首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

2.
Crop intensification is often thought to increase greenhouse gas (GHG) emissions, but studies in which crop management is optimized to exploit crop yield potential are rare. We conducted a field study in eastern Nebraska, USA to quantify GHG emissions, changes in soil organic carbon (SOC) and the net global warming potential (GWP) in four irrigated systems: continuous maize with recommended best management practices (CC‐rec) or intensive management (CC‐int) and maize–soybean rotation with recommended (CS‐rec) or intensive management (CS‐int). Grain yields of maize and soybean were generally within 80–100% of the estimated site yield potential. Large soil surface carbon dioxide (CO2) fluxes were mostly associated with rapid crop growth, high temperature and high soil water content. Within each crop rotation, soil CO2 efflux under intensive management was not consistently higher than with recommended management. Owing to differences in residue inputs, SOC increased in the two continuous maize systems, but decreased in CS‐rec or remained unchanged in CS‐int. N2O emission peaks were mainly associated with high temperature and high soil water content resulting from rainfall or irrigation events, but less clearly related to soil NO3‐N levels. N2O fluxes in intensively managed systems were only occasionally greater than those measured in the CC‐rec and CS‐rec systems. Fertilizer‐induced N2O emissions ranged from 1.9% to 3.5% in 2003, from 0.8% to 1.5% in 2004 and from 0.4% to 0.5% in 2005, with no consistent differences among the four systems. All four cropping systems where net sources of GHG. However, due to increased soil C sequestration continuous maize systems had lower GWP than maize–soybean systems and intensive management did not cause a significant increase in GWP. Converting maize grain to ethanol in the two continuous maize systems resulted in a net reduction in life cycle GHG emissions of maize ethanol relative to petrol‐based gasoline by 33–38%. Our study provided evidence that net GHG emissions from agricultural systems can be kept low when management is optimized toward better exploitation of the yield potential. Major components for this included (i) choosing the right combination of adopted varieties, planting date and plant population to maximize crop biomass productivity, (ii) tactical water and nitrogen (N) management decisions that contributed to high N use efficiency and avoided extreme N2O emissions, and (iii) a deep tillage and residue management approach that favored the build‐up of soil organic matter from large amounts of crop residues returned.  相似文献   

3.
Nitrogen (N) fertilization potentially affects soil N mineralization and leaching, and can enhance NH3 volatilization, thus impacting crop production. A fertilizer experiment with five levels of N addition (0, 79, 147, 215 and 375 kg N ha-1) was performed in 2009 and 2010 in a maize field in Huanghuaihai region, China, where > 300 kg N ha-1 has been routinely applied to soil during maize growth period of 120 days. Responses of net N mineralization, inorganic N flux (0–10cm), NH3 volatilization, and maize yield to N fertilization were measured. During the growth period, net N mineralization and nitrification varied seasonally, with higher rates occurring in August and coinciding with the R1 stage of maize growth. Soil NO3 -N contributed to more than 60% of inorganic N flux during maize growth. Cumulative NH3 volatilization increased with N additions, with total NH3 volatilization during maize growth accounting for about 4% of added N. Relative to the control, mean maize yield in the fertilizer treatments increased by 17% and 20% in 2009 and 2010, respectively. However, grain yield, aboveground biomass, and plant N accumulation did not increase with added N at levels > 215 kg N ha-1. These results suggest that the current N rate of 300 kg N ha-1 is not only excessive, but also reduces fertilizer efficacy and may contribute to environmental problems such as global warming and eutrophication of ground water and streams.  相似文献   

4.
Biochar soil amendment (BSA) had been advocated as a promising approach to mitigate greenhouse gas (GHG) emissions in agriculture. However, the net GHG mitigation potential of BSA remained unquantified with regard to the manufacturing process and field application. Carbon footprint (CF) was employed to assess the mitigating potential of BSA by estimating all the direct and indirect GHG emissions in the full life cycles of crop production including production and field application of biochar. Data were obtained from 7 sites (4 sites for paddy rice production and 3 sites for maize production) under a single BSA at 20 t/ha?1 across mainland China. Considering soil organic carbon (SOC) sequestration and GHG emission reduction from syngas recycling, BSA reduced the CFs by 20.37–41.29 t carbon dioxide equivalent ha?1 (CO2‐eq ha?1) and 28.58–39.49 t CO2‐eq ha?1 for paddy rice and maize production, respectively, compared to no biochar application. Without considering SOC sequestration and syngas recycling, the net CF change by BSA was in a range of ?25.06 to 9.82 t CO2‐eq ha?1 and ?20.07 to 5.95 t CO2‐eq ha?1 for paddy rice and maize production, respectively, over no biochar application. As the largest contributors among the others, syngas recycling in the process of biochar manufacture contributed by 47% to total CF reductions under BSA for rice cultivation while SOC sequestration contributed by 57% for maize cultivation. There was a large variability of the CF reductions across the studied sites whether in paddy rice or maize production, due likely to the difference in GHG emission reductions and SOC increments under BSA across the sites. This study emphasized that SOC sequestration should be taken into account the CF calculation of BSA. Improved biochar manufacturing technique could achieve a remarkable carbon sink by recycling the biogas for traditional fossil‐fuel replacement.  相似文献   

5.
A dairy farm system trial was conducted between September 2003 and August 2005 to evaluate the effect of integration of maize silage forage on nitrous oxide (N2O) emissions. Potentially, the integration of low-protein forage (e.g. feeding cows with maize silage) to reduce dietary-nitrogen (N) concentration can mitigate environmental N emissions and increase N use efficiency. The dairy farm systems consisted of a maize supplementation system with a stocking rate of 3.8 cows ha?1 of grazed pasture with maize silage brought in and a control system with a stocking rate of 3.0 cows ha?1 of grazed pasture. Direct and indirect N2O emissions from all components of the farm systems were either measured using a closed chamber technique or calculated using the New Zealand IPCC inventory methodology. Annual average N2O emissions were slightly lower on the maize supplementation pasture than on the control pasture. Annual total N2O emissions from the “whole” farm systems (including direct and indict emissions from the grazed pastures, maize growing land, N fertilizer use and associated land application of farm effluent) were 7.71 and 8.00 kg N2O–N ha?1 of dairy farm on the control and maize supplement farm systems, respectively. The corresponding annual milk production was 13,437 and 17,925 kg ha?1. Therefore, the N2O emission per kg of milk production from the maize supplementation was 22% lower than that from the control system. This was due to the much greater efficiency of N use from low-protein maize silage than from pasture. The results suggest that the integration of low-protein forage can be an effective management practice to mitigate adverse environmental effects of increasing stocking rates in the New Zealand dairy farm systems, in terms of N2O emissions per unit of milk production.  相似文献   

6.
Global maize production alters an enormous soil organic C (SOC) stock, ultimately affecting greenhouse gas concentrations and the capacity of agroecosystems to buffer climate variability. Inorganic N fertilizer is perhaps the most important factor affecting SOC within maize‐based systems due to its effects on crop residue production and SOC mineralization. Using a continuous maize cropping system with a 13 year N fertilizer gradient (0–269 kg N ha?1 yr?1) that created a large range in crop residue inputs (3.60–9.94 Mg dry matter ha?1 yr?1), we provide the first agronomic assessment of long‐term N fertilizer effects on SOC with direct reference to N rates that are empirically determined to be insufficient, optimum, and excessive. Across the N fertilizer gradient, SOC in physico‐chemically protected pools was not affected by N fertilizer rate or residue inputs. However, unprotected particulate organic matter (POM) fractions increased with residue inputs. Although N fertilizer was negatively linearly correlated with POM C/N ratios, the slope of this relationship decreased from the least decomposed POM pools (coarse POM) to the most decomposed POM pools (fine intra‐aggregate POM). Moreover, C/N ratios of protected pools did not vary across N rates, suggesting little effect of N fertilizer on soil organic matter (SOM) after decomposition of POM. Comparing a N rate within 4% of agronomic optimum (208 kg N ha?1 yr?1) and an excessive N rate (269 kg N ha?1 yr?1), there were no differences between SOC amount, SOM C/N ratios, or microbial biomass and composition. These data suggest that excessive N fertilizer had little effect on SOM and they complement agronomic assessments of environmental N losses, that demonstrate N2O and NO3 emissions exponentially increase when agronomic optimum N is surpassed.  相似文献   

7.
A field experiment was conducted under a wheat-maize rotation system from 1990 to 2006 in North China Plain (NCP) to determine the effects of N, P and K on yield and yield gap. There were five treatments: NPK, PK, NK, NP and a control. Average wheat and maize yields were the highest in the NPK treatment, followed by those in the NP plots among all treatments. For wheat and maize yield, a significant increasing trend over time was found in the NPK-treated plots and a decreasing trend in the NK-treated plots. In the absence of N or P, wheat and maize yields were significantly lower than those in the NPK treatment. For both crops, the increasing rate of the yield gap was the highest in the P omission plots, i.e., 189.1 kg ha−1 yr−1 for wheat and 560.6 kg ha−1 yr−1 for maize. The cumulative omission of P fertilizer induced a deficit in the soil available N and extractable P concentrations for maize. The P fertilizer was more pivotal in long-term wheat and maize growth and soil fertility conservation in NCP, although the N fertilizer input was important for both crops growth. The crop response to K fertilizers was much lower than that to N or P fertilizers, but for maize, the cumulative omission of K fertilizer decreased the yield by 26% and increased the yield gap at a rate of 322.7 kg ha−1 yr−1. The soil indigenous K supply was not sufficiently high to meet maize K requirement over a long period. The proper application of K fertilizers is necessary for maize production in the region. Thus, the appropriate application of N and P fertilizers for the growth of both crops, while regularly combining K fertilizers for maize growth, is absolutely necessary for sustainable crop production in the NCP.  相似文献   

8.

Aims

A field experiment was conducted to investigate the effect of biochar on maize yield and greenhouse gases (GHGs) in a calcareous loamy soil poor in organic carbon from Henan, central great plain, China.

Methods

Biochar was applied at rates of 0, 20 and 40?t?ha?1 with or without N fertilization. With N fertilization, urea was applied at 300?kg?N ha?1, of which 60% was applied as basal fertilizer and 40% as supplementary fertilizer during crop growth. Soil emissions of CO2, CH4 and N2O were monitored using closed chambers at 7?days intervals throughout the whole maize growing season (WMGS).

Results

Biochar amendments significantly increased maize production but decreased GHGs. Maize yield was increased by 15.8% and 7.3% without N fertilization, and by 8.8% and 12.1% with N fertilization under biochar amendment at 20?t?ha?1 and 40?t?ha?1, respectively. Total N2O emission was decreased by 10.7% and by 41.8% under biochar amendment at 20?t?ha?1 and 40?t?ha?1 compared to no biochar amendment with N fertilization. The high rate of biochar (40?t?ha?1) increased the total CO2 emission by 12% without N fertilization. Overall, biochar amendments of 20?t?ha?1 and 40?t?ha?1 decreased the total global warming potential (GWP) of CH4 and N2O by 9.8% and by 41.5% without N fertilization, and by 23.8% and 47.6% with N fertilization, respectively. Biochar amendments also decreased soil bulk density and increased soil total N contents but had no effect on soil mineral N.

Conclusions

These results suggest that application of biochar to calcareous and infertile dry croplands poor in soil organic carbon will enhance crop productivity and reduce GHGs emissions.  相似文献   

9.
The relationship between nitrous oxide (N2O) flux and N availability in agricultural ecosystems is usually assumed to be linear, with the same proportion of nitrogen lost as N2O regardless of input level. We conducted a 3‐year, high‐resolution N fertilizer response study in southwest Michigan USA to test the hypothesis that N2O fluxes increase mainly in response to N additions that exceed crop N needs. We added urea ammonium nitrate or granular urea at nine levels (0–292 kg N ha?1) to four replicate plots of continuous maize. We measured N2O fluxes and available soil N biweekly following fertilization and grain yields at the end of the growing season. From 2001 to 2003 N2O fluxes were moderately low (ca. 20 g N2O‐N ha?1 day?1) at levels of N addition to 101 kg N ha?1, where grain yields were maximized, after which fluxes more than doubled (to >50 g N2O‐N ha?1 day?1). This threshold N2O response to N fertilization suggests that agricultural N2O fluxes could be reduced with no or little yield penalty by reducing N fertilizer inputs to levels that just satisfy crop needs.  相似文献   

10.
Row‐crop agriculture is a major source of nitrous oxide (N2O) globally, and results from recent field experiments suggest that significant decreases in N2O emissions may be possible by decreasing nitrogen (N) fertilizer inputs without affecting economic return from grain yield. We tested this hypothesis on five commercially farmed fields in Michigan, USA planted with corn in 2007 and 2008. Six rates of N fertilizer (0–225 kg N ha?1) were broadcast and incorporated before planting, as per local practice. Across all sites and years, increases in N2O flux were best described by a nonlinear, exponentially increasing response to increasing N rate. N2O emission factors per unit of N applied ranged from 0.6% to 1.5% and increased with increasing N application across all sites and years, especially at N rates above those required for maximum crop yield. At the two N fertilizer rates above those recommended for maximum economic return (135 kg N ha?1), average N2O fluxes were 43% (18 g N2O–N ha?1 day?1) and 115% (26 g N2O–N ha?1 day?1) higher than were fluxes at the recommended rate, respectively. The maximum return to nitrogen rate of 154 kg N ha?1 yielded an average 8.3 Mg grain ha?1. Our study shows the potential to lower agricultural N2O fluxes within a range of N fertilization that does not affect economic return from grain yield.  相似文献   

11.
Soil degradation is one of the most serious threats to sustainable crop production in many tropical agroecosystems where extensification rather than intensification of agriculture has occurred. In the highlands of western Kenya, we investigated soil nitrogen (N) and phosphorus (P) constraints to maize productivity across a cultivation chronosequence in which land‐use history ranged from recent conversion from primary forest to 100 years in continuous cropping. Nutrient treatments included a range of N and P fertilizer rates applied separately and in combination. Maize productivity without fertilizer was used as a proxy measure for indigenous soil fertility (ISF). Soil pools of mineral nitrogen, strongly bound P and plant‐available P decreased by 82%, 31% and 36%, and P adsorption capacity increased by 51% after 100 years of continuous cultivation. For the long rainy season (LR), grain yield without fertilizer declined rapidly as cultivation age increased from 0 to 25 years and then gradually declined to a yield of 1.6 Mg ha?1, which was maintained as time under cultivation increased from 60 to 100 years. LR grain yield in the old conversions was only 24% of the average young conversion grain yield (6.4 Mg ha?1). Application of either N or P alone significantly increased grain yield in both the LR and short rainy (SR) seasons, but only application of 120 kg N ha?1 on the old conversion increased yield by >1 Mg ha?1. In both SR and LR, there was a greater average yield increment response to N and P when applied together (ranging from 1 to 3.8 Mg ha?1 for the LR), with the greatest responses on the old conversions. The benefit–cost ratio (BCR) for applying 120 kg N ha?1 alone was <1 except on the old conversions, while BCRs were>1 for applying 25 kg P ha?1 alone at all levels of conversion for both seasons. Application of both N (120 kg N ha?1) and P (25 kg P ha?1) on the old conversions resulted in the greatest BCRs. This study clearly indicates that maize productivity responses to N and P fertilizer are significantly affected by the age of cultivation and its influence on ISF, but that loss of productivity can be restored rapidly when these limiting nutrients are applied. Management strategies should consider ISF and economic factors to determine optimal N and P input requirements for achieving and sustaining profitable crop production on degraded soils.  相似文献   

12.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

13.
Greenhouse gas (GHG) intensity is frequently used to assess the mitigation potential of biofuels; however, failure to quantify other environmental impacts may result in unintended consequences, effectively shifting the environmental burden of fuel production rather than reducing it. We modeled production of E85, a gasoline/ethanol blend, from forage sorghum (Sorghum bicolor cv. photoperiod LS) grown, processed, and consumed in California's Imperial Valley in order to evaluate the influence of nitrogen (N) management on well‐to‐wheel (WTW) environmental impacts from cellulosic ethanol. We simulated 25 N management scenarios varying application rate, application method, and N source. Life cycle environmental impacts were characterized using the EPA's criteria for emissions affecting the environment and human health. Our results suggest efficient use of N is an important pathway for minimizing WTW emissions on an energy yield basis. Simulations in which N was injected had the highest nitrogen use efficiency. Even at rates as high as 450 kg N ha?1, injected N simulations generated a yield response sufficient to outweigh accompanying increases in most N‐induced emissions on an energy yield basis. Thus, within the biofuel life cycle, trade‐offs across productivity, GHG intensity, and pollutant loads may be possible to avoid at regional to global scales. However, trade‐offs were seemingly unavoidable when impacts from E85 were compared to those of conventional gasoline. The GHG intensity of sorghum‐derived E85 ranged from 29 to 44 g CO2 eq MJ?1, roughly 1/3 to 1/2 that of gasoline. Conversely, emissions contributing to local air and water pollution tended to be substantially higher in the E85 life cycle. These adverse impacts were strongly influenced by N management and could be partially mitigated by efficient application of N fertilizers. Together, our results emphasize the importance of minimizing on‐farm emissions in maximizing both the environmental benefits and profitability of biofuels.  相似文献   

14.
In an alley cropping system, prunings from the hedgerow legume are expected to supply nitrogen (N) to the associated cereal. However, this may not be sufficient to achieve maximum crop yield. Three field experiments with alley-cropped maize were conducted in a semi-arid environment in northern Australia to determine: (1) the effect of N fertilizer on maize growth in the presence of fresh leucaena prunings; (2) the effect of incorporation of leucaena and maize residues on maize yield and the fate of plant residue15N in the alley cropping system; and (3) the15N recovery by maize from15N-labelled leucaena, maize residues and ammonium sulphate fertilizer.Leucaena residues increased maize crop yield and N uptake although they did not entirely satisfy the N requirement of the alley crop. Additional N fertilizer further increased the maize yield and N uptake in the presence of leucaena residues. Placement of leucaena residues had little effect on the availability of N to maize plants over a 2 month period. The incorporation of leucaena residues in the soil did not increase the recovery of leucaena15N by maize compared with placement of the residues on the soil surface. After 2 months, similar proportions of the residue15N were recovered by maize from mulched leucaena (6.3%), incorporated leucaena (6.1%) and incorporated maize (7.6%). By the end of one cropping season (3 months after application) about 9% of the added15N was taken up by maize from either15N-labelled leucaena as mulch or15N-labelled maize residues applied together with unlabelled fresh leucaena prunings as mulch. The recovery of the added15N was much higher (42.7%) from the15N-labelled ammonium sulphate fertilizer at 40 kg N ha-1 in the presence of unlabelled leucaena prunings. Most of the added15N recovered in the 200 cm soil profile was distributed in the top 25 cm soil with little leached below that. About 27–41% of the leucaena15N was apparently lost, largely through denitrification from the soil and plant system, in one cropping season. This compared with 35% of the fertilizer15N lost when the N fertilizer was applied in the presence of prunings. ei]H Lambers  相似文献   

15.
There is a growing concern about excessive nitrogen (N) and water use in agricultural systems in North China due to the reduced resource use efficiency and increased groundwater pollution. A two-year experiment with two soil moisture by four N treatments was conducted to investigate the effects of N application rates and soil moisture on soil N dynamics, crop yield, N uptake and use efficiency in an intensive wheat–maize double cropping system (wheat–maize rotation) in the North China Plain. Under the experimental conditions, crop yield of both wheat and maize did␣not␣increase significantly at N rates above 200 kg N ha−1. Nitrogen application rates affected little on ammonium-N (NH4-N) content in the 0–100 cm soil profiles. Excess nitrate-N (NO3-N), ranging from 221 kg N ha−1 to 620 kg N ha−1, accumulated in the 0–100 cm soil profile at the end of second rotation in the treatments with N rates of 200 kg N ha−1 and 300 kg N ha−1. In general, maize crop has higher N use efficiency than wheat crop. Higher NO3-N leaching occurred in maize season than in wheat season due to more water leakage caused by the concentrated summer rainfall. The results of this study indicate that the optimum N rate may be much lower than that used in many areas in the North China Plain given the high level of N already in the soil, and there is great potential for reducing N inputs to increase N use efficiency and to mitigate N leaching into the groundwater. Avoiding excess water leakage through controlled irrigation and matching N application to crop N demand is the key to reduce NO3-N leaching and maintain crop yield. Such management requires knowledge of crop water and N demand and soil N dynamics as they change with variable climate temporally and spatially. Simulation modeling can capture those interactions and is considered as a powerful tool to assist in␣the␣future optimization of N and irrigation managements. Section Editor: L. Wade  相似文献   

16.

Purpose

Carbon footprint of field crops can be lowered through improved cropping practices. The objective of this study was to determine the carbon footprint of spring barley (Hordeum vulgare L.) in relation to various preceding oilseed crops that were fertilized at various rates of inorganic N the previous years. System boundary was from cradle-to-farm gate.

Materials and methods

Canola-quality mustard (Brassica juncea L.), canola (Brassica napus L.), sunflower (Helianthus annuus L.), and flax (Linum usitatissimum L.) were grown under the N fertilizer rates of 10, 30, 70, 90, 110, 150, and 200?kg?N?ha?1 the previous year, and spring barley was grown on the field of standing oilseed stubble the following year. The study was conducted at six environmental sites; they were at Indian Head in 2005, 2006 and 2007, and at Swift Current in 2004, 2005 and 2006, Saskatchewan, Canada.

Results and discussion

On average, barley grown at humid Indian Head emitted greenhouse gases (GHGs) of 1,003?kg?CO2eq?ha?1, or 53% greater than that at the drier Swift Current site. Production and delivery of fertilizer N to farm gate accounted for 26% of the total GHG emissions, followed by direct and indirect emissions of 28% due to the application of N fertilizers to barley crop. Emissions due to N fertilization were 26.6 times the emission from the use of phosphorous, 5.2 times the emission from pesticides, and 4.2 times the emission from various farming operations. Decomposition of crop residues contributed emissions of 173?kg?CO2eq?ha?1, or 19% of the total emission. Indian Head-produced barley had significantly greater grain yield, resulting in about 11% lower carbon footprint than Swift Current-produced barley (0.28 vs. 0.32?kg?CO2eq?kg?1 of grain). Emissions in the barley production was a linear function of the rate of fertilizer N applied to the previous oilseed crops due to increased emissions from crop residue decomposition coupled with higher residual soil mineral N.

Conclusions

The key to lower the carbon footprint of barley is to increase grain yield, make a wise choice of crop types, reduce N inputs to crops grown in the previous and current growing seasons, and improved N use efficiency.  相似文献   

17.
Oilseed rape is one of the leading feedstocks for biofuel production in Europe. The climate change mitigation effect of rape methyl ester (RME) is particularly challenged by the greenhouse gas (GHG) emissions during crop production, mainly as nitrous oxide (N2O) from soils. Oilseed rape requires high nitrogen fertilization and crop residues are rich in nitrogen, both potentially causing enhanced N2O emissions. However, GHG emissions of oilseed rape production are often estimated using emission factors that account for crop‐type specifics only with respect to crop residues. This meta‐analysis therefore aimed to assess annual N2O emissions from winter oilseed rape, to compare them to those of cereals and to explore the underlying reasons for differences. For the identification of the most important factors, linear mixed effects models were fitted with 43 N2O emission data points deriving from 12 different field sites. N2O emissions increased exponentially with N‐fertilization rates, but interyear and site‐specific variability were high and climate variables or soil parameters did not improve the prediction model. Annual N2O emissions from winter oilseed rape were 22% higher than those from winter cereals fertilized at the same rate. At a common fertilization rate of 200 kg N ha?1 yr?1, the mean fraction of fertilizer N that was lost as N2O‐N was 1.27% for oilseed rape compared to 1.04% for cereals. The risk of high yield‐scaled N2O emissions increased after a critical N surplus of about 80 kg N ha?1 yr?1. The difference in N2O emissions between oilseed rape and cereal cultivation was especially high after harvest due to the high N contents in oilseed rape's crop residues. However, annual N2O emissions of winter oilseed rape were still lower than predicted by the Stehfest and Bouwman model. Hence, the assignment of oilseed rape to the crop‐type classes of cereals or other crops should be reconsidered.  相似文献   

18.
A field trial was carried out on a 15 year old Miscanthus stand, subject to nitrogen fertilizer treatments of 0, 63 and 125 kg‐N ha?1, measuring N2O emissions, as well as annual crop yield over a full year. N2O emission intensity (N2O emissions calculated as a function of above‐ground biomass) was significantly affected by fertilizer application, with values of 52.2 and 59.4 g N2O‐N t?1 observed at 63 and 125 kg‐N ha?1, respectively, compared to 31.3 g N2O‐N t?1 in the zero fertilizer control. A life cycle analyses approach was applied to calculate the increase in yield required to offset N2O emissions from Miscanthus through fossil fuel substitution in the fuel chain. For the conditions observed during the field trial yield increases of 0.33 and 0.39 t ha?1 were found to be required to offset N2O emissions from the 63 kg‐N ha?1 treatment, when replacing peat and coal, respectively, while increases of 0.71 and 0.83 t ha?1 were required for the 125 kg‐N ha?1 treatment, for each fuel. These values are considerably less than the mean above‐ground biomass yield increases observed here of 1.57 and 2.79 t ha?1 at fertilization rates 63 and 125 kg‐N ha?1 respectively. Extending this analysis to include a range of fertilizer application rates and N2O emission factors found increases in yield necessary to offset soil N2O emissions ranging from 0.26 to 2.54 t ha?1. These relatively low yield increase requirements indicate that where nitrogen fertilizer application improves yield, the benefits of such a response will not be offset by soil N2O emissions.  相似文献   

19.
Closing yield gaps through higher fertilizer use increases direct greenhouse gas emissions but shares the burden over a larger production volume. Net greenhouse gas (GHG) footprints per unit product under agricultural intensification vary depending on the context, scale and accounting method. Life cycle analysis of footprints includes attributable emissions due to (i) land conversion (‘fixed cost’); (ii) external inputs used (‘variable cost’); (iii) crop production (‘agronomic efficiency’); and (iv) postharvest transport and processing (‘proportional’ cost). The interplay between fixed and variable costs results in a nuanced opportunity for intermediate levels of intensification to minimize footprints. The fertilizer level that minimizes the footprint may differ from the economic optimum. The optimization problem can be solved algebraically for quadratic crop fertilizer response equations. We applied this theory to data of palm oil production and fertilizer use from 23 plantations across the Indonesian production range. The current EU threshold requiring at least 35% emission saving for biofuel use can never be achieved by palm oil if produced: (i) on peat soils, or (ii) on mineral soils where the C debt due to conversion is larger than 20 Mg C ha?1, if the footprint is calculated using an emission ratio of N2O–N/N fertilizer of 4%. At current fertilizer price levels in Indonesia, the economically optimized N fertilizer rate is 344–394 kg N ha?1, while the reported mean N fertilizer rate is 141 kg N ha?1 yr?1 and rates of 74–277 kg N ha?1 would minimize footprints, for a N2O–N/N fertilizer ratio of 4–1%, respectively. At a C debt of 30 Mg C ha?1, these values are 200–310 kg N ha?1. Sustainable weighting of ecology and economics would require a higher fertilizer/yield price ratio, depending on C debt. Increasing production by higher fertilizer use from current 67% to 80% of attainable yields would not decrease footprints in current production conditions.  相似文献   

20.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号