首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inherent incompatibilities between genetic components from genomes of different species may cause intrinsic reproductive isolation. In evolution experiments designed to instigate speciation in laboratory populations of the filamentous fungus Neurospora, we previously discovered a pair of incompatibility loci (dfe and dma) that interact negatively to cause severe defects in sexual reproduction. Here we show that the dfedma incompatibility also is a significant cause of genetic isolation between two naturally occurring species of Neurospora (N. crassa and N. intermedia). The strong incompatibility interaction has a simple genetic basis (two biallelic loci) and antagonistic epistasis occurs between heterospecific alleles only, consistent with the Dobzhansky–Muller model of genic incompatibility. We developed microarray‐based, restriction‐site associated DNA (RAD) markers that identified ~1500 polymorphisms between the genomes of the two species, and constructed the first interspecific physical map of Neurospora. With this new mapping resource, the approximate genomic locations of the incompatibility loci were determined using three different approaches: genome scanning, bulk‐segregant analyses, and introgression. These population, quantitative, and classical genetics methods concordantly identified two candidate regions, narrowing the search for each incompatibility locus to only ~2% of the nuclear genome. This study demonstrates how advances in high‐throughput, genome‐wide genotyping can be applied to mapping reproductive isolation genes and speciation research.  相似文献   

2.
Apomixis evolves from a sexual background and usually is linked to polyploidization. Pseudogamous gametophytic apomicts, which require a fertilization to initiate seed development, of various ploidy levels frequently co‐occur with their lower‐ploid sexual ancestors, but the stability of such mixed populations is affected by reproductive interferences mediated by cross‐pollination. Thereby, reproductive success of crosses depends on the difference in ploidy levels of mating partners, that is, on tolerance of deviation from the balanced ratio of maternal versus paternal genomes. Quality of pollen can further affect reproductive success in intercytotype pollinations. Cross‐fertilization, however, can be avoided by selfing which may be induced upon pollination with mixtures of self‐ and cross‐pollen (i.e., mentor effects). We tested for reproductive compatibility of naturally co‐occurring tetraploid sexuals and penta‐ to octoploid apomicts in the rosaceous species Potentilla puberula by means of controlled crosses. We estimated the role of selfing as a crossing barrier and effects of self‐ and cross‐pollen quality as well as maternal: paternal genomic ratios in the endosperm on reproductive success. Cross‐fertilization of sexuals by apomicts was not blocked by selfing, and seed set was reduced in hetero‐ compared to homoploid crosses. Thereby, seed set was negatively related to deviations from balanced parental genomic ratios in the endosperm. In contrast, seed set in the apomictic cytotypes was not reduced in hetero‐ compared to homoploid crosses. Thus, apomictic cytotypes either avoided intercytotype cross‐fertilization through selfing, tolerated intercytotype cross‐fertilizations without negative effects on reproductive success, or even benefitted from higher pollen quality in intercytotype pollinations. Our experiment provides evidence for asymmetric reproductive interference, in favor of the apomicts, with significantly reduced seed set of sexuals in cytologically mixed populations, whereas seed set in apomicts was not affected. Incompleteness of crossing barriers further indicated at least partial losses of a parental genomic endosperm balance requirement.  相似文献   

3.
Transposable elements (TEs) can be viewed as genetic parasites that persist in populations due to their capacity for increase in copy number and the inefficacy of selection against them. A corollary of this hypothesis is that TEs are more likely to spread within sexual populations and be eliminated or inactivated within asexual populations. While previous work with animals has shown that asexual taxa may contain less TE diversity than sexual taxa, comparable work with plants has been lacking. Here we report the results of a study of Ty1/copia, Ty3/gypsy, and LINE-like retroelement diversity in four asexual plant species. Retroelement-like sequences, with a high degree of conservation both within and between species, were isolated from all four species. The sequences correspond to several previously annotated retroelement subfamilies. They also exhibit a pattern of nucleotide substitution characterized by an excess of synonymous substitutions, suggestive of a history of purifying selection. These findings were compared with retroelement sequence evolution in sexual plant taxa. One likely explanation for the discovery of conserved TE sequences in the genomes of these asexual taxa is simply that asexuality within these taxa evolved relatively recently, such that the loss and breakdown of TEs is not yet detectable through analysis of sequence diversity. This explanation is examined by conducting stochastic simulation of TE evolution and by using published information to infer rough estimates of the ages of asexual taxa. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Dmitri Petrov  相似文献   

4.
Asexual lineages can derive from sexual ancestors via different mechanisms and at variable rates, which affects the diversity of the asexual population and thereby its ecological success. We investigated the variation and evolution of reproductive systems in Aptinothrips, a genus of grass thrips comprising four species. Extensive population surveys and breeding experiments indicated sexual reproduction in A. elegans, asexuality in A. stylifer and A. karnyi, and both sexual and asexual lineages in A. rufus. Asexuality in A. stylifer and A. rufus coincides with a worldwide distribution, with sexual A. rufus lineages confined to a limited area. Inference of molecular phylogenies and antibiotic treatment revealed different causes of asexuality in different species. Asexuality in A. stylifer and A. karnyi has most likely genetic causes, while it is induced by endosymbionts in A. rufus. Endosymbiont‐community characterization revealed presence of Wolbachia, and lack of other bacteria known to manipulate host reproduction. However, only 69% asexual A. rufus females are Wolbachia‐infected, indicating that either an undescribed endosymbiont causes asexuality in this species or that Wolbachia was lost in several lineages that remained asexual. These results open new perspectives for studies on the maintenance of mixed sexual and asexual reproduction in natural populations.  相似文献   

5.
Epichloë endophytes are fungal symbionts of grasses that span a continuum including asexual mutualists that are vertically transmitted, obligately sexual pathogens that are horizontally transmitted, and mixed‐strategy symbionts with both mutualistic and pathogenic capabilities. Here we show that processes of genome evolution differ markedly for the different symbiont types. Genetic and phylogenetic analysis was conducted of a broad taxonomic, ecological and geographical sample of sexual and asexual isolates, in which were identified and sequenced alleles of genes for β‐tubulin (tub2) and translation elongation factor 1‐α (tef1), and microsatellite alleles were identified by length polymorphisms. The majority of asexual isolates had two or three alleles of most loci, but every sexual isolate had only single alleles for each locus. Phylogenetic analysis of tub2 and tef1 indicated that in all instances of multiple alleles in an isolate, the alleles were derived from different sexual species. It is concluded that, whereas horizontally transmissible species had haploid genomes and speciation occurred cladistically, most of the strictly seedborne mutualists were interspecific hybrids with heteroploid (aneuploid or polyploid) genomes. Furthermore, the phylogenetic evidence indicated that, in at least some instances, hybridization followed rather than caused evolution of the strictly seedborne habit. Therefore, the abundance of hybrid species among grass endophytes, and their prevalence in many host populations suggests a selective advantage of hybridization for the mutualistic endophytes.  相似文献   

6.

Background  

Comparative sequencing studies among a wide range of taxonomic groups, including fungi, have led to the discovery that reproductive genes evolve more rapidly than other genes. However, for fungal reproductive genes the question has remained whether the rapid evolution is a result of stochastic or deterministic processes. The mating-type (mat) genes constitute the master regulators of sexual reproduction in filamentous ascomycetes and here we present a study of the molecular evolution of the four mat -genes (mat a-1, mat A-1, mat A-2 and mat A-3) of 20 Neurospora taxa.  相似文献   

7.
Life‐history theory postulates that evolution is constrained by trade‐offs (i.e., negative genetic correlations) among traits that contribute to fitness. However, in organisms with complex life cycles, trade‐offs may drastically differ between phases, putatively leading to different evolutionary trajectories. Here, we tested this possibility by examining changes in life‐history traits in an aphid species that alternates asexual and sexual reproduction in its life cycle. The quantitative genetics of reproductive and dispersal traits was studied in 23 lineages (genotypes) of the bird cherry‐oat aphid Rhopalosiphum padi, during both the sexual and asexual phases, which were induced experimentally under specific environmental conditions. We found large and significant heritabilities (broad‐sense) for all traits and several negative genetic correlations between traits (trade‐offs), which are related to reproduction (i.e., numbers of the various sexual or asexual morphs) or dispersal (i.e., numbers of winged or wingless morphs). These results suggest that R. padi exhibits lineage specialization both in reproductive and dispersal strategies. In addition, we found important differences in the structure of genetic variance–covariance matrices ( G ) between phases. These differences were due to two large, negative genetic correlations detected during the asexual phase only: (1) between fecundity and age at maturity and (2) between the production of wingless and winged parthenogenetic females. We propose that this differential expression in genetic architecture results from a reallocation scheme during the asexual phase, when sexual morphs are not produced. We also found significant G × E interaction and nonsignificant genetic correlations across phases, indicating that genotypes could respond independently to selection in each phase. Our results reveal a rather unique situation in which the same population and even the same genotypes express different genetic (co)variation under different environmental conditions, driven by optimal resource allocation criteria.  相似文献   

8.
Besides several exceptions, asexual metazoans are usually viewed as ephemeral sinks for genomes, which become ‘frozen’ in clonal lineages after their emergence from ancestral sexual species. Here, we investigated whether and at what rate the asexuals are able to introgress their genomes back into the parental sexual population, thus more or less importantly affecting the gene pools of sexual species. We focused on hybridogenetic hybrids of western Palaearctic water frogs (Pelophylax esculentus), which originate through hybridization between P. ridibundus and P. lessonae, but transmit only clonal ridibundus genome into their gametes. Although usually mating with P. lessonae, P. esculentus may upon mating with P. ridibundus or another hybrid produce sexually reproducing P. ridibundus offspring with the introgressed ex‐clonal genome. We compared the rate of nuclear amplified fragment length polymorphism (AFLP) and mitochondrial introgression in two types of populations, that is, those where P. ridibundus occurs in isolation and those where it lives with the hybridogens. Although significant differentiation (Φpt) between sexual and clonal ridibundus genomes suggested limited gene flow between sexuals and hybridogens, a non‐negligible (~5%) proportion of P. ridibundus bore introgressed mtDNA and AFLP markers. Whereas transfer of mtDNA was exclusively unidirectional, introgression of nuclear markers was bidirectional. The proportion of introgressed P. ridibundus was highest in syntopic populations with P. esculentus, proving an ongoing and site‐specific interspecific genetic transfer mediated by hybridogenetic hybrids. It turns out that asexual hybrids are not just a sink for genes of sexual species, but may significantly influence the genetic architecture of their sexual counterparts.  相似文献   

9.
10.
Abstract.— Host shifts of plant‐feeding insects and parasites promote adaptational changes that may result in the formation of host races, an assumed intermediate stage in sympatric speciation. Here, we report on genetically differentiated and host‐adapted races of the fungal endophyte Epichloë bromicola, which presumably emerged after a shift from the grass Bromus erectus to other Bromus hosts. Fungi of the genus Epichloë (Ascomycota) and related anamorphs of Neotyphodium are widespread endophytes of cool‐season grasses. Sexually reproducing strains sterilize the host by formation of external fruiting structures (stromata), whereas asexual strains are asymptomatic and transmitted via seeds. In E. bromicola, strains infecting B. erectus are sexual, and strains from two woodland species, B. benekenii and B. ramosus, are asexual and seed transmitted. Analyses of amplified fragment length polymorphism fingerprinting and of intron sequences of the tub2 and tef1 genes of 26 isolates from the three Bromus hosts collected at natural sites in Switzerland and nearby France demonstrated that isolates are genetically differentiated according to their host, indicating that E. bromicola does not form a single, randomly mating population. Phylogenetic analyses of sequence data did not unambiguously resolve the exact origin of asexual E. bromicola strains, but it is likely they arose from within sexual populations on B. erectus. Incongruence of trees derived from different genes may have resulted from recombination at some time in the recent history of host strains. Reciprocal inoculations of host plant seedlings showed that asexual isolates from B. benekenii and B. ramosus were incapable of infecting B. erectus, whereas the sexual isolates from B. erectus retained the assumed ancestral trait of broad compatibility with Bromus host seedlings. Because all isolates were interfertile in experimental crosses, asexual strains may not be considered independent biological species. We suggest that isolates infecting B. benekenii and B. ramosus represent long‐standing host races or incipient species that emerged after host shifts and that may evolve through host‐mediated reproductive isolation toward independent species.  相似文献   

11.
Although it is widely acknowledged that the gradual accumulation of mildly deleterious mutations is an important source of extinction for asexual populations, it is generally assumed that this process is of little relevance to sexual species. Here we present results, based on computer simulations and supported by analytical approximations, that indicate that mutation accumulation in small, random-mating monoecious populations can lead to mean extinction times less than a few hundred to a few thousand generations. Unlike the situation in obligate asexuals in which the mean time to extinction (t?e) increases more slowly than linearly with the population carrying capacity (K), t?e increases approximately exponentially with K in outcrossing sexual populations. The mean time to extinction for obligately selfing populations is shown to be equivalent to that for asexual populations of the same size, but with half the mutation rate and twice the mutational effect; this suggests that obligate selfing, like obligate asexuality, is inviable as a long-term reproductive strategy. Under all mating systems, the mean time to extinction increases relatively slowly with the logarithm of fecundity, and mutations with intermediate effects (similar to those observed empirically) cause the greatest risk of extinction. Because our analyses ignore sources of demographic and environmental stochasticity, which have synergistic effects that exacerbate the accumulation of deleterious mutations, our results should yield liberal upper bounds to the mean time to extinction caused by mutational degradation. Thus, deleterious mutation accumulation cannot be ruled out generally as a significant source of extinction vulnerability in small sexual populations or as a selective force influencing mating-system evolution.  相似文献   

12.
13.
The reproductive mechanism, that is whether an organism outcrosses, selfs or asexually reproduces, has a substantial impact on the amount and pattern of genetic variation. In this study, we estimate genetic variation and genetic load for a predominately asexual population of Mimulus guttatus, and then compare our results to other studies of predominately sexually reproducing (outcrossing and selfing) populations of M. guttatus. The asexual population had low levels of heterozygosity (He = 0.03) and low (but significantly non‐zero) inbreeding load, especially when compared with other M. guttatus populations. This differs greatly from the sexual populations of Mimulus that display substantial inbreeding depression. We discuss a variety of reasons why we see such low load in this study and suggest future research projects to further explore the questions.  相似文献   

14.
We studied the mode of reproduction and its evolution in the fungal subgenus Penicillium Biverticillium using phylogenetic and experimental approaches. We sequenced mating type (MAT) genes and nuclear DNA fragments in sexual and putatively asexual species. Examination of the concordance between individual trees supported the recognition of the morphological species. MAT genes were detected in two putatively asexual species and were found to evolve mostly under purifying selection, although high substitution rates were detected at some sites in some clades. The first steps of sexual reproduction could be induced under controlled conditions in one of the two species, although no mature cleistothecia were produced. Altogether, these findings suggest that the asexual Penicillium species may have lost sex only very recently and/or that the MAT genes are involved in other functions. An ancestral state reconstruction analysis indicated several events of putative sex loss in the genus. Alternatively, it is possible that the supposedly asexual Penicillium species may have retained a cryptic sexual stage.  相似文献   

15.
Species with sexual and asexual life cycles may exhibit intraspecific differences in reproductive effort. The spatial separation of sexual and asexual lineages, called geographic parthenogenesis, is common in plants, animals, and algae. Mastocarpus papillatus is a well‐documented case of geographic parthenogenesis in which sexuals dominate southern populations, asexuals dominate northern popula‐tions, whereas mixed populations occur throughout central California. We quantified abundances and reproductive effort of sexual and asexual fronds and tetrasporophytes at eight sites in California to test the hypotheses that (1) reduced sexual reproduction at higher latitudes and tidal heights explains the observed geographic parthenogenesis and (2) reproductive effort (spore production per blade area) declines with increasing latitude. Abundances of all phases varied site‐specifically. However, there was no geographic pattern of reproductive effort of fronds. Reproductive effort of fronds was greater in 2006 than in 2007 and correlated with sea surface temperatures. Sexual fronds exhibited greater reproductive effort than did asexual fronds and sexual reproductive effort was also inversely correlated with local upwelling index. Tetrasporophytes showed greater repro‐ductive effort in northern sites, but total supply of tetraspores per m2 was greatest in the middle of the sampling range where crusts were more abundant. There was no decline of reproductive effort at higher latitudes. Geographic patterns of fecundity of life stages do not explain geographic parthe‐nogenesis in M. papillatus. Site‐specific differences in viability among spores or established thalli of different life cycles may explain their respective geographic distributions, as the sexual and asexual life cycles responded differently to environmental variations.  相似文献   

16.
Caloglossa species are widely distributed in mangroves and salt marshes around the world and their life history patterns are being investigated in laboratory culture. In Australia all isolates of C. monosticha, C. postiae and C. ogasawaraensis have Polysiphonia‐type (P‐type) sexual life histories. Among the 70 C. leprieurii isolates from Australia and New Zealand P‐type sexual reproduction also is dominant. However, ten isolates of C. leprieurii from the Spencer Gulf and the Gulf of St. Vincent in South Australia give rise to successive tetrasporphyte generations without gametophytes. Moreover, one isolate from Queensland is asexual. Only one South Australia isolate, obtained from Lake Alexandrina at the mouth of the Murray River, is sexual. South Australia and Pacific Mexico are two regions in which asexual reproduction is dominant. In another mangrove dwelling red alga Bostrychia moritiziana (Rhodomelaceae) non‐sexual reproduction also is frequent in Australia, New Caledonia and Bali (Indonesia). This asexual reproductive pattern of tetrasporophytic recycling appears to have arisen independently among individual populations of various red algal species in different regions. Investigations are underway on the molecular phylogeny of the Caloglossa leprieurii isolates.  相似文献   

17.
Quantifying introgression between sexual species and polyploid lineages traditionally thought to be asexual is an important step in understanding what drives the longevity of putatively asexual groups. Here, we capitalize on three recent innovations—ultraconserved element (UCE) sequencing, bioinformatic techniques for identifying genome‐specific variation in polyploids, and model‐based methods for evaluating historical gene flow—to measure the extent and tempo of introgression over the evolutionary history of an allopolyploid lineage of all‐female salamanders and two ancestral sexual species. Our analyses support a scenario in which the genomes sampled in unisexual salamanders last shared a common ancestor with genomes in their parental species ~3.4 million years ago, followed by a period of divergence between homologous genomes. Recently, secondary introgression has occurred at different times with each sexual species during the last 500,000 years. Sustained introgression of sexual genomes into the unisexual lineage is the defining characteristic of their reproductive mode, but this study provides the first evidence that unisexual genomes have undergone long periods of divergence without introgression. Unlike other sperm‐dependent taxa in which introgression is rare, the alternating periods of divergence and introgression between unisexual salamanders and their sexual relatives could explain why these salamanders are among the oldest described unisexual animals.  相似文献   

18.
1. The freshwater ostracod (Ostracoda), Eucypris virens, is commonly found in European temporary pools, where its long‐term persistence completely relies on the build‐up of resting egg banks. Extreme tolerance of dormant eggs and seeds is widely assumed, but freshwater ostracod eggs are relatively poorly studied. The study of ostracod resting eggs is of particular relevance as it may yield the key to understanding the distribution of the sexes in many species capable of both sexual and asexual reproduction. 2. We assessed the tolerance of dried resting eggs produced by females originating from three populations with males and three all‐female E. virens populations. Hatching time and success was compared between control eggs and eggs exposed to one of seven ecologically relevant stressors: digestive enzymes, high salinity, deep freezing, hydration, UV‐B radiation, hypoxia and insecticide treatment. 3. None of the stressors reduced significantly the viability of either sexual or asexual eggs. When compared with the reproductive mode–specific controls, exposure to UV‐B radiation had a mild impact on the survival of sexual and asexual eggs (?16.8 and ?22.4%, respectively), but this was only significant for asexual eggs. These results point to an extreme tolerance of E. virens resting eggs and have important implications for the ecology and evolution of the species. 4. The timing of hatching was not affected by the stress treatment, except for UV‐B radiation. A marginally significant delay in hatching response was observed for UV‐B‐radiated eggs when compared to the overall mean, but this treatment effect was absent when compared with the reproductive mode–specific controls. 5. The populations with males produced eggs that hatched on average earlier (?1.5 days at 17 °C) and were more successful (+26%) than asexual eggs. Due to the limited number of populations and the population‐specific origin and age of the eggs, the possibility due to the differences in age and origin of the resting eggs, or to variations in local conditions, cannot be ruled out.  相似文献   

19.
In isogamous brown algae, the sexuality of populations needs to be tested by laboratory crossing experiments, as the sexes of gametophytes are morphologically indistinguishable. In some cases, gamete fusion is not observed and the precise reproductive mode of the populations is unknown. In the isogamous brown alga Scytosiphon lomentaria in Japan, both asexual (gamete fusion is unobservable) and sexual populations (gamete fusion is observable) have been reported. In order to elucidate the reproductive mode of asexual populations in this species, we used PCR‐based sex markers to investigate the sex ratio of three asexual and two sexual field populations. The markers indicated that the asexual populations consisted only of female individuals, whereas sexual populations are composed of both males and females. In culture, female gametes of most strains from asexual populations were able to fuse with male gametes; however, they had little to no detectable sexual pheromones, significantly larger cell sizes, and more rapid parthenogenetic development compared to female/male gametes from sexual populations. Investigations of sporophytic stages in the field indicated that alternation of gametophytic and parthenosporophytic stages occur in an asexual population. These results indicate that the S. lomentaria asexual populations are female populations that lack sexual reproduction and reproduce parthenogenetically. It is likely that females in the asexual populations have reduced a sexual trait (pheromone production) and have acquired asexual traits (larger gamete sizes and rapid parthenogenetic development).  相似文献   

20.
L V Clark  M Jasieniuk 《Heredity》2012,109(5):320-328
Facultative asexual reproduction is a trait commonly found in invasive species. With a combination of sexual and asexual reproductive modes, such species may adapt to new environments via sexual recombination during range expansion, while at the same time having the benefits of asexuality such as the maintenance of fitness effects that depend upon heterozygosity. In the Western United States, native species of Rubus (Rosaceae) reproduce sexually whereas exotic naturalized Rubus species reproduce by pseudogamous apomixis. We hypothesized that new asexual lineages of Rubus could arise from hybridization in this range. To detect hybridization between native and exotic Rubus, we genotyped 579 individuals collected across California, Oregon and Washington with eight nuclear microsatellites and two chloroplast markers. Principal Coordinate Analysis and Bayesian clustering revealed a limited amount of hybridization of the native R. ursinus with the exotic R. armeniacus and R. pensilvanicus, as well as cultivated varieties. Genetic distances between these hybrids and their offspring indicated that both R. ursinus × R. armeniacus and R. ursinus × R. pensilvanicus produced a mix of apomictic and sexual seeds, with sexual seeds being more viable. Although neither of these hybrid types is currently considered invasive, they model the early stages of evolution of new invasive lineages, given the potential for fixed heterosis and the generation of novel genotypes. The hybrids also retain the ability to increase their fitness via sexual recombination and natural selection. Mixed reproductive systems such as those described here may be an important step in the evolution of asexual invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号