首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While we know that climate change can potentially cause rapid phenotypic evolution, our understanding of the genetic basis and degree of genetic parallelism of rapid evolutionary responses to climate change is limited. In this study, we combined the resurrection approach with an evolve-and-resequence design to examine genome-wide evolutionary changes following drought. We exposed genetically similar replicate populations of the annual plant Brassica rapa derived from a field population in southern California to four generations of experimental drought or watered conditions in a greenhouse. Genome-wide sequencing of ancestral and descendant population pools identified hundreds of SNPs that showed evidence of rapidly evolving in response to drought. Several of these were in stress response genes, and two were identified in a prior study of drought response in this species. However, almost all genetic changes were unique among experimental populations, indicating that the evolutionary changes were largely nonparallel, despite the fact that genetically similar replicates of the same founder population had experienced controlled and consistent selection regimes. This nonparallelism of evolution at the genetic level is potentially because of polygenetic adaptation allowing for multiple different genetic routes to similar phenotypic outcomes. Our findings help to elucidate the relationship between rapid phenotypic and genomic evolution and shed light on the degree of parallelism and predictability of genomic evolution to environmental change.  相似文献   

2.
In the 21st century, researchers have attempted a synthesis between community ecology and evolutionary biology. This emerging research area, which aims to synthesize community ecology and evolutionary biology, is evolutionary community ecology. Evolutionary community ecology addresses how intraspecific trait variation in community members is essential for predicting community properties and, how community properties are a key component of the selective forces that determine genetic and phenotypic variation in a community member. In this paper, I review recent findings in evolutionary community ecology in plant-associated arthropods in terrestrial ecosystems. I discuss roles of both genetic variation and phenotypic plasticity as a source of trait variation in plants in shaping plant-associated arthropod communities. Also, I discuss effects of genetic variation in herbivores on plant-associated arthropod communities. Furthermore, I highlight community context evolution in which multiple species interactions and community composition affect trait evolution of a community member. Finally, I argue that future studies should investigate a feedback loop between community and evolutionary dynamics beyond unidirectional studies on effects of evolution on a community or vice versa. This approach will provide major insights into mechanistic principles for making predictions of community ecology.  相似文献   

3.
Assessing rapid evolution in a changing environment   总被引:1,自引:0,他引:1  
Climate change poses a serious threat to species persistence. Effective modelling of evolutionary responses to rapid climate change is therefore essential. In this review we examine recent advances in phylogenetic comparative methods, techniques normally used to study adaptation over long periods, which allow them to be applied to the study of adaptation over shorter time scales. This increased applicability is largely due to the emergence of more flexible models of character evolution and the parallel development of molecular technologies that can be used to assess adaptive variation at loci scattered across the genome. The merging of phylogenetic and population genetic approaches to the study of adaptation has significant potential to advance our understanding of rapid responses to environmental change.  相似文献   

4.
Rapid environmental changes are putting numerous species at risk of extinction. For migration-limited species, persistence depends on either phenotypic plasticity or evolutionary adaptation (evolutionary rescue). Current theory on evolutionary rescue typically assumes linear environmental change. Yet accelerating environmental change may pose a bigger threat. Here, we present a model of a species encountering an environment with accelerating or decelerating change, to which it can adapt through evolution or phenotypic plasticity (within-generational or transgenerational). We show that unless either form of plasticity is sufficiently strong or adaptive genetic variation is sufficiently plentiful, accelerating or decelerating environmental change increases extinction risk compared to linear environmental change for the same mean rate of environmental change.  相似文献   

5.
The match between functional trait variation in communities and environmental gradients is maintained by three processes: phenotypic plasticity and genetic differentiation (intraspecific processes), and species turnover (interspecific). Recently, evidence has emerged suggesting that intraspecific variation might have a potentially large role in driving functional community composition and response to environmental change. However, empirical evidence quantifying the respective importance of phenotypic plasticity and genetic differentiation relative to species turnover is still lacking. We performed a reciprocal transplant experiment using a common herbaceous plant species (Oxalis montana) among low‐, mid‐, and high‐elevation sites to first quantify the contributions of plasticity and genetic differentiation in driving intraspecific variation in three traits: height, specific leaf area, and leaf area. We next compared the contributions of these intraspecific drivers of community trait–environment matching to that of species turnover, which had been previously assessed along the same elevational gradient. Plasticity was the dominant driver of intraspecific trait variation across elevation in all traits, with only a small contribution of genetic differentiation among populations. Local adaptation was not detected to a major extent along the gradient. Fitness components were greatest in O. montana plants with trait values closest to the local community‐weighted means, thus supporting the common assumption that community‐weighted mean trait values represent selective optima. Our results suggest that community‐level trait responses to ongoing climate change should be mostly mediated by species turnover, even at the small spatial scale of our study, with an especially small contribution of evolutionary adaptation within species.  相似文献   

6.
Genetic time‐series data from historical samples greatly facilitate inference of past population dynamics and species evolution. Yet, although climate and landscape change are often touted as post‐hoc explanations of biological change, our understanding of past climate and landscape change influences on evolutionary processes is severely hindered by the limited application of methods that directly relate environmental change to species dynamics through time. Increased integration of spatiotemporal environmental and genetic data will revolutionize the interpretation of environmental influences on past population processes and the quantification of recent anthropogenic impacts on species, and vastly improve prediction of species responses under future climate change scenarios, yielding widespread revelations across evolutionary biology, landscape ecology and conservation genetics. This review encourages greater use of spatiotemporal landscape genetic analyses that explicitly link landscape, climate and genetic data through time by providing an overview of analytical approaches for integrating historical genetic and environmental data in five key research areas: population genetic structure, demography, phylogeography, metapopulation connectivity and adaptation. We also include a tabular summary of key methodological information, suggest approaches for mitigating the particular difficulties in applying these techniques to ancient DNA and palaeoclimate data, and highlight areas for future methodological development.  相似文献   

7.
Climate change poses critical challenges for population persistence in natural communities, for agriculture and environmental sustainability, and for food security. In this review, we discuss recent progress in climatic adaptation in plants. We evaluate whether climate change exerts novel selection and disrupts local adaptation, whether gene flow can facilitate adaptive responses to climate change, and whether adaptive phenotypic plasticity could sustain populations in the short term. Furthermore, we discuss how climate change influences species interactions. Through a more in‐depth understanding of these eco‐evolutionary dynamics, we will increase our capacity to predict the adaptive potential of plants under climate change. In addition, we review studies that dissect the genetic basis of plant adaptation to climate change. Finally, we highlight key research gaps, ranging from validating gene function to elucidating molecular mechanisms, expanding research systems from model species to other natural species, testing the fitness consequences of alleles in natural environments, and designing multifactorial studies that more closely reflect the complex and interactive effects of multiple climate change factors. By leveraging interdisciplinary tools (e.g., cutting‐edge omics toolkits, novel ecological strategies, newly developed genome editing technology), researchers can more accurately predict the probability that species can persist through this rapid and intense period of environmental change, as well as cultivate crops to withstand climate change, and conserve biodiversity in natural systems.  相似文献   

8.
Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short‐term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well‐established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2‐adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment “high light” did not reveal such genetic divergence whereas growth in a low‐salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.  相似文献   

9.
It has been predicted that environmental changes will radically alter the selective pressures on phenological traits. Long‐lived species, such as trees, will be particularly affected, as they may need to undergo major adaptive change over only one or a few generations. The traits describing the annual life cycle of trees are generally highly evolvable, but nothing is known about the strength of their genetic correlations. Tight correlations can impose strong evolutionary constraints, potentially hampering the adaptation of multivariate phenological phenotypes. In this study, we investigated the evolutionary, genetic and environmental components of the timing of leaf unfolding and senescence within an oak metapopulation along an elevation gradient. Population divergence, estimated from in situ and common‐garden data, was compared to expectations under neutral evolution, based on microsatellite markers. This approach made it possible (1) to evaluate the influence of genetic correlation on multivariate local adaptation to elevation and (2) to identify traits probably exposed to past selective pressures due to the colder climate at high elevation. The genetic correlation was positive but very weak, indicating that genetic constraints did not shape the local adaptation pattern for leaf phenology. Both spring and fall (leaf unfolding and senescence, respectively) phenology timings were involved in local adaptation, but leaf unfolding was probably the trait most exposed to climate change‐induced selection. Our data indicated that genetic variation makes a much smaller contribution to adaptation than the considerable plastic variation displayed by a tree during its lifetime. The evolutionary potential of leaf phenology is, therefore, probably not the most critical aspect for short‐term population survival in a changing climate.  相似文献   

10.
Genetics, development and evolution of adaptive pigmentation in vertebrates   总被引:6,自引:0,他引:6  
Hoekstra HE 《Heredity》2006,97(3):222-234
The study of pigmentation has played an important role in the intersection of evolution, genetics, and developmental biology. Pigmentation's utility as a visible phenotypic marker has resulted in over 100 years of intense study of coat color mutations in laboratory mice, thereby creating an impressive list of candidate genes and an understanding of the developmental mechanisms responsible for the phenotypic effects. Variation in color and pigment patterning has also served as the focus of many classic studies of naturally occurring phenotypic variation in a wide variety of vertebrates, providing some of the most compelling cases for parallel and convergent evolution. Thus, the pigmentation model system holds much promise for understanding the nature of adaptation by linking genetic changes to variation in fitness-related traits. Here, I first discuss the historical role of pigmentation in genetics, development and evolutionary biology. I then discuss recent empirically based studies in vertebrates, which rely on these historical foundations to make connections between genotype and phenotype for ecologically important pigmentation traits. These studies provide insight into the evolutionary process by uncovering the genetic basis of adaptive traits and addressing such long-standing questions in evolutionary biology as (1) are adaptive changes predominantly caused by mutations in regulatory regions or coding regions? (2) is adaptation driven by the fixation of dominant mutations? and (3) to what extent are parallel phenotypic changes caused by similar genetic changes? It is clear that coloration has much to teach us about the molecular basis of organismal diversity, adaptation and the evolutionary process.  相似文献   

11.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   

12.
Climate change is imposing intensified and novel selection pressures on organisms by altering abiotic and biotic environmental conditions on Earth, but studies demonstrating genetic adaptation to climate change mediated selection are still scarce. Evidence is accumulating to indicate that both genetic and ecological constrains may often limit populations' abilities to adapt to large scale effects of climate warming. These constraints may predispose many organisms to respond to climate change with range shifts and phenotypic plasticity, rather than through evolutionary adaptation. In general, broad conclusions about the role of evolutionary adaptation in mitigating climate change induced fitness loss in the wild are as yet difficult to make. Editor's suggested further reading in BioEssays: How will fish that evolved at constant sub‐zero temperatures cope with global warming? Notothenioids as a case study Abstract  相似文献   

13.
Molecular ecology of global change   总被引:5,自引:2,他引:3  
Reusch TB  Wood TE 《Molecular ecology》2007,16(19):3973-3992
  相似文献   

14.
? Premise of the study: Wild relatives of crop species have long been viewed as an important genetic resource for crop improvement, but basic information about the population biology of these species is often lacking. This study investigated the population structure, demographic history, and evolutionary patterns of a green-fruited relative of the cultivated tomato, Solanum peruvianum. ? Methods: We investigated spatial genetics of S. peruvianum and screened for loci potentially under natural selection by integrating amplified fragment length polymorphism (AFLP) genotypes, phenotypic data, geography, and geographic information system (GIS)-derived climate data of 19 natural populations. ? Key results: Solanum peruvianum had a moderate degree of population differentiation, likely reflecting partial geographic isolation between species. Populations had a distribution pattern consistent with north-to-south "stepping-stone" dispersal with significant isolation by distance (IBD), similar to other tomato species. Several AFLP loci showed evidence of selection and associated with climate variables. However, phenotypic traits generally did not correlate with climate variables. ? Conclusions: Geographic features of the coastal Andes is likely an important factor that determines the migration pattern and population structure of S. peruvianum, but climatic factors do not appear to be critical for its phenotypic evolution, perhaps due to a high degree of phenotypic plasticity. Spatial genetics of wild relatives of crop species is a powerful approach to understand their evolutionary patterns and to accelerate the discovery of their potential for crop improvements.  相似文献   

15.
CONTENTS: Summary 752 I. Introduction 752 II. Will migration be enough? 753 III. Can adaptation proceed fast enough? 754 IV. Fitness links demographic and evolutionary processes 755 V. Experimental studies: what do they tell us and how can we improve them? 756 VI. Predicting evolutionary change based on genetic variation and natural selection 757 VII. The chronosequence approach 758 VIII. Resurrection of ancestral propagules 759 IX. The mean and variance in fitness, a link between genetics and demography 760 X. Conclusions 762 Acknowledgements 762 References 762 SUMMARY: Evolution proceeds unceasingly in all biological populations. It is clear that climate-driven evolution has molded plants in deep time and within extant populations. However, it is less certain whether adaptive evolution can proceed sufficiently rapidly to maintain the fitness and demographic stability of populations subjected to exceptionally rapid contemporary climate change. Here, we consider this question, drawing on current evidence on the rate of plant range shifts and the potential for an adaptive evolutionary response. We emphasize advances in understanding based on theoretical studies that model interacting evolutionary processes, and we provide an overview of quantitative genetic approaches that can parameterize these models to provide more meaningful predictions of the dynamic interplay between genetics, demography and evolution. We outline further research that can clarify both the adaptive potential of plant populations as climate continues to change and the role played by ongoing adaptation in their persistence.  相似文献   

16.
Abstract Understanding the mechanisms of adaptation to spatiotemporal environmental variation is a fundamental goal of evolutionary biology. This issue also has important implications for anticipating biological responses to contemporary climate warming and determining the processes by which invasive species are able to spread rapidly across broad geographic ranges. Here, we compare data from a historical study of latitudinal variation in photoperiodic response among Japanese and U.S. populations of the invasive Asian tiger mosquito Aedes albopictus with contemporary data obtained using comparable methods. Our results demonstrated rapid adaptive evolution of the photoperiodic response during invasion and range expansion across ~15° of latitude in the United States. In contrast to the photoperiodic response, size-based morphological traits implicated in climatic adaptation in a wide range of other insects did not show evidence of adaptive variation in Ae. albopictus across either the U.S. (invasive) or Japanese (native) range. These results show that photoperiodism has been an important adaptation to climatic variation across the U.S. range of Ae. albopictus and, in conjunction with previous studies, strongly implicate the photoperiodic control of seasonal development as a critical evolutionary response to ongoing contemporary climate change. These results also emphasize that photoperiodism warrants increased attention in studies of the evolution of invasive species.  相似文献   

17.
A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.  相似文献   

18.
Although the study of adaptation is central to biology, two types of adaptation are recognized in the biological field: physiological adaptation (accommodation or acclimation; an individual organism’s phenotype is adjusted to its environment) and evolutionary–biological adaptation (adaptation is shaped by natural selection acting on genetic variation). The history of the former concept dates to the late nineteenth and early twentieth centuries, and has more recently been systemized in the twenty-first century. Approaches to the understanding of phenotypic plasticity and learning behavior have only recently been developed, based on cellular–histological and behavioral–neurobiological techniques as well as traditional molecular biology. New developments of the former concepts in phenotypic plasticity are discussed in bacterial persistence, wing di-/polymorphism with transgenerational effects, polyphenism in social insects, and defense traits for predator avoidance, including molecular biology analyses. We also discuss new studies on the concept of genetic accommodation resulting in evolution of phenotypic plasticity through a transgenerational change in the reaction norm based on a threshold model. Learning behavior can also be understood as physiological phenotypic plasticity, associating with the brain–nervous system, and it drives the accelerated evolutionary change in behavioral response (the Baldwin effect) with memory stock. Furthermore, choice behaviors are widely seen in decision-making of animal foragers. Incorporating flexible phenotypic plasticity and learning behavior into modeling can drastically change dynamical behavior of the system. Unification of biological sciences will be facilitated and integrated, such as behavioral ecology and behavioral neurobiology in the area of learning, and evolutionary ecology and molecular developmental biology in the theme of phenotypic plasticity.  相似文献   

19.
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.  相似文献   

20.
Rare species present a challenge under changing environmental conditions as the genetic consequences of rarity may limit species ability to adapt to environmental change. To evaluate the evolutionary potential of a rare species, we assessed variation in traits important to plant fitness using multigenerational common garden experiments. Torrey pine, Pinus torreyana Parry, is one of the rarest pines in the world, restricted to one mainland and one island population. Morphological differentiation between island and mainland populations suggests adaptation to local environments may have contributed to trait variation. The distribution of phenotypic variances within the common garden suggests distinct population‐specific growth trajectories underlay genetic differences, with the island population exhibiting substantially reduced genetic variance for growth relative to the mainland population. Furthermore, F1 hybrids, representing a cross between mainland and island trees, exhibit increased height accumulation and fecundity relative to mainland and island parents. This may indicate genetic rescue via intraspecific hybridization could provide the necessary genetic variation to persist in environments modified as a result of climate change. Long‐term common garden experiments, such as these, provide invaluable resources to assess the distribution of genetic variance that may inform conservation strategies to preserve evolutionary potential of rare species, including genetic rescue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号