healthy controls were recruited for this study. Cryopreserved PBMCs were used for analysis of T cell activation, frequency of Treg cells and characterization of B10 cells by flow cytometry. IL-10 production by sorted B cells culture and plasma sCD14 were determined by ELISA. We found that CVID patients presented decreased frequency of IL-10-producing CD24hiCD38hi B cells in different cell culture conditions and decreased frequency of IL-10-producing CD24hiCD27+ B cells stimulated with CpG+PIB. Moreover, we found that CVID patients presented lower secretion of IL-10 by sorting-purified B cells when compared to healthy controls. The frequency of B10 cells had no correlation with autoimmunity, immune activation and Treg cells in CVID patients. This work suggests that CVID patients have a compromised regulatory B cell compartment which is not correlated with clinical and immunological characteristics presented by these individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号