首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
双翅目昆虫分为长角亚目和短角亚目,前者主要类群包括蚊、蠓、蛉和蚋,后者主要类群为虻类和蝇类。国内外学者对双翅目昆虫形态分类和分子系统发育关系研究均较多。本文整理总结了几种主要核基因在双翅目昆虫进化和系统发育关系的研究资料,结果显示:双翅目的单系性得到了众多形态学、生物学和分子数据的支持,多数系统发育研究认为传统的长角亚目为并系,短角亚目是一个单系,其主要类群舞虻下目、环裂类、有缝组和有瓣蝇类均为单系,但非环裂类、无缝组为并系,无瓣类可能为并系;基本搞清了有重要医学意义和与环境关系密切的类群,特别是有瓣蝇类各科类群分类系统的进化关系;双翅目昆虫发生辐射进化的三个分支节点时间即:低等双翅目(蚊类)2.2亿年、低等短角亚目(虻类)1.8亿年、有缝组(蝇类)6500万年;大量双翅目昆虫自然生命史历经吸血性、植食性和寄生性,有2.6亿年以上的演化历程。从相关核基因研究中总结出:18SrRNA、28SrRNA和CAD基因能很好的解决高级阶元从目到属的系统发育问题;EF-1ɑ基因和White基因更适合从科到属水平的分类阶元;ITS基因一般应用在从属到种水平的低级分类阶元,并被广泛应用到双翅目昆虫分子系统学研究中。  相似文献   

2.
The insect order Diptera, the true flies, contains one of the four largest Mesozoic insect radiations within its suborder Brachycera. Estimates of phylogenetic relationships and divergence dates among the major brachyceran lineages have been problematic or vague because of a lack of consistent evidence and the rarity of well-preserved fossils. Here, we combine new evidence from nucleotide sequence data, morphological reinterpretations, and fossils to improve estimates of brachyceran evolutionary relationships and ages. The 28S ribosomal DNA (rDNA) gene was sequenced for a broad diversity of taxa, and the data were combined with recently published morphological scorings for a parsimony-based phylogenetic analysis. The phylogenetic topology inferred from the combined 28S rDNA and morphology data set supports brachyceran monophyly and the monophyly of the four major brachyceran infraorders and suggests relationships largely consistent with previous classifications. Weak support was found for a basal brachyceran clade comprising the infraorders Stratiomyomorpha (soldier flies and relatives), Xylophagomorpha (xylophagid flies), and Tabanomorpha (horse flies, snipe flies, and relatives). This topology and similar alternative arrangements were used to obtain Bayesian estimates of divergence times, both with and without the assumption of a constant evolutionary rate. The estimated times were relatively robust to the choice of prior distributions. Divergence times based on the 28S rDNA and several fossil constraints indicate that the Brachycera originated in the late Triassic or earliest Mesozoic and that all major lower brachyceran fly lineages had near contemporaneous origins in the mid-Jurassic prior to the origin of flowering plants (angiosperms). This study provides increased resolution of brachyceran phylogeny, and our revised estimates of fly ages should improve the temporal context of evolutionary inferences and genomic comparisons between fly model organisms.  相似文献   

3.
With over 80 000 described species, Brachycera represent one of the most diverse clades of organisms with a Mesozoic origin. Larvae of the majority of early lineages are detritivores or carnivores. However, Brachycera are ecologically innovative and they now employ a diverse range of feeding strategies. Brachyceran relationships have been the subject of numerous qualitative analyses using morphological characters. These analyses are often based on characters from one or a few character systems and general agreement on relationships has been elusive. In order to understand the evolution of basal brachyceran lineages, 101 discrete morphological characters were scored and compiled into a single data set. Terminals were scored at the family level, and the data set includes characters from larvae, pupae and adults, internal and external morphology, and male and female terminalia. The results show that all infraorders of Brachycera are monophyletic, but there is little evidence for relationships between the infraorders. Stratiomyomorpha, Tabanomorpha, and Xylophagomorpha together form the sister group to Muscomorpha. Xylophagomorpha and Tabanomorpha are sister groups. Within Muscomorpha, the paraphyletic Nemestrinoidea form the two most basal lineages. There is weak evidence for the monophyly of Asiloidea, and Hilarimorphidae appear to be more closely related to Eremoneura than other muscomorphs. Apsilocephalidae, Scenopinidae and Therevidae form a clade of Asiloidea. This phylogenetic evidence is consistent with the contemporaneous differentiation of the main brachyceran lineages in the early Jurassic. The first major radiation of Muscomorpha were asiloids and they may have diversified in response to the radiation of angiosperms in the early Cretaceous.  相似文献   

4.
Abstract Relationships among families of the lower Diptera (formerly suborder ‘Nematocera’) have been exceptionally difficult to resolve. Multiple hypotheses based on morphology have been proposed to identify the earliest lineages of flies and place the phylogenetic origin of the higher flies (Brachycera), but convincing support is limited. Here we resolve relationships among the major groups of lower Diptera using sequence data from four nuclear markers, including both ribosomal (28S rDNA) and protein‐coding (CAD, TPI and PGD) genes. Our results support both novel and traditional arrangements. Most unexpectedly, the small, highly‐specialized family Deuterophlebiidae appears to be sister to all remaining Diptera. Other results include the resolution of the traditional infra‐orders Culicomorpha (including a novel superfamily Simulioidea = Thaumaleidae + Simuliidae), Tipulomorpha (Tipulidae sensu lato + Trichoceridae) and Bibionomorpha sensu lato. We find support for a limited Psychodomorpha (Blephariceridae, Tanyderidae and Psychodidae) and Ptychopteromorpha (Ptychopteridae), whereas the placement of several enigmatic families (Nymphomyiidae, Axymyiidae and Perissommatidae) remains ambiguous. According to genetic data, the infra‐order Bibionomorpha is sister to the Brachycera. Much of the phylogenetic signal for major lineages was found in the 28S rDNA gene, whereas protein‐coding genes performed variably at different levels. In addition to elucidating relationships, we also estimate the age of major lower dipteran clades, based on molecular divergence time estimates using relaxed‐clock Bayesian methods and fossil calibration points.  相似文献   

5.
Insect ganglia are often composed of fused segmental units or neuromeres. We estimated the evolution of the ventral nerve cord (VNC) in higher Diptera by comparing the patterns of neuromere fusion among 33 families of the Brachycera. Variation within families is uncommon, and VNC architecture does not appear to be influenced by body shape. The outgroup pattern, seen in lower Diptera, is fusion of neuromeres belonging to thoracic segments 1 and 2 (T1 and T2), and fusion of neuromeres derived from T3 and abdominal segment 1 (A1). In the abdomen, neuromeres A7–10 are fused into the terminal abdominal ganglion (TAG). Increased neuromere fusion is a feature of the Brachycera. No brachyceran shows less fusion than the outgroups. We established six pattern elements: (1) fusion of T1 and T2, (2) fusion of T3 and A1, (3) fusion of the T1/T2 and T3/A1 ganglia, (4) increase in the number of neuromeres comprising the TAG, (5) anteriorward fusion of abdominal neuromeres, and (6) the complete fusion of thoracic and abdominal neuromeres into a synganglion. States 1 and 2 are present in the outgroup lower Diptera, and state 3 in the Xylophagomorpha, Stratiomyomorpha, Tabanomorpha and Cyclorrhapha. State 4 is a feature of all Eremoneura. State 5 is present in Cyclorrhapha only, and state 6, fusion into a synganglion, has evolved at least 4 times in the Eremoneura. Synapomorphies are provided for the Cyclorrhapha and Muscoidea, and a grouping of three basal brachyceran infraorders Xylophagomorpha, Stratiomyomorpha and Tabanomorpha. The patterns of fusion suggest that VNC architecture has evolved irreversibly, in accordance with Dollo's law.  相似文献   

6.
The relationships of the nematocerous families of Diptera are cladistieally analysed using the parsimony programs PAUP and Hennig86. An extensive review, as well as a data matrix, is presented for 98 almost exclusively morphological characters (larva, 56; pupa, 6; adult, 36). Four infraorders are recognized, viz , Ptychopteromorpha, Culicomorpha, Blephariceromorpha, Bibionomorpha, and a clade containing the 'higher Nematocera' and Brachycera. Traditionally the family Nymphomyiidae or the infraorder Tipulomorpha (=Tipulidae, with or without Trichoceridae) are considered the most basal clade of the extant Diptera. On the basis of our cladistic analysis it is suggested that the Ptychopteromorpha-Culicomorpha clade is the sister-group of all other extant Diptera. We provide evidence that the Axymyiidae are part of a monophyletic Bibionomorpha. The latter infraorder is proposed as the sister-group of the higher Nematocera and Brachycera. We transfer the Tipulidae (Tipulomorpha) to the higher Nematocera, at a position next to Trichoceridae and near the Anisopodidae-Brachycera lineage. Previous hypotheses concerning nematocerous relationships are reviewed.  相似文献   

7.
Phylogenetic relationships among all of the major decapod infraorders have never been estimated using molecular data, while morphological studies produce conflicting results. In the present study, the phylogenetic relationships among the decapod basal suborder Dendrobranchiata and all of the currently recognized decapod infraorders within the suborder Pleocyemata (Caridea, Stenopodidea, Achelata, Astacidea, Thalassinidea, Anomala, and Brachyura) were inferred using 16S mtDNA, 18S and 28S rRNA, and the histone H3 gene. Phylogenies were reconstructed using the model-based methods of maximum likelihood and Bayesian methods coupled with Markov Chain Monte Carlo inference. The phylogenies revealed that the seven infraorders are monophyletic, with high clade support values (bp>70; pP>0.95) under both methods. The two suborders also were recovered as monophyletic, but with weaker support (bp=70; pP=0.74). Although the nodal support values for infraordinal relationships were low (bp<50; pP<0.77) the Anomala and Brachyura were basal to the rest of the 'Reptantia' in both reconstructions and using Bayesian tree topology tests alternate morphology-based hypotheses were rejected (P<0.01). Newly developed multi-locus Bayesian and likelihood heuristic rate-smoothing methods to estimate divergence times were compared using eight fossil and geological calibrations. Estimated times revealed that the Decapoda originated earlier than 437MYA and that the radiation within the group occurred rapidly, with all of the major lineages present by 325MYA. Node time estimation under both approaches is severely affected by the number and phylogenetic distribution of the fossil calibrations chosen. For analyses incorporating fossils as fixed ages, more consistent results were obtained by using both shallow and deep or clade-related calibration points. Divergence time estimation using fossils as lower and upper limits performed well with as few as one upper limit and a single deep fossil lower limit calibration.  相似文献   

8.
The presumptive data on results of the investigation of the Diptera Brachycera in the territory of Samarskaya Luka, the largest refuge in eastern European Russia, are given. Based on the published data and on examination of 18 000 specimens, a faunal list for the region is compiled, including 897 species of 395 genera of 62 families. The annotated list of Brachycera Orthorrhapha, Cyclorrhapha: Aschiza includes data on the flight periods, habitats, and number of examined specimens.  相似文献   

9.
Abstract. Based on outgroup comparison, the various components of the larval mandible of the Brachycera and their homologies are described. The final instar larval mandible of the Brachycera ground plan is comprised of a distal pointed hook and an inverted 'U'-shaped basal sclerite. The phylogenetic implications of the larval mandibular homologies and associated mouthpart structures for the current cladistic hypotheses of the Nematocera (Wood & Borkent, 1989) and orthorrhaphous Brachycera (Woodley, 1989) are evaluated.
A cladistic analysis of larval mouthpart characters largely supports the hypotheses of Wood & Borkent and Woodley. The presence of a pharyngeal filter is tentatively proposed as a synapomorphy of the Diptera exclusive of the Tipulomorpha and Bibionomorpha. Evidence is presented supporting a sister-group relationship between the Psychodomorpha ( sensu Wood & Borkent, 1989) and the Brachycera. The placement of the Pantophthalmidae in the Stratiomyomorpha is supported by the apomorphic development of the mandibular-maxillary complex and pharyngeal filter with posterior grinding mill. Additional larval mouthpart characters are proposed supporting the concept of the Eremoneura (Empidoidea + Cyclorrhapha). The ground plan of the Empidoidea appears to be characterized by the apomorphic development of a four-component mandible, in which the basal sclerite is subdivided into two connecting sclerites and a ventral sclerite. Morphological evidence is presented supporting the mandibular origin of the mouthhooks of the Cyclorrhapha.  相似文献   

10.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

11.
The phylogeny of Decapoda is contentious and many hypotheses have been proposed based on morphological cladistic analyses. Recent molecular studies, however, yielded contrasting results despite their use of similar data (nuclear and mitochondrial rDNA). Here we present the first application of two nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and sodium-potassium ATPase alpha-subunit, to reconstruct the phylogeny of major infraorders within Decapoda. A total of 64 species representing all infraorders of Pleocyemata were analyzed with five species from Dendrobranchiata as outgroups. Maximum likelihood and Bayesian inference reveal that the Reptantia and all but one infraorder are monophyletic. Thalassinidea, however, is polyphyletic. The nodal support for most of the infraordinal and inter-familial relationships is high. Stenopodidea and Caridea form a clade sister to Reptantia, which comprises two major clades. The first clade, consisting of Astacidea, Achelata, Polychelida and three thalassinidean families (Axiidae, Calocarididae and Eiconaxiidae), corresponds essentially to the old taxon suborder Macrura Reptantia. Polychelida nests within Macrura Reptantia instead of being the most basal reptant as suggested in previous studies. The high level of morphological and genetic divergence of Polychelida from Achelata and Astacidea justifies its infraorder status. The second major reptant clade consists of Anomura, Brachyura and two thalassindean families (Thalassinidae and Upogebiidae). Anomura and Brachyura form Meiura, with moderate support. Notably thalassinidean families are sister to both major reptant clades, suggesting that the stem lineage reptants were thalassinidean-like. Moreover, some families (e.g. Nephropidae, Diogenidae, Paguridae) are paraphyletic, warranting further studies to evaluate their status. The present study ably demonstrates the utility of nuclear protein-coding genes in phylogenetic inference in decapods. The topologies obtained are robust and the two molecular markers are informative across a wide range of taxonomic levels. We propose that nuclear protein-coding genes should constitute core markers for future phylogenetic studies of decapods, especially for higher systematics.  相似文献   

12.
Stratiomyidae is a cosmopolitan family of Brachycera (Diptera) that contains over 2800 species. This study focused on the relationships of members of the subfamily Clitellariinae, which has had a complicated taxonomic history. To investigate the monophyly of the Clitellariinae, the relationships of its genera, and the ages of Stratiomyidae lineages, representatives for all 12 subfamilies of Stratiomyidae, totaling 68 taxa, were included in a phylogenetic reconstruction. A Xylomyidae representative, Solva sp., was used as an outgroup. Sequences of EF-1alpha and 28S rRNA genes were analyzed under maximum parsimony with bootstrapping, and Bayesian methods to recover the best estimate of phylogeny. A chronogram with estimated dates for all nodes in the phylogeny was generated with the program, r8s, and divergence dates and confidence intervals were further explored with the program, multidivtime. All subfamilies of Stratiomyidae with more than one representative were found to be monophyletic, except for Stratiomyinae and Clitellariinae. Clitellariinae were distributed among five separate clades in the phylogeny, and Raphiocerinae were nested within Stratiomyinae. Dating analysis suggested an early Cretaceous origin for the common ancestor of extant Stratiomyidae, and a radiation of several major Stratiomyidae lineages in the Late Cretaceous.  相似文献   

13.
Fruit flies (Diptera: Tephritidae) are a species-rich and economically important group. The phylogenetic relationships among the many taxa are still to be fully resolved and the monophyly of several groups is still to be confirmed. This paper reports a study of the phylogenetic relationships among 23 economically important tephritid species (representing several major lineages of the family) which examines the sequence of a region of mitochondrial DNA encompassing the cytb, tRNA(Ser) and ND1 genes. Substitutions characteristic of particular taxa were found that could help classify members of the family at any developmental stage. The trees obtained by the maximum parsimony, neighbour joining and maximum likelihood methods were generally compatible with present morphological classification patterns. However, the data reveal some characteristics of the phylogenetic relationships of this family that do not agree with present classifications. The results support the probable non-monophyletic nature of the subfamily Trypetinae and suggest that Bactrocera cucurbitae (Coquillet) is more closely related to the genus Dacus than to other species of Bactrocera.  相似文献   

14.
One of the primary specializations of true flies (order Diptera) is the modification of the hind wings into club-shaped halteres. Halteres are complex mechanosensory structures that provide sensory feedback essential for stable flight control via an array of campaniform sensilla at the haltere base. The morphology of these sensilla has previously been described in a small number of dipteran species, but little is known about how they vary across fly taxa. Using a synoptic set of specimens representing 42 families from all of the major infraorders of Diptera, we used scanning electron microscopy to map the gross and fine structures of halteres, including sensillum shape and arrangement. We found that several features of haltere morphology correspond with dipteran phylogeny: Schizophora generally have smaller halteres with stereotyped and highly organized sensilla compared to nematoceran flies. We also found a previously undocumented high variation of haltere sensillum shape in nematoceran dipterans, as well as the absence of a dorsal sensillum field in multiple families. Overall, variation in haltere sensillar morphology across the dipteran phylogeny provides insight into the evolution of a highly specialized proprioceptive organ and a basis for future studies on haltere sensory function.  相似文献   

15.
The morphological features of the third instar larva of the most important insect model, Drosophila melanogaster, are documented for the first time using a broad spectrum of modern morphological techniques. External structures of the body wall, the cephaloskeleton, and the musculature are described and illustrated. Additional information about other internal organs is provided. The systematic implications of the findings are discussed briefly. Internal apomorphic features of Brachycera and Cyclorrhapha are confirmed for Drosophila. Despite the intensive investigations of the phylogeny of the megadiverse Diptera, evolutionary reconstructions are still impeded by the scarcity of anatomical data for brachyceran larvae. The available morphological information for the life stages of three insect model organisms – D. melanogaster (Diptera, Drosophilidae), Manduca sexta (Lepidoptera, Sphingidae) and Tribolium castaneum (Coleoptera, Tenebrionidae) - is addressed briefly. The usefulness of a combination of traditional and innovative techniques for an optimized acquisition of anatomical data for different life stages is highlighted.  相似文献   

16.
17.

Gobioidei is a suborder of perciform fishes with about 2000 species distributed worldwide. Despite the evolutionary and ecological importance of gobioids, their phylogenetic inter- and intrarelationships are still poorly understood. Only a few studies (either morphological or molecular) have tackled the phylogeny of Gobioidei as a whole. Of these, only six studies thus far have addressed gobioid intrarelationships based on molecular data (each using different taxon sampling, genes, outgroups and method of phylogenetic inference), yielding contrasting results regarding the phylogenetic relationships among major lineages. In this study, we have reanalysed data from four of these molecular phylogenetic studies of Gobioidei under standardization criteria (same outgroup and methods of phylogenetic inference) in order to assess the robustness of their results, as well as to identify which parts of the gobioid tree are least resolved. Results from all datasets reanalysed in this study are generally similar to those of the respective original studies, and suggest broad patterns of phylogenetic relationships among gobioid lineages. However, there are numerous topological discrepancies among the four studies, support is low for many phylogenetic relationships and topology tests are unable to reject the vast majority of alternative topologies tested. The concatenation of datasets yields a relatively robust phylogeny of major lineages of Gobioidei, but there are some issues of overlap and missing data, which are ameliorated with the inclusion of additional homologous sequences from GenBank that increase dataset completeness. Because both monophyly of major gobioid groups and phylogenetic relationships among them cannot be fully resolved, it is clear that further phylogenetic research is needed, and this should be accompanied by a major taxonomic revision of the Gobioidei. Nevertheless, even with the relatively unstable nature of the available molecular phylogenies, there are some monophyletic units that can be identified, and a basic structure of the gobioid tree appears evident.  相似文献   

18.
Heteroptera are among the most diverse hemimetabolous insects. Seven infraorders have been recognized within this suborder of Hemiptera. Apart from the well‐established sister‐group relationship between Cimicomorpha and Pentatomomorpha (= Terheteroptera), the two terminal lineages, the relationships among the other five infraorders are still controversial, of which three (Gerromorpha, Nepomorpha and Leptopodomorpha) are intimately connected to aquatic environments. However, the various and often conflicting available phylogeny hypotheses do not offer a clear background for a connection between diversification and palaeoenvironments. In this study, a molecular data set representing 79 taxa and 10 149 homologous sites is used to infer the phylogenetic relationships within Heteroptera. Bayesian inference, maximum‐likelihood and maximum parsimony analyses were employed. The results of phylogenetic inferences largely confirm the widely accepted phylogenetic context. Estimation of the divergence time based on the phylogenetic results revealed that Gerromorpha, Nepomorpha and Leptopodomorpha originated successively during the period from the Late Permian to Early Triassic (269–246 Ma). This timescale is consistent with the origin and radiation time of various aquatic holometabolans. Our results indicate that the aquatic and semi‐aquatic true bugs evolved under environmental conditions of high air temperature and humidity in an evolutionary scenario similar to that of the aquatic holometabolans.  相似文献   

19.
It has recently been reported that the synaptic acetylcholinesterase (AChE) in mosquitoes is encoded by the ace-1 gene, distinct and divergent from the ace-2 gene, which performs this function in Drosophila. This is an unprecedented situation within the Diptera order because both ace genes derive from an old duplication and are present in most insects and arthropods. Nevertheless, Drosophila possesses only the ace-2 gene. Thus, a secondary loss occurred during the evolution of Diptera, implying a vital function switch from one gene (ace-1) to the other (ace-2). We sampled 78 species, representing 50 families (27% of the Dipteran families) spread over all major subdivisions of the Diptera, and looked for ace-1 and ace-2 by systematic PCR screening to determine which taxonomic groups within the Diptera have this gene change. We show that this loss probably extends to all true flies (or Cyclorrhapha), a large monophyletic group of the Diptera. We also show that ace-2 plays a non-detectable role in the synaptic AChE in a lower Diptera species, suggesting that it has non-synaptic functions. A relative molecular evolution rate test showed that the intensity of purifying selection on ace-2 sequences is constant across the Diptera, irrespective of the presence or absence of ace-1, confirming the evolutionary importance of non-synaptic functions for this gene. We discuss the evolutionary scenarios for the takeover of ace-2 and the loss of ace-1, taking into account our limited knowledge of non-synaptic functions of ace genes and some specific adaptations of true flies.  相似文献   

20.
《Systematic Entomology》2018,43(2):277-289
Early diverging brachyceran fly lineages underwent a rapid radiation approximately 180 Ma, coincident in part with the origin of flowering plants. This region of the fly tree includes 25 000 described extant species with diverse ecological roles such as blood‐feeding (haematophagy), parasitoidism, predation, pollination and wood‐feeding (xylophagy). Early diverging brachyceran lineages were once considered a monophyletic group of families called Orthorrhapha, based on the shared character of a longitudinal break in the pupal skin made during the emergence of the adult. Yet other morphological and molecular evidence generally supports a paraphyletic arrangement of ‘Orthorrhapha’, with strong support for one orthorrhaphan lineage – dance flies and relatives – as the closest relative to all higher flies (Cyclorrhapha), together called Eremoneura. In order to establish a comprehensive estimate of the relationships among orthorrhaphan lineages using a thorough sample of publicly available data, we compiled and analysed a dataset including 1217 taxa representing major lineages and 20 molecular markers. Our analyses suggest that ‘Orthorrhapha’ excluding Eremoneura is not monophyletic; instead, we recover two main lineages of early brachyceran flies: Homeodactyla and Heterodactyla. Homeodactyla includes Nemestrinoidea (uniting two parasitic families Acroceridae + Nemestrinidae) as the closest relatives to the large SXT clade, comprising Stratiomyomorpha, Xylophagidae and Tabanomorpha. Heterodactyla includes Bombyliidae with a monophyletic Asiloidea (exclusive of Bombyliidae) as the closest relatives to Eremoneura. Reducing missing data, modifying the distribution of genes across taxa, and, in particular, removing rogue taxa significantly improved tree resolution and statistical support. Although our analyses rely on dense taxonomic sampling and substantial gene coverage, our results pinpoint the limited resolving power of Sanger sequencing‐era molecular phylogenetic datasets with respect to ancient, hyperdiverse radiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号