首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds.

Methods

In 42 populations throughout the distribution range of common juniper in Europe, 11 943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data.

Key Results

Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times.

Conclusions

Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur.  相似文献   

2.
With a distribution range that covers most of the Northern hemisphere, common juniper (Juniperus communis) has one of the largest ranges of all vascular plant species. In several regions in Europe, however, populations are decreasing in size and number due to failing recruitment. One of the main causes for this failure is low seed viability. Observational evidence suggests that this is partly induced by climate warming, but our mechanistic understanding of this effect remains incomplete. Here, we experimentally assess the influence of temperature on two key developmental phases during sexual reproduction, i.e. gametogenesis and fertilisation (seed phase two, SP2) and embryo development (seed phase three, SP3). Along a latitudinal gradient from southern France to central Sweden, we installed a transplant experiment with shrubs originating from Belgium, a region with unusually low juniper seed viability. Seeds of both seed phases were sampled during three consecutive years, and seed viability assessed. Warming temperatures negatively affected the seed viability of both SP2 and SP3 seeds along the latitudinal gradient. Interestingly, the effect on embryo development (SP3) only occurred in the third year, i.e. when the gametogenesis and fertilisation also took place in warmer conditions. We found strong indications that this negative influence mostly acts via disrupting growth of the pollen tube, the development of the female gametophyte and fertilisation (SP2). This, in turn, can lead to failing embryo development, for example, due to nutritional problems. Our results confirm that climate warming can negatively affect seed viability of juniper.  相似文献   

3.
Research on the combined effects of climate change and nitrogen deposition on reproductive traits, and especially on the production of viable seeds, is still scarce despite their importance for population persistence and expansion. Hence, in this study we set out to investigate the direct and indirect effects of the above-mentioned global change drivers on seed viability in the coniferous shrub Juniperus communis L. In many parts of its European range, juniper is increasingly threatened, partly because of a lack of sexual reproduction. We hypothesised that this regeneration failure is partly due to poor seed viability. Using data from 39 populations throughout Europe, we were able to demonstrate that a strong, triangular-shaped relationship exists between the percentage of viable seeds produced and the percentage of juniper seedlings occurring in a population, which indicates that the species is indeed partly seed limited. Furthermore, based on an extended dataset of 42 populations, we found that seed viability was negatively affected by temperature, measured as mean annual growing degree-days, and nitrogen deposition (but not by drought). Suggestions are made about the processes behind the observed patterns, but more research is required. Nevertheless, our results do raise serious concerns for the conservation of juniper in light of the predicted rise in temperature and global nitrogen emissions. Furthermore, it is likely that similar patterns can also be observed for other species.  相似文献   

4.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

5.
Many kinds of pests can reduce seed production. Some directly attack seeds before they are released, and some are hosted by the fruit and impact seed ripening and viability indirectly. Pre-dispersal seed mortality may have strong effects on plant population dynamics and evolution. Our goals were to determine to what extent insect-mediated pre-dispersal seed mortality contributes to population-level declines of cornflower, Centaurea cyanus L. We recorded occurrence and abundance of seed-feeding insects on flower heads in twelve cornflower populations. We measured flower head size, number of disc florets, seed production, and seed viability and germination. Larger flower heads had proportionally fewer healthy seeds. Although we observed no visible damage to the C. cyanus seed, the presence of gall midge (Cecidomyiidae) larvae inside the flower head correlated with four times fewer viable seeds. It seems that gall midges could have a significant impact on ovule fertilization, seed abortion and viability of fully developed cornflower seeds. The higher rate of aborted seeds in the presence of gall midge larvae could have been because the larvae extracted resources from the seeds, or because the larvae repelled pollinators. The viability of apparently healthy seeds was 40% lower in flower heads that contained larvae and/or aborted seed. Insect-mediated pre-dispersal mortality could select against evolution toward larger flower head, and have detrimental consequences on seed number, viability and germination, all of which could limit the spread of C. cyanus populations.  相似文献   

6.
Global environmental change is increasingly affecting species worldwide. One of the emblematic casualties among plants in several European countries is common juniper (Juniperus communis). Many populations of common juniper throughout its distribution range are declining. The relative lack of viable seed production, resulting in low probabilities for successful natural regeneration, is one of the main reasons for this decline. Climate warming and elevated atmospheric depositions have been shown to negatively affect seed viability of common juniper, but our understanding of the underlying mechanisms remains scarce. One possible pathway is via changes in the plant nutrient status that, in turn, may affect seed viability. Here we took advantage of large-scale gradients in climate and atmospheric depositions between central Sweden and northern Spain, and analysed foliar nutrient concentrations and stoichiometry and seed viability in 20 juniper populations spread across Europe. Our results show that increasing temperatures can negatively affect needle N and P concentrations while enhanced potentially acidifying depositions resulted in lower foliar N and Ca concentrations. Needle C:N ratios increased with higher temperature, acidifying depositions and precipitation. By linking these patterns to seed viability, we found that low needle P, Ca and Mg concentrations were related to low seed viability. Thus, a shortage of these key elements during seed development and seed nutrient storage, can lead to anomalies and seed abortion. These findings help to explain the low seed viability of juniper in Europe and may help to assist land managers to take urgently needed conservation actions.  相似文献   

7.
  • The dormancy of seeds of upland cotton can be broken during dry after‐ripening, but the mechanism of its dormancy release remains unclear.
  • Freshly harvested cotton seeds were subjected to after‐ripening for 180 days. Cotton seeds from different days of after‐ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2O2 and phytohormones and activities of antioxidant enzymes and glucose‐6‐phosphate dehydrogenase were measured during after‐ripening and germination.
  • Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2O2 increased during after‐ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2O2 and changed peroxidase content during germination.
  • For cotton seed, the alleviation of coat‐imposed dormancy required 30 days of after‐ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
  相似文献   

8.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

9.
  • Diaspore structure has been hypothesised to play a role in seed viability and/or germination of recalcitrant seeds, especially for Swartzia langsdorffii. Thus, this work aims to (i) investigate the in situ contribution of pericarp and aril on seed viability and germination, and (ii) identify morphoanatomical traits of S. langsdorffii diaspores that allow its desiccation‐sensitive seeds to remain viable.
  • The role of the pericarp and aril in seed survival and germination was investigated by placing the whole fruit, whole seeds (arillate seed) and bare seeds (without aril) in soil in the forest understorey, assessing germination, emergence, dead, firm and predated seeds, and water content of pericarps, arils and seeds. Correlation analysis was performed between environmental variables and physiological parameters. Histochemical features of diaspores were also investigated.
  • Pericarp water content fell after several months, while the aril maintained its water content. Seeds did not lose water even without the presence of the pericarp and aril. However, presence of the pericarp promoted seed water content, viability and germination long after dispersal. The embryo had a thickened outer periclinal cell wall.
  • Pericarp and aril are not essential to prevent water loss in seeds, but do help to retain seed moisture, favouring viability maintenance and promoting germination during the rainy season. Morphoanatomical features of seeds are suggested as main factors that reduce water loss. Survival of these desiccation‐sensitive seeds upon dispersal during the dry season appears to be facilitated by multiple diaspore features that prevent viability loss.
  相似文献   

10.
扇脉杓兰果实生长动态及胚胎发育过程观察   总被引:1,自引:0,他引:1  
对授粉后不同发育阶段扇脉杓兰(Cypripedium japonicum Thunb.)果实的生长动态进行了观察和分析,并分别采用TrC法和常规石蜡切片法研究了种子生活力及其胚胎发育过程.观察结果湿示:扇脉杓兰果实形态成熟时间约为110 d,其中,授粉后0~20 d为第1次迅速生长期,授粉后20~30 d为第1次缓慢生长期,授粉后30~50 d为第2次迅速生长期,授粉后50~110 d为第2次缓慢生长期;果实纵径和横径的生长动态变化过程相似,但横径的生长动态曲线较纵径平缓,形态成熟时果实的纵径和横径分别为48.87和13.59 mm.成熟种子由内外2层种皮和球形胚构成,不具胚乳,内外种皮间具空气腔;败育种子只具有内种皮和外种皮而无种胚.胚胎发育类型为石竹型,种胚自受精形成合子到发育为成熟球形胚约需95 d.种胚发育时合子第1次不均衡横裂形成基细胞和顶细胞;基细胞发育为胚柄细胞,胚柄细胞高度液泡化,在胚胎发育的过程中不进行分裂并逐渐退化消失;顶细胞不参与胚柄形成,并且经过有丝分裂最终形成球形胚;内珠被在种子成熟时发育成为1层致密的紧贴胚体的内种皮.种胚纵径和横径的生长动态变化相似,成熟球形胚的纵径和横径分别为208.71和106.19 μm.扇脉杓兰种子生活力较高,有生活力的种子占56%.根据研究结果推测:自然状态下扇脉杓兰种子萌发率较低,可能与致密的种皮、种子中较小的胚体以及无胚乳导致的营养成分不足有关.  相似文献   

11.
This study represents part of a broader investigation into novel seed broadcasting methodologies as a means to optimize rehabilitation techniques following sand mining. Specifically, the study investigated the use of polymer seed coatings, time of sowing application, and in situ raking of the topsoil to optimize seedling recruitment to site. For polymer seed coatings, an ex situ trial was undertaken to evaluate seed coating effects on seedling emergence. Results demonstrated that seed coatings did not significantly inhibit maximum emergence percentage of 10 Banksia woodland species (out of 11 evaluated), but coated seeds from four species were on average 2–6 days slower to emerge than noncoated seeds. Seed coatings were found to have a greater effect in situ, with more coated seeds emerging than noncoated seeds. Topsoil raking (following seed sowing) and time of sowing were found to have the greatest impact on seedling emergence, with higher emergence following topsoil raking (5‐ to 90‐fold increase) and sowing in May (late autumn) (1.4‐ to 12‐fold increase) rather than in July (mid‐winter). The implications for mining rehabilitation are discussed, and areas for further research are considered.  相似文献   

12.
Question: What is the role of dispersal, persistent soil seed banks and seedling recruitment in population persistence of fleshy‐fruited obligate seeding plant species in fire‐prone habitats? Location: Southeastern Australia. Methods: We used a long‐term study of a shrubby, fleshy‐fruited Persoonia species (Proteaceae) to examine (1) seed removal from beneath the canopy of adult plants; (2) seedling recruitment after fire; (3) the magnitude and location of the residual soil seed bank; and (4) the implications for fire management of obligate seeding species. We used demographic sampling techniques combined with Generalised Linear Modelling and regression to quantify population changes over time. Results: Most of the mature fruits (90%) on the ground below the canopy of plants were removed by Wallabia bicolor (Swamp wallaby) with 88% of seeds extracted from W. bicolor scats viable and dormant. Wallabies play an important role in moving seeds away from parent plants. Their role in occasional long distance dispersal events remains unknown. We detected almost no seed predation in situ under canopies (< 1%). Seedling recruitment was cued to fire, with post‐fire seedling densities 6‐7 times pre‐fire adult densities. After fire, a residual soil seed bank was present, as many seeds (77‐100%) remained dormant and viable at a soil depth where successful future seedling emergence is possible (0‐5 cm). Seedling survival was high (> 80%) with most mortality within 2 years of emergence. Plant growth averaged 17 cm per year. The primary juvenile period of plants was 7–8 years, within the period of likely return fire intervals in the study area. We predicted that the study population increased some five‐fold after the wildfire at the site. Conclusions: Residual soil seed banks are important, especially in species with long primary juvenile periods, to buffer the populations against the impact of a second fire occurring before the seed bank is replenished.  相似文献   

13.
Seed dormancy is considered to be an adaptive strategy in seasonal and/or unpredictable environments because it prevents germination during climatically favorable periods that are too short for seedling establishment. Tropical dry forests are seasonal environments where seed dormancy may play an important role in plant resilience and resistance to changing precipitation patterns. We studied the germination behavior of seeds from six populations of the Neotropical vine Dalechampia scandens (Euphorbiaceae) originating from environments of contrasting rainfall seasonality. Seeds produced by second greenhouse‐generation plants were measured and exposed to a favorable wet environment at different time intervals after capsule dehiscence and seed dispersal. We recorded the success and the timing of germination. All populations produced at least some dormant seeds, but seeds of populations originating from more seasonal environments required longer periods of after‐ripening before germinating. Within populations, larger seeds tended to require longer after‐ripening periods than did smaller seeds. These results indicate among‐population genetic differences in germination behavior and suggest that these populations are adapted to local environmental conditions. They also suggest that seed size may influence germination timing within populations. Ongoing changes in seasonality patterns in tropical dry forests may impose strong selection on these traits.  相似文献   

14.
This study analyzes the fate of seeds removed by ants, as well as the seed supply, seedling survival, and the ability to form persistent seed banks in the soil, in a critically endangered population of the non-myrmecochorous perennial halophyte Helianthemum polygonoides, in order to determine the extent to which seed removal by ants represents a real bottleneck for recruitment and thus a threat for long-term population viability. Apparently, the impact of seed-harvester ants was dramatic: the primary seed shadow was reduced by up to 93% by the activity of Messor bouvieri and Aphaenogaster dulcineae. However, M. bouvieri lost 7% of fruits collected by dropping them on trunk trails, mostly under plant cover, the most propitious microenvironment for recruitment. In addition, some seeds were mistakenly rejected in refuse piles, although here recruitment was extremely low. A significant fraction of seeds (≈40%) remained viable in the soil for over 2 years. In addition, H. polygonoides had the ability to form short-term persistent seed banks, in spite of the intense ant seed removal. In general, seedling recruitment was very low, denoting the scarcity of safe sites in the habitat. Overall, the data corroborate that seed removal by ants, although highly intense, does not compromise the viability of perennial-plant populations, because seed supply and seed reserve in the soil are enough to exploit current and future safe sites. A population viability analysis demonstrated that other threats affecting the survival of reproductive H. polygonoides plants actually constitute the real risk for the conservation of this critically endangered species.  相似文献   

15.
The potential for seed‐eating birds to spread viable seeds was investigated using captive‐feeding trials to determine seed preference, passage time through the gut, and viability of passed seeds for bronzewing pigeons (Phaps chalcoptera), peaceful doves (Geopelia striata), crested pigeons (Ocyphaps lophotes), Senegal doves (Streptopelia senegalensis), zebra finches (Taeniopygia guttata), black ducks (Anas superciliosa) and wood ducks (Chenonetta jubata). Test seeds were bladder clover (Trifolium spumosum), crimson clover (Trifolium incarnatum), gorse (Ulex europaeus), canola (Brassica napus) and red panicum (Setaria italica). Their consumption was compared with that of commercial seed mixes. Although all test seeds were recognizable foods, their consumption usually decreased in the presence of other foods, except for canola, where consumption rates were maintained. Hard‐seeded bladder clover was the only species where viable seeds were passed by obligate seedeaters. In contrast, viable seeds of canola and gorse were passed by seed‐eating omnivorous/herbivorous ducks, although the germination of passed seeds (42%) was reduced significantly compared with that of untreated control seed (67%). Field validation with wild, urban bronzewings and Australian magpies (Gymnorhina tibicen) offered canola and commercial seed yielded similar outcomes, with a range of viable seeds recovered from magpie soft pellets. Mean seed passage time in captive birds ranged from 0.5 to 4.3 h for all test seeds and commercial seed mixes, suggesting that these bird species may potentially disperse seed over moderate distances. Despite the low probability of individual birds spreading viable seed, the high number of birds feeding in the wild suggests that the potential for granivorous and seed‐eating omnivorous birds to disperse viable seeds cannot be discounted, particularly if exozoochorous dispersal is also considered.  相似文献   

16.
Seed predation by rodents presents a significant barrier to native plant recruitment and can impede restoration seeding efforts. In nature, some plants contain secondary defense compounds that deter seed predators. If these natural defense compounds can be applied to unprotected seeds to inhibit rodent granivores, this approach could improve restoration seeding. Capsaicin is the active ingredient in chili pepper (Capsicum spp.) seeds that creates the burning sensation associated with human consumption of hot peppers. This compound has a similar effect on other mammals and is believed to have evolved as a deterrent to rodent seed predators. We used seed‐coating techniques to attach powder ground from Bhut Jolokia (Capsicum chinense) peppers to native plant seeds and evaluated the efficacy of these seed coatings for deterring rodent seed predation and enhancing native plant recruitment using laboratory and field experiments. Laboratory feeding trials demonstrated that native deer mice (Peromyscus maniculatus) consumed far fewer pepper‐coated seeds compared to untreated control seeds. Field seed‐addition experiments consistently demonstrated that rodent seed predation reduced native plant recruitment over the 4‐year study. Coating techniques used in the first 3 years were not persistent enough to reduce rodent seed predation effects on plant recruitment. However, a more persistent coating applied in conjunction with late‐winter sowing negated rodent seed predation effects on recruitment in year 4. Our results demonstrate that coating seeds with natural plant defense compounds may provide an effective, economical way to improve the efficacy of plant restoration by deterring seed predation by ubiquitous rodent granivores.  相似文献   

17.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

18.
The northern boundary of boreal forest and the ranges of tree species are expected to shift northward in response to climate warming, which will result in a decrease in the albedo of areas currently covered by tundra vegetation, an increase in terrestrial carbon sequestration, and an alteration of biodiversity in the current Low Arctic. Central to the prediction of forest expansion is an increase in the reproductive capacity and establishment of individual trees. We assessed cone production, seed viability, and transplanted seedling success of Picea glauca (Moench.) Voss. (white spruce) in the early 1990s and again in the late 2000s at four forest stand sites and eight tree island sites (clonal populations beyond present treeline) in the Mackenzie Delta region of the Northwest Territories, Canada. Over the past 20 years, average temperatures in this region have increased by 0.9 °C. This area has the northernmost forest‐tundra ecotone in North America and is one of the few circumpolar regions where the northern limit of conifer trees reaches the Arctic Ocean. We found that cone production and seed viability did not change between the two periods of examination and that both variables decreased northward across the forest‐tundra ecotone. Nevertheless, white spruce individuals at the northern limit of the forest‐tundra ecotone produced viable seeds. Furthermore, transplanted seedlings were able to survive in the northernmost sites for 15 years, but there were no signs of natural regeneration. These results indicate that if climatic conditions continue to ameliorate, reproductive output will likely increase, but seedling establishment and forest expansion within the forest‐tundra of this region is unlikely to occur without the availability of suitable recruitment sites. Processes that affect the availability of recruitment sites are likely to be important elsewhere in the circumpolar ecotone, and should be incorporated into models and predictions of climate change and its effects on the northern forest‐tundra ecotone.  相似文献   

19.
Interannual variations in cone and seed production of Pinus banksiana Lamb, were studied at the species northern limit of distribution in Québec (Canada). Cone number per cone-bearing branch, potential number of seeds per cone, number of formed, filled, and viable seeds per cone, and seed viability, germination rate, and mass were determined for two populations of the species, over a 9-year series. There were significant differences among years, but not between populations, in all the variables considered. The populations were well synchronized with each other, suggesting that climatic influence on the variables considered might be significant. Apparent periodicity in reproductive output also suggests the existence of some internal cycle, possibly in relation to tree reserves. Annual viable seed production is the result of a combination of events in the reproductive cycle of an individual (i.e., cone initiation, pollination, fertilization, and embryo maturation), each one specifically affected by climate. There are no apparent trade-offs between seed mass and number of filled seeds per cone over time; moreover, there seems to be a positive relationship between seed mass and number of viable seeds per cone. Climate conditions during fertilization and embryo maturation (both of which occur during the same season) appear to significantly influence the species reproductive output. We present regression models based on meteorological variables to estimate cone and viable seed production, and seed mass.  相似文献   

20.
BACKGROUND AND AIMS: Many Orchidaceous species are threatened globally by development and over-collection from their natural habitats for horticultural purposes. Artificial propagation from seeds is difficult in most terrestrial orchids native to temperate regions. Seed production is another limiting factor in the artificial propagation for these species because of the lessened probability of pollination and the destruction of fruit by insect larvae. Members of the genus Cephalanthera are distributed across Europe, Asia and North America. C. falcata is a temperate species of East Asia and an endangered species in Japan. As successful propagation from seeds of this species has never been reported, a reproducible method is described here for seed production in situ and propagation using immature seeds in asymbiotic culture in vitro. METHODS: Effects of hand-pollination and bagging treatment of ovaries were examined. Young capsules were collected every 10 d from 50 d after pollination until 120 d after pollination. Immature seeds obtained from these capsules were cultured asymbiotically on modified Kano medium and ND medium. Seed viability was examined within TTC (2,3,5-triphenyl tetrazolium chloride) test solution and histological observations were made on viable seeds by paraffin embedding at each collection stage. KEY RESULTS AND CONCLUSIONS: Hand-pollination followed by bagging treatment of ovaries with aluminium foil was effective for insect control during fruit development, and successfully yielded capsules. Of the capsules, 74.5 % survived to full maturity. The highest frequency (39.8 %) of seed germination was obtained with seeds harvested 70 d after pollination. The frequency declined with progress of seed maturity on the mother plant. Minimal germination was observed with seeds harvested 100 d or later after pollination. Histological observation suggests that accumulation of such substances as lignin in the inner integument surrounding the embryo during seed maturation plays an important role in induction of dormancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号