首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land‐use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land‐use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land‐use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land‐use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region‐specific trade positions. In regions with a high involvement in international trade, area‐based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively.  相似文献   

2.
Historically, conservation‐oriented research and policy in Brazil have focused on Amazon deforestation, but a majority of Brazil's deforestation and agricultural expansion has occurred in the neighboring Cerrado biome, a biodiversity hotspot comprised of dry forests, woodland savannas, and grasslands. Resilience of rainfed agriculture in both biomes likely depends on water recycling in undisturbed Cerrado vegetation; yet little is known about how changes in land‐use and land‐cover affect regional climate feedbacks in the Cerrado. We used remote sensing techniques to map land‐use change across the Cerrado from 2003 to 2013. During this period, cropland agriculture more than doubled in area from 1.2 to 2.5 million ha, with 74% of new croplands sourced from previously intact Cerrado vegetation. We find that these changes have decreased the amount of water recycled to the atmosphere via evapotranspiration (ET) each year. In 2013 alone, cropland areas recycled 14 km3 less (?3%) water than if the land cover had been native Cerrado vegetation. ET from single‐cropping systems (e.g., soybeans) is less than from natural vegetation in all years, except in the months of January and February, the height of the growing season. In double‐cropping systems (e.g., soybeans followed by corn), ET is similar to or greater than natural vegetation throughout a majority of the wet season (December–May). As intensification and extensification of agricultural production continue in the region, the impacts on the water cycle and opportunities for mitigation warrant consideration. For example, if an environmental goal is to minimize impacts on the water cycle, double cropping (intensification) might be emphasized over extensification to maintain a landscape that behaves more akin to the natural system.  相似文献   

3.
The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates, and illustrate the consequences of applying different estimates in model‐based assessments of land‐use change. The review estimates a range from 1552 to 5131 Mha, which includes 1550 Mha that is already cropland. Hence, the lowest estimates indicate that there is almost no room for cropland expansion, while the highest estimates indicate that cropland could potentially expand to over three times its current area. Differences can largely be attributed to institutional assumptions, i.e. which land covers/uses (e.g. forests or grasslands) are societally or governmentally allowed to convert to cropland, while there was little variation in biophysical assumptions. Estimates based on comparable assumptions showed a variation of up to 84%, which originated mainly from different underlying data sources. On the basis of this synthesis of the assumptions underlying these estimates, we constructed a high, a medium, and a low estimate of cropland availability that are representative of the range of estimates in the reviewed studies. We apply these estimates in a land‐change model to illustrate the consequences on cropland expansion and intensification as well as deforestation. While uncertainty in cropland availability is hardly addressed in global land‐use change assessments, the results indicate a large range of estimates with important consequences for model‐based assessments.  相似文献   

4.
Sustainable intensification of agriculture is one of the main strategies to provide global food security. However, its implementation raises enormous political, technological, and social challenges. Meeting these challenges will require, among other things, accurate information on the spatial and temporal patterns of agricultural land use and yield. Here, we investigate historical patterns of agricultural land use (1940–2012) and productivity (1990–2012) in Brazil using a new high‐resolution (approximately 1 km2) spatially explicit reconstruction. Although Brazilian agriculture has been historically known for its extensification over natural vegetation (Amazon and Cerrado), data from recent years indicate that extensification has slowed down and was replaced by a strong trend of intensification. Our results provide the first comprehensive historical overview of agricultural land use and productivity in Brazil, providing clear insights to guide future territorial planning, sustainable agriculture, policy, and decision‐making.  相似文献   

5.
Deforestation and agricultural land degradation in tropical regions can create conditions for growth of perennial plant species forming mono‐dominated patches (MDP). Such species might limit forest regeneration, and their proliferation forces the abandonment of fields and subsequent deforestation to establish new fields. Therefore, identifying factors fostering MDP species is critical for biodiversity conservation in human‐modified landscapes. Here, we propose a conceptual framework to identify such factors and apply it to the case of Pteridium aquilinum (bracken fern), a light‐demanding species, tolerant of low soil fertility and fire. We hypothesize that bracken proliferation is promoted by land‐use changes that increase light availability, especially in sites with low soil fertility and land uses involving fire. We assessed this idea using agricultural fields in southeastern Mexico with different land‐use change histories and quantifying prevalence and cover of bracken. Five different land‐use change histories resulted from transitions among forest, crop, pasture, and fallow field stages. Of the 133 fields sampled, 71 percent had P. aquilinum; regression tree analysis indicated that 65 percent of inter‐field variation in prevalence and 90 percent in cover was explained by land‐use change history and soil type. Maximum prevalence, cover, and rates of increase in bracken were found on fields with low fertility sandy/clay soils, which had been used for crops and pasture, were frequently burned, and had high levels of light. Fields on fertile alluvial soil never used for pasture were bracken‐free. Agriculture promoting high light environments on less fertile soils is a major cause of bracken proliferation and likely that of other MDP species.  相似文献   

6.
The spatial distribution of human activities in forest frontier regions is strongly influenced by transportation infrastructure. With the planned paving of 6000 km of highway in the Amazon Basin, agricultural frontier expansion will follow, triggering potentially large changes in the location and rate of deforestation. We developed a land‐cover change simulation model that is responsive to road paving and policy intervention scenarios for the BR‐163 highway in central Amazonia. This corridor links the cities of Cuiabá, in central Brazil, and Santarém, on the southern margin of the Amazon River. It connects important soybean production regions and burgeoning population centers in Mato Grosso State with the international port of Santarém, but 1000 km of this road are still not paved. It is within this context that the Brazilian government has prioritized the paving of this road to turn it into a major soybean exportation facility. The model assesses the impacts of this road paving within four scenarios: two population scenarios (high and moderate growth) and two policy intervention scenarios. In the ‘business‐as‐usual’ policy scenario, the responses of deforestation and land abandonment to road paving are estimated based on historical rates of Amazon regions that had a major road paved. In the ‘governance’ scenario, several plausible improvements in the enforcement of environmental regulations, support for sustainable land‐use systems, and local institutional capacity are invoked to modify the historical rates. Model inputs include data collected during expeditions and through participatory mapping exercises conducted with agents from four major frontier types along the road. The model has two components. A scenario‐generating submodel is coupled to a landscape dynamics simulator, ‘DINAMICA’, which spatially allocates the land‐cover transitions using a GIS database. The model was run for 30 years, divided into annual time steps. It predicted more than twice as much deforestation along the corridor in business‐as‐usual vs. governance scenarios. The model demonstrates how field data gathered along a 1000 km corridor can be used to develop plausible scenarios of future land‐cover change trajectories that are relevant to both global change science and the decision‐making process of governments and civil society in an important rainforest region.  相似文献   

7.
Land tenure has been considered one of the key factors that define patterns and change in land-use systems. This paper examines the implications of land reform for household decisions regarding patterns of land use, agricultural intensification, and forest conservation. We look at an Amazonian caboclo settlement in the Lower Amazon that had experienced land reform by the end of the 1980s. Results show that defined land tenure is not enough to guarantee agricultural intensification and forest conservation. In fact, several factors working at different scales are affecting land-use change in the region. At the settlement level, privatization of upland forest has led to an overall increase in cultivated land—pasture and annual crops—and increasing deforestation rates. However, at the farm-property level, different systems of agricultural production—intensive, extensive, or abandonment of land—occur according to availability of labor, and capital, and access to different natural resources.  相似文献   

8.
Many studies have identified drivers of deforestation throughout the tropics and, in most cases, have recognised differences in the level of threat. However, only a few have also looked at the temporal and spatial dynamics by which those drivers act, which is critical for assessing the conservation of biodiversity as well as for landscape planning. In this study, we analyse land cover change between 2000 and 2009 in north-western Colombian Amazonia to identify the interactions between the use of fire, cultivation of illicit crops and establishment of pastures, and their impacts on the loss of forest in the region. Yearly analyses were undertaken at randomly selected sample areas to quantify the average areas of transition of land cover types under different landscape compositions: forest-dominated mosaics, pasture mosaics, fire mosaics, and illicit crop mosaics. Our results indicate that despite the fact that forest areas were well-preserved, deforestation occurred at a low annual rate (0.06%). Conversion to pasture was the main factor responsible for forest loss (the area of pastures tripled within forest mosaics over 8 years), and this process was independent of the landscape matrix in which the forests were located. In fire mosaics, burning is a common tool for forest clearing and conversion to pasture. Thus, forests in fire mosaics were highly disturbed and frequently transformed from primary to secondary forests. The use of fire for illicit cropping was not detected, partly due to the small size of common illicit crops. Forest regeneration from pastures and secondary vegetation was observed in areas with large amounts of natural forest. Overall, assuming the continuation of the observed pasture conversion trend and the use of forest fire, we suggest that our results should be incorporated into a spatially explicit and integrated decision support tool to target and focus land-planning activities and policies.  相似文献   

9.
The present study quantifies changes in soil organic carbon (SOC) stocks in Belgium between 1960, 1990 and 2000 for 289 spatially explicit land units with unique soil association and land‐use type, termed landscape units (LSU). The SOC stocks are derived from multiple nonstandardized sets of field measurements up to a depth of 30 cm. Approximately half of the LSU show an increase in SOC between 1960 and 2000. The significant increases occur mainly in soils of grassland LSU in northern Belgium. Significant decreases are observed on loamy cropland soils. Although the largest SOC gains are observed for LSU under forest (22 t C ha?1 for coniferous and 29 t C ha?1 for broadleaf and mixed forest in the upper 30 cm of soil), significant changes are rare because of large variability. Because the number of available measurements is very high for agricultural land, most significant changes occur under cropland and grassland, but the corresponding average SOC change is smaller than for forests (9 t C ha?1 increase for grassland and 1 t C ha?1 decrease for cropland). The 1990 data for agricultural LSU show that the SOC changes between 1960 and 2000 are not linear. Most agricultural LSU show a higher SOC stock in 1990 than in 2000, especially in northern Belgium. The observed temporal and spatial patterns can be explained by a change in manure application intensity. SOC stock changes caused by land‐use change are estimated. The SOC change over time is derived from observed differences between SOC stocks in space. Because SOC stocks are continuously influenced by a number of external factors, mainly land‐use history and current land management and climate, this approach gives only an approximate estimate whose validity is limited to these conditions.  相似文献   

10.
Carbon emissions from land‐use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as soybean cultivation replaces grazing lands. Still, our knowledge of the rates and spatial patterns of these land‐use changes and how they affected carbon emissions remains partial. We used the Landsat satellite image archive to reconstruct land‐use change over the past 30 years and applied a carbon bookkeeping model to quantify how these changes affected carbon budgets. Between 1985 and 2013, more than 142 000 km2 of the Chaco's forests, equaling 20% of all forest, was replaced by croplands (38.9%) or grazing lands (61.1%). Of those grazing lands that existed in 1985, about 40% were subsequently converted to cropland. These land‐use changes resulted in substantial carbon emissions, totaling 824 Tg C between 1985 and 2013, and 46.2 Tg C for 2013 alone. The majority of these emissions came from forest‐to‐grazing‐land conversions (68%), but post‐deforestation land‐use change triggered an additional 52.6 Tg C. Although tropical dry forests are less carbon‐dense than moist tropical forests, carbon emissions from land‐use change in the Chaco were similar in magnitude to those from other major tropical deforestation frontiers. Our study thus highlights the urgent need for an improved monitoring of the often overlooked tropical dry forests and savannas, and more broadly speaking the value of the Landsat image archive for quantifying carbon fluxes from land change.  相似文献   

11.
Land‐use change is both a cause and consequence of many biophysical and socioeconomic changes. The CLUMondo model provides an innovative approach for global land‐use change modeling to support integrated assessments. Demands for goods and services are, in the model, supplied by a variety of land systems that are characterized by their land cover mosaic, the agricultural management intensity, and livestock. Land system changes are simulated by the model, driven by regional demand for goods and influenced by local factors that either constrain or promote land system conversion. A characteristic of the new model is the endogenous simulation of intensification of agricultural management versus expansion of arable land, and urban versus rural settlements expansion based on land availability in the neighborhood of the location. Model results for the OECD Environmental Outlook scenario show that allocation of increased agricultural production by either management intensification or area expansion varies both among and within world regions, providing useful insight into the land sparing versus land sharing debate. The land system approach allows the inclusion of different types of demand for goods and services from the land system as a driving factor of land system change. Simulation results are compared to observed changes over the 1970–2000 period and projections of other global and regional land change models.  相似文献   

12.
Spatial patterns of tropical deforestation and fragmentation are conditional upon human settlement characteristics. We analyze four different human occupation models (indigenous, colonist frontier, transition and established settlement) in the Colombian Guyana Shield at three different times: 1985, 1992 and 2002, and compared them for: (1) deforestation rates; (2) the amount of forest as classified according to a fragmentation pattern (interior forest, edge forest, perforated forest and forest patch); (3) various fragmentation metrics using repeated measures analysis of variance; and (4) potential future deforestation trends though the implementation of a spatially explicit simulation model. The indigenous and colonist frontier occupation models had low rates of deforestation (0.04%/yr), while the well‐established settlement occupation model had the highest rate (3.68%/yr). Our results indicate that the four occupation models generate three deforestation patterns: diffuse, which can be subdivided into two subpatterns (indigenous and colonist), geometric (transition) and patchy (established settlement). The area with the established settlement model was highly fragmented, while in the transition occupation area, forest loss was gradual and linked to economic activities associated with the expansion of the agricultural frontier. The simulation of future trends revealed that indigenous and colonist areas had a constant, albeit small, loss of forest covers. The other models had a deforestation probability of 0.8 or more. Overall, our results highlight the need for new and urgent policies for reducing forest conversion that consider intraregional variability in human occupation linked to differences in land‐use patterns. Abstract in Spanish is available in the online version of this article.  相似文献   

13.
Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO2) levels’ changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ‐GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO2 concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained.  相似文献   

14.
Forest regrowth after cropland abandonment and urban sprawl are two counteracting processes that have influenced carbon (C) sequestration in the southeastern United States in recent decades. In this study, we examined patterns of land-use/land-cover change and their effect on ecosystem C storage in three west Georgia counties (Muscogee, Harris, and Meriwether) that form a rural–urban gradient. Using time series Landsat imagery data including MSS for 1974, TM for 1983 and 1991, and ETM for 2002, we estimate that from 1974 to 2002, urban land use in the area has increased more than 380% (that is, 184 km2). Most newly urbanized land (63%) has been converted from forestland. Conversely, cropland and pasture area has decreased by over 59% (that is, 380 km2). Most of the cropland area was converted to forest. As a result, the net change in forest area was small over the past 29 years. Based on Landsat imagery and agricultural census records, we reconstructed an annual gridded data set of land-cover change for the three counties for the period 1850 to 2002. These data sets were then used as input to the Terrestrial Ecosystem Model (TEM) to simulate land-use effects on C fluxes and storage for the study area. Simulated results suggest that C uptake by forest regrowth (approximately 23.0 g C m−2 y−1) was slightly greater than the amount of C released due to deforestation (approximately 18.4 g C m−2 y−1), thus making the three counties a weak C sink. However, the relative importance of different deforestation processes in this area changed significantly through time. Although agricultural deforestation was generally the most important C-release process, the amount of C release attributable to urbanization has increased over time. Since 1990, urbanization has accounted for 29% of total C loss from the study area. We conclude that balancing urban development and forest protection is critically important for C management and policy making in the southeastern United States.  相似文献   

15.
Brazil is one of the major contributors to land‐use change emissions, mostly driven by agricultural expansion for food, feed, and bioenergy feedstock. Policies to avoid deforestation related to private commitments, economic incentives, and other support schemes are expected to improve the effectiveness of current command and control mechanisms increasingly. However, until recently, land tenure was unknown for much of the Brazilian territory, which has undermined the governance of native vegetation and challenged support and incentive mechanisms for avoiding deforestation. We assess the total extent of public governance mechanisms protecting aboveground carbon (AGC) stocks. We constructed a land tenure dataset for the entire nation and modeled the effects and uncertainties of major land‐use acts on protecting AGC stocks. Roughly 70% of the AGC stock in Brazil is estimated to be under legal protection, and an additional 20% is expected to be protected after areas in the Amazon with currently undesignated land undergo a tenure regularization. About 30% of the AGC stock is on private land, of which roughly two‐thirds are protected. The Cerrado, Amazon, and Caatinga biomes hold about 40%, 30%, and 20% of the unprotected AGC, respectively. Effective conservation of protected and unprotected carbon will depend on successful implementation of the Forest Act, and regularization of land tenure in the Amazon. Policy development that prioritizes unprotected AGC stocks is warranted to promote conservation of native vegetation beyond the legal requirements. However, different biomes and land tenure structures may require different policy settings considering local and regional specifics. Finally, the fate of current AGC stocks relies upon effective implementation of command and control mechanisms, considering that unprotected AGC in native vegetation on private land only accounts for 6.5% of the total AGC stock.  相似文献   

16.
Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land‐cover and land‐use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land‐use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land‐use planning, implying huge efficiency gains through international cooperation. However, global‐scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct “winners and losers” in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land‐use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land‐use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land‐use conflicts, may offer an effective, yet politically feasible, avenue to better reconcile future trade‐offs between agriculture and conservation. The efficiency gains of optimization remained robust when assuming that yields could only be increased to 80% of their potential. Our results highlight the need to better integrate real‐world governance, political and economic challenges into sustainable development and global change mitigation research.  相似文献   

17.
Land‐use changes are the second largest source of human‐induced greenhouse gas emission, mainly due to deforestation in the tropics and subtropics. CO2 emissions result from biomass and soil organic carbon (SOC) losses and may be offset with afforestation programs. However, the effect of land‐use changes on SOC is poorly quantified due to insufficient data quality (only SOC concentrations and no SOC stocks, shallow sampling depth) and representativeness. In a global meta‐analysis, 385 studies on land‐use change in the tropics were explored to estimate the SOC stock changes for all major land‐use change types. The highest SOC losses were caused by conversion of primary forest into cropland (?25%) and perennial crops (?30%) but forest conversion into grassland also reduced SOC stocks by 12%. Secondary forests stored less SOC than primary forests (?9%) underlining the importance of primary forests for C stores. SOC losses are partly reversible if agricultural land is afforested (+29%) or under cropland fallow (+32%) and with cropland conversion into grassland (+26%). Data on soil bulk density are critical in order to estimate SOC stock changes because (i) the bulk density changes with land‐use and needs to be accounted for when calculating SOC stocks and (ii) soil sample mass has to be corrected for bulk density changes in order to compare land‐use types on the same basis of soil mass. Without soil mass correction, land‐use change effects would have been underestimated by 28%. Land‐use change impact on SOC was not restricted to the surface soil, but relative changes were equally high in the subsoil, stressing the importance of sufficiently deep sampling.  相似文献   

18.
Fire-driven deforestation is the major source of carbon emissions from Amazonia. Recent expansion of mechanized agriculture in forested regions of Amazonia has increased the average size of deforested areas, but related changes in fire dynamics remain poorly characterized. We estimated the contribution of fires from the deforestation process to total fire activity based on the local frequency of active fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. High-confidence fire detections at the same ground location on 2 or more days per year are most common in areas of active deforestation, where trunks, branches, and stumps can be piled and burned many times before woody fuels are depleted. Across Amazonia, high-frequency fires typical of deforestation accounted for more than 40% of the MODIS fire detections during 2003–2007. Active deforestation frontiers in Bolivia and the Brazilian states of Mato Grosso, Pará, and Rondônia contributed 84% of these high-frequency fires during this period. Among deforested areas, the frequency and timing of fire activity vary according to postclearing land use. Fire usage for expansion of mechanized crop production in Mato Grosso is more intense and more evenly distributed throughout the dry season than forest clearing for cattle ranching (4.6 vs. 1.7 fire days per deforested area, respectively), even for clearings >200 ha in size. Fires for deforestation may continue for several years, increasing the combustion completeness of cropland deforestation to nearly 100% and pasture deforestation to 50–90% over 1–3-year timescales typical of forest conversion. Our results demonstrate that there is no uniform relation between satellite-based fire detections and carbon emissions. Improved understanding of deforestation carbon losses in Amazonia will require models that capture interannual variation in the deforested area that contributes to fire activity and variable combustion completeness of individual clearings as a function of fire frequency or other evidence of postclearing land use.  相似文献   

19.
Intensification of Brazilian cattle ranching systems has attracted both national and international attention due to its direct relation with Amazon deforestation on the one hand and increasing demand of the global population for meat on the other. Since Brazilian cattle ranching is predominantly pasture-based, we particularly focus on pasture management. We summarize the most recurrent opportunities and risks associated with pasture intensification that are brought up within scientific and political dialogues, and discuss them within the Brazilian context. We argue that sustainable intensification of pasturelands in Brazil is a viable way to increase agricultural output while simultaneously sparing land for nature. Since environmental degradation is often associated with low-yield extensive systems in Brazil, it is possible to obtain higher yields, while reversing degradation, by adopting practices like rotational grazing, incorporation of legumes and integrated crop-livestock-forestry systems. Technical assistance is however essential, particularly for small- and medium-scale farmers. Sound complementary policies and good governance must accompany these measures so that a ‘rebound effect’ does not lead to increased deforestation and other adverse social and environmental impacts. It is also important that animal welfare is not compromised. Although the discussion is presented with respect to Brazil, some aspects are relevant to other developing countries.  相似文献   

20.
The impact of deforestation on soil organic carbon (SOC) stocks is important in the context of climate change and agricultural soil use. Trends of SOC stock changes after agroecosystem establishment vary according to the spatial scale considered, and factors explaining these trends may differ sometimes according to meta‐analyses. We have reviewed the knowledge about changes in SOC stocks in Amazonia after the establishment of pasture or cropland, sought relationships between observed changes and soil, climatic variables and management practices, and synthesized the δ13C measured in pastures. Our dataset consisted of 21 studies mostly synchronic, across 52 sites (Brazil, Colombia, French Guiana, Suriname), totalling 70 forest–agroecosystem comparisons. We found that pastures (n = 52, mean age = 17.6 years) had slightly higher SOC stocks than forest (+6.8 ± 3.1 %), whereas croplands (n = 18, mean age = 8.7 years) had lower SOC stocks than forest (?8.5 ± 2.9 %). Annual precipitation and SOC stocks under forest had no effect on the SOC changes in the agroecosystems. For croplands, we found a lower SOC loss than other meta‐analyses, but the short time period after deforestation here could have reduced this loss. There was no clear effect of tillage on the SOC response. Management of pastures, whether they were degraded/nominal/improved, had no significant effect on SOC response. δ13C measurements on 16 pasture chronosequences showed that decay of forest‐derived SOC was variable, whereas pasture‐derived SOC was less so and was characterized by an accumulation plateau of 20 Mg SOC ha?1 after 20 years. The large uncertainties in SOC response observed could be derived from the chronosequence approach, sensitive to natural soil variability and to human management practices. This study emphasizes the need for diachronic and long‐term studies, associated with better knowledge of agroecosystem management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号