首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The long‐term effects of conservation management practices on greenhouse gas fluxes from tropical/subtropical croplands remain to be uncertain. Using both manual and automatic sampling chambers, we measured N2O and CH4 fluxes at a long‐term experimental site (1968–present) in Queensland, Australia from 2006 to 2009. Annual net greenhouse gas fluxes (NGGF) were calculated from the 3‐year mean N2O and CH4 fluxes and the long‐term soil organic carbon changes. N2O emissions exhibited clear daily, seasonal and interannual variations, highlighting the importance of whole‐year measurement over multiple years for obtaining temporally representative annual emissions. Averaged over 3 years, annual N2O emissions from the unfertilized and fertilized soils (90 kg N ha?1 yr?1 as urea) amounted to 138 and 902 g N ha?1, respectively. The average annual N2O emissions from the fertilized soil were 388 g N ha?1 lower under no‐till (NT) than under conventional tillage (CT) and 259 g N ha?1 higher under stubble retention (SR) than under stubble burning (SB). Annual N2O emissions from the unfertilized soil were similar between the contrasting tillage and stubble management practices. The average emission factors of fertilizer N were 0.91%, 1.20%, 0.52% and 0.77% for the CT‐SB, CT‐SR, NT‐SB and NT‐SR treatments, respectively. Annual CH4 fluxes from the soil were very small (?200–300 g CH4 ha?1 yr?1) with no significant difference between treatments. The NGGF were 277–350 kg CO2‐e ha?1 yr?1 for the unfertilized treatments and 401–710 kg CO2‐e ha?1 yr?1 for the fertilized treatments. Among the fertilized treatments, N2O emissions accounted for 52–97% of NGGF and NT‐SR resulted in the lowest NGGF (401 kg CO2‐e ha?1 yr?1 or 140 kg CO2‐e t?1 grain). Therefore, NT‐SR with improved N fertilizer management practices was considered the most promising management regime for simultaneously achieving maximal yield and minimal NGGF.  相似文献   

2.
Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long‐term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.3 Mg C ha?1 and N stocks by 1.94 ± 0.63 Mg N ha?1 compared to nonmanured fields (0–20 cm depth). Long‐term historical (1700–present) and future (present–2100) impacts of management on soil C and N dynamics, net primary productivity (NPP), and GHG emissions were modeled with DayCent. Modeled total soil C and N stocks increased with the onset of dairying. Nitrous oxide (N2O) emissions also increased by ~2 kg N2O‐N ha?1 yr?1. These emissions were proportional to total N additions and offset 75–100% of soil C sequestration. All fields were small net methane (CH4) sinks, averaging ?4.7 ± 1.2 kg CH4‐C ha?1 yr?1. Overall, manured fields were net GHG sinks between 1954 and 2011 (?0.74 ± 0.73 Mg CO2 e ha?1 yr?1, CO2e are carbon dioxide equivalents), whereas nonmanured fields varied around zero. Future soil C pools stabilized 40–60 years faster in manured fields than nonmanured fields, at which point manured fields were significantly larger sources than nonmanured fields (1.45 ± 0.52 Mg CO2e ha?1 yr?1 and 0.51 ± 0.60 Mg CO2e ha?1 yr?1, respectively). Modeling also revealed a large background loss of soil C from the passive soil pool associated with the shift from perennial to annual grasses, equivalent to 29.4 ± 1.47 Tg CO2e in California between 1820 and 2011. Manure applications increased NPP and soil C storage, but plant community changes and GHG emissions decreased, and eventually eliminated, the net climate benefit of this practice.  相似文献   

3.
Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long‐term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N2O) and methane (CH4) fluxes and SOC changes (ΔSOC) at a long‐term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha?1 yr?1, respectively) under no‐till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N2O and CH4 fluxes were measured for five crop‐years (2011–2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area‐ and yield‐scaled soil N2O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH4 neutral and CT a CH4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long‐term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface SOC stocks.  相似文献   

4.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

5.
Oilseed rape (OSR, Brassica napus L.) is an important feedstock for biodiesel; hence, carbon dioxide (CO2), methane (CH4) and particularly fertilizer‐derived nitrous oxide (N2O) emissions during cultivation must be quantified to assess putative greenhouse gas (GHG) savings, thus creating an urgent and increasing need for such data. Substrates of nitrification [ammonium (NH4)] and denitrification [nitrate (NO3)], the predominant N2O production pathways, were supplied separately and in combination to OSR in a UK field trial aiming to: (i) produce an accurate GHG budget of fertilizer application; (ii) characterize short‐ to medium‐term variation in GHG fluxes; (iii) establish the processes driving N2O emission. Three treatments were applied twice, 1 week apart: ammonium nitrate fertilizer (NH4NO3, 69 kg‐N ha?1) mimicking the farm management, ammonium chloride (NH4Cl, 34.4 kg‐N ha?1) and sodium nitrate (NaNO3, 34.6 kg‐N ha?1). We deployed SkyLine2D for the very first time, a novel automated chamber system to measure CO2, CH4 and N2O fluxes at unprecedented high temporal and spatial resolution from OSR. During 3 weeks following the fertilizer application, CH4 fluxes were negligible, but all treatments were a net sink for CO2 (ca. 100 g CO2 m?2). Cumulative N2O emissions (ca. 120 g CO2‐eq m?2) from NH4NO3 were significantly greater (P < 0.04) than from NaNO3 (ca. 80 g CO2‐eq m?2), but did not differ from NH4Cl (ca. 100 g CO2‐eq m?2) and reduced the carbon sink of photosynthesis so that OSR was a net GHG source in the fertilizer treatment. Diurnal variation in N2O emissions, peaking in the afternoon, was more strongly associated with photosynthetically active radiation (PAR) than temperature. This suggests that the supply of carbon (C) from photosynthate may have been the key driver of the observed diurnal pattern in N2O emission and thus should be considered in future process‐based models of GHG emissions.  相似文献   

6.

Background and aims

The effects of tillage and N fertilization on CO2 and CH4 emissions are a cause for concern worldwide. This paper quantifies these effects in a Mediterranean dryland area.

Methods

CO2 and CH4 fluxes were measured in two field experiments. A long-term experiment compared two types of tillage (NT, no-tillage, and CT, conventional intensive tillage) and three N fertilization rates (0, 60 and 120 kg N ha?1). A short-term experiment compared NT and CT, three N fertilization doses (0, 75 and 150 kg N ha?1) and two types of fertilizer (mineral N and organic N with pig slurry). Aboveground and root biomass C inputs, soil organic carbon stocks and grain yield were also quantified.

Results

The NT treatment showed a greater mean CO2 flux than the CT treatment in both experiments. In the long-term experiment CH4 oxidation was greater under NT, whereas in the short-term experiment it was greater under CT. The fertilization treatments also affected CO2 emissions in the short-term experiment, with the greatest fluxes when 75 and 150 kg organic N ha?1 was applied. Overall, the amount of CO2 emitted ranged between 0.47 and 6.0 kg CO2?equivalent kg grain?1. NT lowered yield-scaled emissions in both experiments, but these treatment effects were largely driven by an increase in grain yield.

Conclusions

In dryland Mediterranean agroecosystems the combination of NT and medium rates of either mineral or organic N fertilization can be an appropriate strategy for optimizing CO2 and CH4 emissions and grain yield.  相似文献   

7.
Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site‐averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2‐eq. ha?1 yr?1) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2 ha?1 yr?1) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2O‐N ha?1 yr?1) and methane emissions (30.8 ± 69.8 kg CH4‐C ha?1 yr?1) were lower than expected except for CH4 emissions from nutrient‐poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.  相似文献   

8.
The temporal variations in CO2, CH4 and N2O fluxes were measured over two consecutive years from February 2007 to March 2009 from a subtropical rainforest in south‐eastern Queensland, Australia, using an automated sampling system. A concurrent study using an additional 30 manual chambers examined the spatial variability of emissions distributed across three nearby remnant rainforest sites with similar vegetation and climatic conditions. Interannual variation in fluxes of all gases over the 2 years was minimal, despite large discrepancies in rainfall, whereas a pronounced seasonal variation could only be observed for CO2 fluxes. High infiltration, drainage and subsequent high soil aeration under the rainforest limited N2O loss while promoting substantial CH4 uptake. The average annual N2O loss of 0.5 ± 0.1 kg N2O‐N ha?1 over the 2‐year measurement period was at the lower end of reported fluxes from rainforest soils. The rainforest soil functioned as a sink for atmospheric CH4 throughout the entire 2‐year period, despite periods of substantial rainfall. A clear linear correlation between soil moisture and CH4 uptake was found. Rates of uptake ranged from greater than 15 g CH4‐C ha?1 day?1 during extended dry periods to less than 2–5 g CH4‐C ha?1 day?1 when soil water content was high. The calculated annual CH4 uptake at the site was 3.65 kg CH4‐C ha?1 yr?1. This is amongst the highest reported for rainforest systems, reiterating the ability of aerated subtropical rainforests to act as substantial sinks of CH4. The spatial study showed N2O fluxes almost eight times higher, and CH4 uptake reduced by over one‐third, as clay content of the rainforest soil increased from 12% to more than 23%. This demonstrates that for some rainforest ecosystems, soil texture and related water infiltration and drainage capacity constraints may play a more important role in controlling fluxes than either vegetation or seasonal variability.  相似文献   

9.
There is a growing need for all productive sectors to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. However, the challenge to the agricultural sector is reducing net emissions while increasing production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance when sugarcane areas are converted from burned harvest (BH) to green harvest (GH, mechanized harvest), including the changes caused by the adoption of conservationist practices such as reduced tillage and a 4‐month crop rotation with Crotalaria juncea L. during sugarcane replanting. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) methodologies, the annual emission balance includes both agricultural and mobile sources of GHG, according to the mean annual consumption of supplies per hectare. The potential soil carbon accumulation was also considered in the GH plot. The total amounts of GHG were 2651.9 and 2316.4 kg CO2eq ha?1 yr?1 for BH and GH, respectively. Factoring in a mean annual soil carbon accumulation rate of 888.1 kg CO2 ha?1 yr?1 due to the input from long‐term crop residues associated with the conversion from BH to GH, the emission balance in GH decreased to 1428.3 kg CO2eq ha?1 yr?1. A second decrease occurs when a reduced tillage strategy is adopted instead of conventional tillage during the replanting season in the GH plot, which helps reduce the total emission balance to 1180.3 kg CO2eq ha?1 yr?1. Moreover, the conversion of sugarcane from BH to GH, with the adoption of a crop rotation with Crotalaria juncea L. as well as reduced tillage during sugarcane replanting, would result in a smaller GHG balance of 1064.6 kg CO2eq ha?1 yr?1, providing an effect strategy for GHG mitigation while still providing cleaner sugar and ethanol production in southern Brazil.  相似文献   

10.
The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast‐growing biomass crops across Europe. These are commonly cultivated as short‐rotation coppice (SRC), and currently poplar (Populus spp.) is the most widely planted. In this study, we report the greenhouse gas (GHG) fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) measured using eddy covariance technique in an SRC plantation for bioenergy production. Measurements were made during the period 2010–2013, that is, during the first two rotations of the SRC. The overall GHG balance of the 4 years of the study was an emission of 1.90 (±1.37) Mg CO2eq ha?1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O contributed almost equally to offset the CO2 uptake of ?5.28 (±0.67) Mg CO2eq ha?1 with an overall emission of 3.56 (±0.35) Mg CO2eq ha?1 of N2O and of 3.53 (±0.85) Mg CO2eq ha?1 of CH4. N2O emissions mostly occurred during one single peak a few months after the site was converted to SRC; this peak comprised 44% of the total N2O loss during the two rotations. Accurately capturing emission events proved to be critical for deriving correct estimates of the GHG balance. The nitrogen (N) content of the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4, respectively. This study underlines the importance of the ‘non‐CO2 GHGs’ on the overall balance. Further long‐term investigations of soil trace gas emissions should monitor the N content and the mineralization rate of the soil, as well as the microbial community, as drivers of the trace gas emissions.  相似文献   

11.
Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha?1 for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57–505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (< 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha?1 in open water, bare tidal flat and S. salsa marsh, respectively, compared with ‐0.51 kg N2O ha?1 for S. alterniflora marsh and ?0.25 kg N2O ha?1 for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha?1 yr?1 in the top 100 cm soil profile, a value that was 2.63‐ to 8.78‐fold higher than in native plant marshes. The estimated GWP was 1.78, ?0.60, ?4.09, and ?1.14 Mg CO2eq ha?1 yr?1 in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to ?11.30 Mg CO2eq ha?1 yr?1 in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China.  相似文献   

12.
In this study, we quantify the impacts of climate and land use on soil N2O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land‐use gradients at Mt. Kilimanjaro, combining long‐term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2O and CH4 respectively. N2O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2O emissions of tropical montane forests were generally low (<1.2 kg N ha?1 year?1), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha?1 year?1). Forest soils with well‐aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha?1 year?1) regardless of low mean annual temperatures at higher elevations. Land‐use intensification significantly increased the soil N2O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non‐CO2 GHG emissions following land‐use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land‐use change.  相似文献   

13.
The magnitude, temporal, and spatial patterns of soil‐atmospheric greenhouse gas (hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil‐atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2, N2O, and CH4 fluxes (mean±SD) were 7.7±4.6 Mg CO2‐C ha?1 yr?1, 3.2±1.2 kg N2O‐N ha?1 yr?1, and 3.4±0.9 kg CH4‐C ha?1 yr?1, respectively. The climate was warm and wet from April through September 2003 (the hot‐humid season) and became cool and dry from October 2003 through March 2004 (the cool‐dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot‐humid season and low rates in the cool‐dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool‐dry season and higher N2O emission rates were often observed in the hot‐humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17–44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer.  相似文献   

14.
As a controversial strategy to mitigate global warming, biochar application into soil highlights the need for life cycle assessment before large‐scale practice. This study focused on the effect of biochar on carbon footprint of rice production. A field experiment was performed with three treatments: no residue amendment (Control), 6 t ha?1 yr?1 corn straw (CS) amendment, and 2.4 t ha?1 yr?1 corn straw‐derived biochar amendment (CBC). Carbon footprint was calculated by considering carbon source processes (pyrolysis energy cost, fertilizer and pesticide input, farmwork, and soil greenhouse gas emissions) and carbon sink processes (soil carbon increment and energy offset from pyrolytic gas). On average over three consecutive rice‐growing cycles from year 2011 to 2013, the CS treatment had a much higher carbon intensity of rice (0.68 kg CO2‐C equivalent (CO2‐Ce) kg?1 grain) than that of Control (0.24 kg CO2‐Ckg?1 grain), resulting from large soil CH4 emissions. Biochar amendment significantly increased soil carbon pool and showed no significant effect on soil total N2O and CH4 emissions relative to Control; however, due to a variation in net electric energy input of biochar production based on different pyrolysis settings, carbon intensity of rice under CBC treatment ranged from 0.04 to 0.44 kg CO2‐Ckg?1 grain. The results indicated that biochar strategy had the potential to significantly reduce the carbon footprint of crop production, but the energy‐efficient pyrolysis technique does matter.  相似文献   

15.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

16.
The objective of this study was to quantify soil methane (CH4) and nitrous oxide (N2O) emissions when converting from minimum and no-tillage systems to subsoiling (tilled soil to a depth of 40 cm to 45 cm) in the North China Plain. The relationships between CH4 and N2O flux and soil temperature, moisture, NH4 +-N, organic carbon (SOC) and pH were investigated over 18 months using a split-plot design. The soil absorption of CH4 appeared to increase after conversion from no-tillage (NT) to subsoiling (NTS), from harrow tillage (HT) to subsoiling (HTS) and from rotary tillage (RT) to subsoiling (RTS). N2O emissions also increased after conversion. Furthermore, after conversion to subsoiling, the combined global warming potential (GWP) of CH4 and N2O increased by approximately 0.05 kg CO2 ha−1 for HTS, 0.02 kg CO2 ha−1 for RTS and 0.23 kg CO2 ha−1 for NTS. Soil temperature, moisture, SOC, NH4 +-N and pH also changed after conversion to subsoiling. These changes were correlated with CH4 uptake and N2O emissions. However, there was no significant correlation between N2O emissions and soil temperature in this study. The grain yields of wheat improved after conversion to subsoiling. Under HTS, RTS and NTS, the average grain yield was elevated by approximately 42.5%, 27.8% and 60.3% respectively. Our findings indicate that RTS and HTS would be ideal rotation tillage systems to balance GWP decreases and grain yield improvements in the North China Plain region.  相似文献   

17.
Croplands mainly act as net sources of the greenhouse gases carbon dioxide (CO2) and nitrous oxide (N2O), as well as nitrogen oxide (NO), a precursor of troposheric ozone. We determined the carbon (C) and nitrogen (N) balance of a four-year crop rotation, including maize, wheat, barley and mustard, to provide a base for exploring mitigation options of net emissions. The crop rotation had a positive net ecosystem production (NEP) of 4.4?±?0.7 Mg C ha-1 y-1 but represented a net source of carbon with a net biome production (NBP) of -1.3?±?1.1 Mg C?ha-1 y-1. The nitrogen balance of the rotation was correlated with the carbon balance and resulted in net loss (?24?±?28 kg N ha-1 y-1). The main nitrogen losses were nitrate leaching (?11.7?±1.0 kg N ha-1 y-1) and ammonia volatilization (?9 kg N ha-1 y-1). Dry and wet depositions were 6.7?±?3.0 and 5.9?±0.1 kg N ha-1 y-1, respectively. Fluxes of nitrous (N2O) and nitric (NO) oxides did not contribute significantly to the N budget (N2O: -1.8?±?0.04; NO: -0.7?±?0.04 kg N ha-1 y-1) but N2O fluxes equaled 16% of the total greenhouse gas balance. The link between the carbon and nitrogen balances are discussed. Longer term experiments would be necessary to capture the trends in the carbon and nitrogen budgets within the variability of agricultural ecosystems.  相似文献   

18.
Short‐rotation woody biomass crops (SRWC) have been proposed as a major feedstock source for bioenergy generation in the Northeastern US. To quantify the environmental effects and greenhouse gas (GHG) balance of crops including SRWC, investigators need spatially explicit data which encompass entire plantation cycles. A knowledge gap exists for the establishment period which makes current GHG calculations incomplete. In this study, we investigated the effects of converting pasture and hayfields to willow (Salix spp.) and hybrid‐poplar (Populus spp.) SRWC plantations on soil nitrogen (N) cycling, nitrous oxide (N2O) emissions, and nitrate (NO3?) leaching at six sites of varying soil and climate conditions across northern Michigan and Wisconsin, following these plantations from pre conversion through their first 2 years. All six sites responded to establishment with increased N2O emissions, available inorganic N, and, where it was measured, NO3? leaching; however, the magnitude of these impacts varied dramatically among sites. Soil NO3? levels varied threefold among sites, with peak extractable NO3? concentrations ranging from 15 to 49 g N kg?1 soil. Leaching losses were significant and persisted through the second year, with 44–112 kg N ha?1 leached in SRWC plots. N2O emissions in the first growing season varied 30‐fold among sites, from 0.5 to 17.0 Mg‐CO2eq ha?1 (carbon dioxide equivalents). N2O emissions over 2 years resulted in N2O emissions due to plantation establishment that ranged from 0.60 to 22.14 Mg‐CO2eq ha?1 above baseline control levels across sites. The large N losses we document herein demonstrate the importance of including direct effects of land conversion in life‐cycle analysis (LCA) studies of SRWC GHG balance. Our results also demonstrate the need for better estimation of spatial variability of N cycling processes to quantify the full environmental impacts of SRWC plantations.  相似文献   

19.
New management strategies should be identified to increase the potential of bioenergy crops to minimize climate change. This study quantified the impact of sugarcane (Saccharum spp.) harvest systems, straw and soil management on carbon dioxide (CO2) fluxes prior to crop replanting carried out on February 2010 in southern Brazil. The soil studied was classified as Haplustult (USDA Soil Taxonomy). Three sugarcane harvest systems were considered: burned (BH) and green harvest with straw maintained on (GH SM) or removed from (GH SR) the soil surface. Our hypothesis is that intensive tillage and the management of sugarcane crop straw could lead to higher CO2 emissions from soil. We measured CO2 emissions in no‐till (NT) conditions and after conventional tillage (CT), and with or without dolomite and agricultural gypsum applications. Soil CO2 emissions were measured with a Li Cor chamber (Model Li‐8100). Water content of soil and soil temperature readings were first taken 24 h after tillage, over the next 25 days after tillage with 18 measurement days. The removal of sugarcane straw from the soil surface resulted in the rapid reduction of water content of soil (6% in volume) followed by a 64% increase in soil CO2‐C emissions, supporting our hypothesis. Additional soil CO2‐C emissions caused by removal of crop straw were 253 kg CO2‐C ha?1, which is as high as CO2‐C losses induced by tillage. Dolomite and agricultural gypsum applications did not always increase CO2 emissions, especially when applied on soil surface with crop straw and tilled. The conversion from burned to green harvest systems can improve the soil C sequestration rate in sugarcane crops when combined with reduced tillage and straw maintenance on soil surface. The effect of straw removal and related CO2 emission for electricity generation should be considered in further studies from sugarcane areas.  相似文献   

20.
No‐tillage (NT), a practice that has been shown to increase carbon sequestration in soils, has resulted in contradictory effects on nitrous oxide (N2O) emissions. Moreover, it is not clear how mitigation practices for N2O emission reduction, such as applying nitrogen (N) fertilizer according to soil N reserves and matching the time of application to crop uptake, interact with NT practices. N2O fluxes from two management systems [conventional (CP), and best management practices: NT + reduced fertilizer (BMP)] applied to a corn (Zea mays L.), soybean (Glycine max L.), winter‐wheat (Triticum aestivum L.) rotation in Ontario, Canada, were measured from January 2000 to April 2005, using a micrometeorological method. The superimposition of interannual variability of weather and management resulted in mean monthly N2O fluxes ranging from − 1.9 to 61.3 g N ha−1 day−1. Mean annual N2O emissions over the 5‐year period decreased significantly by 0.79 from 2.19 kg N ha−1 for CP to 1.41 kg N ha−1 for BMP. Growing season (May–October) N2O emissions were reduced on average by 0.16 kg N ha−1 (20% of total reduction), and this decrease only occurred in the corn year of the rotation. Nongrowing season (November–April) emissions, comprised between 30% and 90% of the annual emissions, mostly due to increased N2O fluxes during soil thawing. These emissions were well correlated (r2= 0.90) to the accumulated degree‐hours below 0 °C at 5 cm depth, a measure of duration and intensity of soil freezing. Soil management in BMP (NT) significantly reduced N2O emissions during thaw (80% of total reduction) by reducing soil freezing due to the insulating effects of the larger snow cover plus corn and wheat residue during winter. In conclusion, significant reductions in net greenhouse gas emissions can be obtained when NT is combined with a strategy that matches N application rate and timing to crop needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号