首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miscanthus × giganteus is a C4 perennial grass that shows great potential as a high‐yielding biomass crop. Scant research has been published that reports M. × giganteus growth and biomass yields in different environments in the United States. This study investigated the establishment success, plant growth, and dry biomass yield of M. × giganteus during its first three seasons at four locations (Urbana, IL; Lexington, KY; Mead, NE; Adelphia, NJ) in the United States. Three nitrogen rates (0, 60, and 120 kg ha?1) were applied at each location each year. Good survival of M. × giganteus during its first winter was observed at KY, NE, and NJ (79–100%), and poor survival at IL (25%), due to late planting and cold winter temperatures. Site soil conditions, and growing‐season precipitation and temperature had the greatest impact on dry biomass yield between season 2 (2009) and season 3 (2010). Ideal 2010 weather conditions at NE resulted in significant yield increases (< 0.0001) of 15.6–27.4 Mg ha?1 from 2009 to 2010. Small yield increases in KY of 17.1 Mg ha?1 in 2009 to 19.0 Mg ha?1 in 2010 could be attributed to excessive spring rain and hot dry conditions late in the growing season. Average M. ×giganteus biomass yields in NJ decreased from 16.9 to 9.7 Mg ha?1 between 2009 and 2010 and were related to hot dry weather, and poor soil conditions. Season 3 yields were positively correlated with end‐of‐season plant height () and tiller density (). Nitrogen fertilization had no significant effect on plant height, tiller density, or dry biomass yield at any of the sites during 2009 or 2010.  相似文献   

2.
There is a tradeoff to consider when harvesting perennial biomass crops: harvest too late and yield declines, harvest too early and risk higher mineral contents, particularly nitrogen (N). Allowing the crop to completely senesce and recycle nutrients has several advantages, including improved feedstock quality and reduced fertilizer requirements, but it comes at a risk, particularly in temperate climates where snow and ice can reduce or destroy harvestable biomass. The effect of harvest time on the N concentration ([N]) and biomass of Panicum virgatum and Miscanthus × giganteus was evaluated at three sites in Illinois over two years. In both species [N] of standing biomass significantly declined with time ( P <0.0001). Interestingly, there was no significant interaction effect of species and sample date on [N] ( P =0.2888), but there was a highly significant interaction effect on the total N in standing biomass ( P <0.0001). The amount of standing N was directly related to biomass yield. Seasonal changes in standing N differed among locations, suggesting that harvest time recommendations for N management depend on location. P. virgatum would have potentially removed as much as 187 kg N ha−1 if harvested green, and as little as 5 kg N ha−1 if harvested in late winter. Because of higher biomass yields, M . × giganteus standing N ranged from 379 kg N ha−1 in June to <17 kg N ha−1 in February. Importantly, there was little overall change in [N] between an early winter (December) harvest and a late winter (February/March) harvest, indicating the benefits of N cycling in the system can be realized by end of the growing season and thus, at least from an N economy perspective, there is no reason to risk yield losses by delaying harvest over the winter.  相似文献   

3.
A field trial was carried out on a 15 year old Miscanthus stand, subject to nitrogen fertilizer treatments of 0, 63 and 125 kg‐N ha?1, measuring N2O emissions, as well as annual crop yield over a full year. N2O emission intensity (N2O emissions calculated as a function of above‐ground biomass) was significantly affected by fertilizer application, with values of 52.2 and 59.4 g N2O‐N t?1 observed at 63 and 125 kg‐N ha?1, respectively, compared to 31.3 g N2O‐N t?1 in the zero fertilizer control. A life cycle analyses approach was applied to calculate the increase in yield required to offset N2O emissions from Miscanthus through fossil fuel substitution in the fuel chain. For the conditions observed during the field trial yield increases of 0.33 and 0.39 t ha?1 were found to be required to offset N2O emissions from the 63 kg‐N ha?1 treatment, when replacing peat and coal, respectively, while increases of 0.71 and 0.83 t ha?1 were required for the 125 kg‐N ha?1 treatment, for each fuel. These values are considerably less than the mean above‐ground biomass yield increases observed here of 1.57 and 2.79 t ha?1 at fertilization rates 63 and 125 kg‐N ha?1 respectively. Extending this analysis to include a range of fertilizer application rates and N2O emission factors found increases in yield necessary to offset soil N2O emissions ranging from 0.26 to 2.54 t ha?1. These relatively low yield increase requirements indicate that where nitrogen fertilizer application improves yield, the benefits of such a response will not be offset by soil N2O emissions.  相似文献   

4.
Sustainable and environmentally benign switchgrass production systems need to be developed for switchgrass to become a large‐scale dedicated energy crop. An experiment was conducted in California from 2009 to 2011 to determine the sustainability of low‐ and high‐input irrigated switchgrass systems as a function of yield, irrigation requirement, crop N removal, N translocation from aboveground (AG) to belowground (BG) biomass during senescence, and fertilizer 15N recovery (FNR) in the AG and BG biomass (0–300 cm), and soil (0–300 cm). The low‐input system consisted of a single‐harvest (mid‐fall) irrigated until flowering (early summer), while the high‐input system consisted of a two‐harvest system (early summer and mid‐fall) irrigated throughout the growing season. Three N fertilization rates (0, 100, and 200 kg N ha?1 yr?1) were applied as subtreatments in a single application in the spring of each year. A single pulse of 15N enriched fertilizer was applied in the first year of the study to micro‐plots within the 100 kg N ha?1 subplots. Average yields across years under optimal N rates (100 and 200 kg ha?1 yr?1 for low‐ and high‐input systems, respectively) were 20.7 and 24.8 Mg ha?1. However, the low input (372 ha mm) required 47% less irrigation than the high‐input system (705 ha mm) and achieved higher irrigation use efficiency. In addition, the low‐input system had 46% lower crop N removal, 53% higher N stored in BG biomass, and a positive N balance, presumably due to 49% of 15N translocation from AG to BG biomass during senescence. Furthermore, at the end of 3 years, the low‐input system had lower fertilizer 15N removed by harvest (26%) and higher FNR remaining in the system in BG biomass plus soil (31%) than the high‐input system (45% and 21%, respectively). Based on these findings, low‐input systems are more sustainable than high‐input systems in irrigated Mediterranean climates.  相似文献   

5.
The objective of this research was to determine the optimum nitrogen fertilizer rate for producing sweet sorghum (a promising biofuel crop) juice, sugar, and bagasse on silt loam, sandy loam, and clay soils in Missouri. Seven nitrogen fertilization rates were applied, ranging from 0 to 134 kg N ha?1. Regardless of the soil and year, the juice content of sweet sorghum stalk averaged 68.8% by weight. The juice yield ranged from 15.2 to 71.1 m3 ha?1. Soil and N rate significantly impacted the juice yield (P < 0.0001). The pH and the density of the juice were not affected by the soil or N. The sugar content (Brix) of the juice varied between 10.7% and 18.9%. N fertilization improved the sugar content of the juice. A negative correlation existed between the sugar concentration and the juice yield. In general, the lowest sugar content was found in the clay soil and the impact of the N fertilization on juice sugar content was most pronounced in that soil. The juice sugar yield ranged between 2 and 9.9 Mg ha?1, with significant differences found between years, N rates, and soils. N fertilization always increased the sugar yield in the clay soil, whereas in loam soil, a significant sugar response was recorded when the sweet sorghum was planted after corn. The average juice water content was 84% by weight. The dry bagasse yield fluctuated between 3.2 and 13.8 Mg ha?1 with significant difference found with N rate, soil, and year. When sweet sorghum was grown after soybean or cotton, its N requirement was less than after a corn crop was grown the previous year. In general, a minimum of 67 kg N ha?1 was required to optimize juice, sugar, and bagasse yield in sweet sorghum.  相似文献   

6.
Production of energy crops is promoted as a means to mitigate global warming by decreasing dependency on fossil energy. However, agricultural production of bioenergy can have various environmental effects depending on the crop and production system. In a field trial initiated in 2008, nitrate concentration in soil water was measured below winter wheat, grass‐clover and willow during three growing seasons. Crop water balances were modelled to estimate the amount of nitrate leached per hectare. In addition, dry matter yields and nitrogen (N) yields were measured, and N balances and energy balances were calculated. In willow, nitrate concentrations were up to approximately 20 mg l?1 nitrate‐N during the establishment year, but declined subsequently to <5 mg l?1 nitrate‐N, resulting in an annual N leaching loss of 18, 3 and 0.3 kg ha?1 yr?1 N in the first 3 years after planting. A similar trend was observed in grass‐clover where concentrations stabilized at 2–4 mg l?1 nitrate‐N from the beginning of the second growing season, corresponding to leaching of approximately 5 kg ha?1 yr?1 N. In winter wheat, an annual N leaching loss of 36–68 kg ha?1 yr?1 was observed. For comparison, nitrate leaching was also measured in an old willow crop established in 1996 from which N leaching ranged from 6 to 27 kg ha?1 yr?1. Dry matter yields ranged between 5.9 and 14.8 Mg yr?1 with lowest yield in the newly established willow and the highest yield harvested in grass‐clover. Grass‐clover gave the highest net energy yield of 244 GJ ha?1 yr?1, whereas old willow, winter wheat and first rotation willow gave net energy yields of 235, 180 and 105 GJ ha?1 yr?1. The study showed that perennial crops can provide high energy yields and significantly reduce N losses compared to annual crops.  相似文献   

7.
Requirements for mitigation of the continued increase in greenhouse gas (GHG ) emissions are much needed for the North China Plain (NCP ). We conducted a meta‐analysis of 76 published studies of 24 sites in the NCP to examine the effects of natural conditions and farming practices on GHG emissions in that region. We found that N2O was the main component of the area‐scaled total GHG balance, and the CH 4 contribution was <5%. Precipitation, temperature, soil pH , and texture had no significant impacts on annual GHG emissions, because of limited variation of these factors in the NCP . The N2O emissions increased exponentially with mineral fertilizer N application rate, with =  0.2389e0.0058x for wheat season and =  0.365e0.0071x for maize season. Emission factors were estimated at 0.37% for wheat and 0.90% for maize at conventional fertilizer N application rates. The agronomic optimal N rates (241 and 185 kg N ha?1 for wheat and maize, respectively) exhibited great potential for reducing N2O emissions, by 0.39 (29%) and 1.71 (56%) kg N2O‐N ha?1 season?1 for the wheat and maize seasons, respectively. Mixed application of organic manure with reduced mineral fertilizer N could reduce annual N2O emissions by 16% relative to mineral N application alone while maintaining a high crop yield. Compared with conventional tillage, no‐tillage significantly reduced N2O emissions by ~30% in the wheat season, whereas it increased those emissions by ~10% in the maize season. This may have resulted from the lower soil temperature in winter and increased soil moisture in summer under no‐tillage practice. Straw incorporation significantly increased annual N2O emissions, by 26% relative to straw removal. Our analysis indicates that these farming practices could be further tested to mitigate GHG emission and maintain high crop yields in the NCP .  相似文献   

8.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

9.
The effects of increased reactive nitrogen (N) deposition in forests depend largely on its fate in the ecosystems. However, our knowledge on the fates of deposited N in tropical forest ecosystems and its retention mechanisms is limited. Here, we report the results from the first whole ecosystem 15N labeling experiment performed in a N‐rich old‐growth tropical forest in southern China. We added 15N tracer monthly as 15NH415NO3 for 1 year to control plots and to N‐fertilized plots (N‐plots, receiving additions of 50 kg N ha?1 yr?1 for 10 years). Tracer recoveries in major ecosystem compartments were quantified 4 months after the last addition. Tracer recoveries in soil solution were monitored monthly to quantify leaching losses. Total tracer recovery in plant and soil (N retention) in the control plots was 72% and similar to those observed in temperate forests. The retention decreased to 52% in the N‐plots. Soil was the dominant sink, retaining 37% and 28% of the labeled N input in the control and N‐plots, respectively. Leaching below 20 cm was 50 kg N ha?1 yr?1 in the control plots and was close to the N input (51 kg N ha?1 yr?1), indicating N saturation of the top soil. Nitrogen addition increased N leaching to 73 kg N ha?1 yr?1. However, of these only 7 and 23 kg N ha?1 yr?1 in the control and N‐plots, respectively, originated from the labeled N input. Our findings indicate that deposited N, like in temperate forests, is largely incorporated into plant and soil pools in the short term, although the forest is N‐saturated, but high cycling rates may later release the N for leaching and/or gaseous loss. Thus, N cycling rates rather than short‐term N retention represent the main difference between temperate forests and the studied tropical forest.  相似文献   

10.
Closing yield gaps through higher fertilizer use increases direct greenhouse gas emissions but shares the burden over a larger production volume. Net greenhouse gas (GHG) footprints per unit product under agricultural intensification vary depending on the context, scale and accounting method. Life cycle analysis of footprints includes attributable emissions due to (i) land conversion (‘fixed cost’); (ii) external inputs used (‘variable cost’); (iii) crop production (‘agronomic efficiency’); and (iv) postharvest transport and processing (‘proportional’ cost). The interplay between fixed and variable costs results in a nuanced opportunity for intermediate levels of intensification to minimize footprints. The fertilizer level that minimizes the footprint may differ from the economic optimum. The optimization problem can be solved algebraically for quadratic crop fertilizer response equations. We applied this theory to data of palm oil production and fertilizer use from 23 plantations across the Indonesian production range. The current EU threshold requiring at least 35% emission saving for biofuel use can never be achieved by palm oil if produced: (i) on peat soils, or (ii) on mineral soils where the C debt due to conversion is larger than 20 Mg C ha?1, if the footprint is calculated using an emission ratio of N2O–N/N fertilizer of 4%. At current fertilizer price levels in Indonesia, the economically optimized N fertilizer rate is 344–394 kg N ha?1, while the reported mean N fertilizer rate is 141 kg N ha?1 yr?1 and rates of 74–277 kg N ha?1 would minimize footprints, for a N2O–N/N fertilizer ratio of 4–1%, respectively. At a C debt of 30 Mg C ha?1, these values are 200–310 kg N ha?1. Sustainable weighting of ecology and economics would require a higher fertilizer/yield price ratio, depending on C debt. Increasing production by higher fertilizer use from current 67% to 80% of attainable yields would not decrease footprints in current production conditions.  相似文献   

11.
Crop yields in sub‐Saharan Africa remain stagnant at 1 ton ha?1, and 260 million people lack access to adequate food resources. Order‐of‐magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two‐month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100 kg N ha?1, NO emissions increased without a concomitant increase in yields. We used the geos‐chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4‐hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63 ppbv under fertilization rates of 150 kg N ha?1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110 ppbh for inputs of 150 kg N ha?1 during the March–April–May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.  相似文献   

12.
Although the effects of atmospheric nitrogen deposition on species composition are relatively well known, the roles of the different forms of nitrogen, in particular gaseous ammonia (NH3), have not been tested in the field. Since 2002, we have manipulated the form of N deposition to an ombrotrophic bog, Whim, on deep peat in southern Scotland, with low ambient N (wet + dry = 8 kg N ha?1 yr?1) and S (4 kg S ha?1 yr?1) deposition. A gradient of ammonia (NH3, dry N), from 70 kg N ha?1 yr?1 down to background, 3–4 kg N ha?1 yr?1 was generated by free air release. Wet ammonium (NH4+, wet N) was provided to replicate plots in a fine rainwater spray (NH4Cl at +8, +24, +56 kg N ha?1 yr?1). Automated treatments are coupled to meteorological conditions, in a globally unique, field experiment. Ammonia concentrations were converted to NH3‐N deposition (kg N ha?1) using a site/vegetation specific parameterization. Within 3 years, exposure to relatively modest deposition of NH3, 20–56 kg NH3‐N ha?1 yr?1 led to dramatic reductions in species cover, with almost total loss of Calluna vulgaris, Sphagnum capillifolium and Cladonia portentosa. These effects appear to result from direct foliar uptake and interaction with abiotic and biotic stresses, rather than via effects on the soil. Additional wet N by contrast, significantly increased Calluna cover after 5 years at the 56 kg N dose, but reduced cover of Sphagnum and Cladonia. Cover reductions caused by wet N were significantly different from and much smaller than those caused by equivalent dry N doses. The effects of gaseous NH3 described here, highlight the potential for ammonia to destroy acid heathland and peat bog ecosystems. Separating the effects of gaseous ammonia and wet ammonium deposition, for a peat bog, has significant implications for regulatory bodies and conservation agencies.  相似文献   

13.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

14.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

15.
Information on the growth and development of warm‐season grasses in response to management is required to use them successfully as a biomass crop. Our objectives were to determine optimum harvest periods and effect of N fertilization rates on the biomass production of four warm‐season grasses, and to investigate if traits of canopy structure can explain observed yields with varying harvest dates and N rates. A field study was conducted at Sorenson Research Farm near Ames, IA, during 2006 and 2007. The experimental design was split‐split plot arranged in a randomized complete block with four replications. Big bluestem (Andropogon gerardii Vitman), eastern gamagrass (Tripsacum dactyloides L.), indiangrass (Sorghastrum nutrans L. Nash), and switchgrass (Panicum virgatum L.) were main plots. Three N application rates (0, 65, and 140 kg ha?1) were subplots, and 10 harvest dates were sub‐sub plots. Biomass of warm‐season grasses increased with advanced maturity, but differently among species. The maximum yield of eastern gamagrass occurred at the highest MSC (1.6 and 2.2) when the largest seed ripening tillers were present. Big bluestem, switchgrass, and indiangrass obtained the maximum yields at MSC 3.5, 3.9, and 2.9, respectively when the largest reproductive tillers were present. In terms of a biomass supply strategy, eastern gamagrass may be used during early summer, while big bluestem and switchgrass may be best used between mid‐ and late‐ summer, and indiangrass in early fall. Nitrogen fertilization increased yield by increasing tiller development. Optimum biomass yields were obtained later in the season when they were fertilized with 140 kg ha?1.  相似文献   

16.
Short‐rotation woody biomass crops (SRWC) have been proposed as a major feedstock source for bioenergy generation in the Northeastern US. To quantify the environmental effects and greenhouse gas (GHG) balance of crops including SRWC, investigators need spatially explicit data which encompass entire plantation cycles. A knowledge gap exists for the establishment period which makes current GHG calculations incomplete. In this study, we investigated the effects of converting pasture and hayfields to willow (Salix spp.) and hybrid‐poplar (Populus spp.) SRWC plantations on soil nitrogen (N) cycling, nitrous oxide (N2O) emissions, and nitrate (NO3?) leaching at six sites of varying soil and climate conditions across northern Michigan and Wisconsin, following these plantations from pre conversion through their first 2 years. All six sites responded to establishment with increased N2O emissions, available inorganic N, and, where it was measured, NO3? leaching; however, the magnitude of these impacts varied dramatically among sites. Soil NO3? levels varied threefold among sites, with peak extractable NO3? concentrations ranging from 15 to 49 g N kg?1 soil. Leaching losses were significant and persisted through the second year, with 44–112 kg N ha?1 leached in SRWC plots. N2O emissions in the first growing season varied 30‐fold among sites, from 0.5 to 17.0 Mg‐CO2eq ha?1 (carbon dioxide equivalents). N2O emissions over 2 years resulted in N2O emissions due to plantation establishment that ranged from 0.60 to 22.14 Mg‐CO2eq ha?1 above baseline control levels across sites. The large N losses we document herein demonstrate the importance of including direct effects of land conversion in life‐cycle analysis (LCA) studies of SRWC GHG balance. Our results also demonstrate the need for better estimation of spatial variability of N cycling processes to quantify the full environmental impacts of SRWC plantations.  相似文献   

17.
High rates of crop residue removal as biofuel feedstocks could increase losses of nonpoint source pollutants, negatively affecting water quality. An alternative to residue removal can be growing dedicated bioenergy crops such as warm season grasses (WSGs) and short‐rotation woody crops (SRWCs). Yet, our understanding of the implications of growing dedicated bioenergy crops on water quality is limited. Thus, we (i) synthesized and compared the impacts of crop residue removal, WSGs, and SRWCs on water quality parameters (i.e., sediment and nutrient runoff, and nutrient leaching) and (ii) identified research gaps for growing dedicated energy crops. Literature indicates that residue removal at rates >50% (residue retention up to 4.71 Mg ha?1) can increase runoff by 5–15 mm, sediment loss by 0.2–7 Mg ha?1, NO3–N by 0.58–1 kg ha?1, and sediment‐associated C by 0.3–57 kg ha?1 per rainstorm event compared to no residue removal. Crop residue removal may also increase nutrient leaching. Studies on the impacts of growing WSGs as dedicated bioenergy crops at field scale on water quality parameters are few. However, WSGs when used as conservation buffers reduce losses of sediment by 66–97%, nutrients by 21–94%, and contaminants by 9–98%. This suggests that if WSGs were grown as dedicated bioenergy crops at larger scales, they could reduce losses of nonpoint source pollutants. Literature indicates that SRWCs can consistently reduce NO3–N leaching. More modeled than field data are available, warranting further field research on (i) field data collection from WSGs and SRWCs from marginal lands, (ii) growing monoculture or polyculture of WSGs, and (iii) large‐scale production of energy crops. Overall, dedicated bioenergy crops, particularly WSGs, can reduce losses of nonpoint source pollutants compared to residue removal and be an important strategy to improve water quality if grown at larger scales.  相似文献   

18.
Quantifying soil organic carbon (SOC) dynamics at a high spatial and temporal resolution in response to different agricultural management practices and environmental conditions can help identify practices that both sequester carbon in the soil and sustain agricultural productivity. Using an agricultural systems model (the Agricultural Production Systems sIMulator), we conducted a high spatial resolution and long‐term (122 years) simulation study to identify the key management practices and environmental variables influencing SOC dynamics in a continuous wheat cropping system in Australia's 96 million ha cereal‐growing regions. Agricultural practices included five nitrogen application rates (0–200 kg N ha?1 in 50 kg N ha?1 increments), five residue removal rates (0–100% in 25% increments), and five residue incorporation rates (0–100% in 25% increments). We found that the change in SOC during the 122‐year simulation was influenced by the management practices of residue removal (linearly negative) and fertilization (nonlinearly positive) – and the environmental variables of initial SOC content (linearly negative) and temperature (nonlinearly negative). The effects of fertilization were strongest at rates up to 50 kg N ha?1, and the effects of temperature were strongest where mean annual temperatures exceeded 19 °C. Reducing residue removal and increasing fertilization increased SOC in most areas except Queensland where high rates of SOC decomposition caused by high temperature and soil moisture negated these benefits. Management practices were particularly effective in increasing SOC in south‐west Western Australia – an area with low initial SOC. The results can help target agricultural management practices for increasing SOC in the context of local environmental conditions, enabling farmers to contribute to climate change mitigation and sustaining agricultural production.  相似文献   

19.
The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N : P applications under low, medium, and high input scenarios, for past (1975), current, and future N : P mass ratios of respectively, 1 : 0.29, 1 : 0.15, and 1 : 0.05. At low N inputs (10 kg ha?1), current yield deficits amount to 10% but will increase up to 27% under the assumed future N : P ratio, while at medium N inputs (50 kg N ha?1), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low‐quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N : P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1 : 0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3‐fold to be optimal, and to increase 11.7‐fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.  相似文献   

20.
Biomass from dedicated crops is expected to contribute significantly to the replacement of fossil resources. However, sustainable bioenergy cropping systems must provide high biomass production and low environmental impacts. This study aimed at quantifying biomass production, nutrient removal, expected ethanol production, and greenhouse gas (GHG) balance of six bioenergy crops: Miscanthus × giganteus, switchgrass, fescue, alfalfa, triticale, and fiber sorghum. Biomass production and N, P, K balances (input‐output) were measured during 4 years in a long‐term experiment, which included two nitrogen fertilization treatments. These results were used to calculate a posteriori ‘optimized’ fertilization practices, which would ensure a sustainable production with a nil balance of nutrients. A modified version of the cost/benefit approach proposed by Crutzen et al. (2008), comparing the GHG emissions resulting from N‐P‐K fertilization of bioenergy crops and the GHG emissions saved by replacing fossil fuel, was applied to these ‘optimized’ situations. Biomass production varied among crops between 10.0 (fescue) and 26.9 t DM ha?1 yr?1 (miscanthus harvested early) and the expected ethanol production between 1.3 (alfalfa) and 6.1 t ha?1 yr?1 (miscanthus harvested early). The cost/benefit ratio ranged from 0.10 (miscanthus harvested late) to 0.71 (fescue); it was closely correlated with the N/C ratio of the harvested biomass, except for alfalfa. The amount of saved CO2 emissions varied from 1.0 (fescue) to 8.6 t CO2eq ha?1 yr?1 (miscanthus harvested early or late). Due to its high biomass production, miscanthus was able to combine a high production of ethanol and a large saving of CO2 emissions. Miscanthus and switchgrass harvested late gave the best compromise between low N‐P‐K requirements, high GHG saving per unit of biomass, and high productivity per hectare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号