首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kabir AH  Paltridge NG  Able AJ  Paull JG  Stangoulis JC 《Planta》2012,235(6):1409-1419
Iron (Fe)-deficiency is a common abiotic stress in Pisum sativum L. grown in many parts of the world. The aim of the study was to investigate variation in tolerance to Fe deficiency in two pea genotypes, Santi (Fe-efficient) and Parafield (Fe-inefficient). Fe deficiency caused greater declines in chlorophyll score, leaf Fe concentration and root-shoot development in Parafield compared to Santi, suggesting greater Fe-efficiency in Santi. Fe chelate reductase activity and ethylene production were increased in the roots of Santi and to a lesser extent in Parafield under Fe deficiency, while proton extrusion was only occurred in Santi. Moreover, expression of the Fe chelate reductase gene, FRO1, and Fe transporter, RIT1 were upregulated in Fe-deficient roots of Santi. Expression of HA1 (proton extrusion) was also significantly higher in Santi when compared to Parafield grown in Fe-deficient conditions. Furthermore, the application of the ethylene biosynthesis inhibitor, 1-aminoisobutyric acid reduced the Fe chelate reductase activity, supporting a direct role for ethylene in its induction. A significant increase in root citrate was only observed in Santi under Fe deficiency indicating a role for citrate in the Fe-efficiency mechanism. Taken together, our physiological and molecular data indicate that genotypic variation in tolerance to Fe deficiency in Santi and Parafield plants is a result of variation in a number of Strategy I mechanisms and also suggest a direct role for ethylene in Fe reductase activity. The pea cultivar, Santi provides a new source of Fe-efficiency that can be exploited to breed more Fe-efficient peas.  相似文献   

2.
Iron is a critical cofactor for a number of metalloenzymes involved in respiration and photosynthesis, but plants often suffer from iron deficiency due to limited supplies of soluble iron in the soil. Iron deficiency induces a series of adaptive responses in various plant species, but the mechanisms by which they are triggered remain largely unknown. Using pH imaging and hormone localization techniques, it has been demonstrated here that root Fe(III) reductase activity and proton extrusion upon iron deficiency are up-regulated by systemic auxin signalling in a Fe-efficient woody plant, Malus xiaojinensis. Split-root experiments demonstrated that Fe-deprivation in a portion of the root system induced a dramatic increase in Fe(III) reductase activity and proton extrusion in the Fe-supplied portion, suggesting that the iron deficiency responses were mediated by a systemic signalling. Reciprocal grafting experiments of M. xiaojinensis with Malus baccata, a plant with no capability to produce the corresponding responses, indicate that the initiation of the systemic signalling is likely to be determined by roots rather than shoots. Iron deficiency induced a substantial increase in the IAA content in the shoot apex and supplying exogenous IAA analogues (NAA) to the shoot apex could mimic the iron deficiency to trigger the corresponding responses. Conversely, preventing IAA transport from shoot to roots blocked the iron deficiency responses. These results strongly indicate that the iron deficiency-induced physiological responses are mediated by systemic auxin signalling.  相似文献   

3.
There is increasing evidence that Cu deficiency can induce root reductase activity, but the ecological and physiological significance of this is unknown. This study compared the characteristics of root reductase activity induced by Cu deficiency with those induced by Fe deficiency in red clover (Trifolium pratenseL. cv. Kenland), a Fe-efficient plant. Effects of other nutritional stresses were also investigated for comparison. Compared with the effect of Fe deficiency, Cu deficiency induced only a moderate level of root reductase activity, while other nutrient stresses had no effect, or even inhibited the root reductases activity, especially in the case of Zn deficiency. Compared with Fe deficiency-induced Fe(III)-chelate reductase, Cu deficiency-induced reductase displayed a different pattern of induction. The activity of the Cu deficiency-induced reductase in intact plants increased with time; in decapitated plants it showed a distinct peak at a later stage of the treatment. The Fe concentration in the roots was significantly increased under Cu deficiency. Furthermore, the reductase activity was presented in the entire root system, contrary to what was observed for the Fe-deficiency-induced reductase activity, which was confined to the root apex. Cu deficiency did not increase proton extrusion from the roots, even when growth was significantly affected. The present results suggest that in red clover Cu deficiency induces a root reductase that is different from the reductase induced by Fe deficiency.  相似文献   

4.
Our study aimed to evaluate intraspecific variability of pea (Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.  相似文献   

5.
The effects of Fe deficiency on different metabolic processes were characterized in roots, xylem sap and leaves of tomato. The total organic acid pool increased significantly with Fe deficiency in xylem sap and leaves of tomato plants, whereas it did not change in roots. However, the composition of the pool changed with Fe deficiency, with major increases in citrate concentrations in roots (20-fold), leaves (2-fold) and xylem sap (17-fold). The activity of phosphoenolpyruvate carboxylase, an enzyme leading to anaplerotic C fixation, increased 10-fold in root tip extracts with Fe deficiency, whereas no change was observed in leaf extracts. The activities of the organic acid synthesis-related enzymes malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, fumarase and aconitase, as well as those of the enzymes lactate dehydrogenase and pyruvate carboxylase, increased with Fe deficiency in root extracts, whereas only citrate synthase increased significantly with Fe deficiency in leaf extracts. These results suggest that the enhanced C fixation capacity in Fe-deficient tomato roots may result in producing citrate that could be used for Fe xylem transport. Total pyridine nucleotide pools did not change significantly with Fe deficiency in roots or leaves, although NAD(P)H/NAD(P) ratios were lower in Fe-deficient roots than in controls. Rates of O(2) consumption were similar in Fe-deficient and Fe-sufficient roots, but the capacity of the alternative oxidase pathway was decreased by Fe deficiency. Also, increases in Fe reductase activity with Fe deficiency were only 2-fold higher when measured in tomato root tips. These values are significantly lower than those found in other plant species, where Fe deficiency leads to larger increases in organic acid synthesis-related enzyme activities and flavin accumulation. These data support the hypothesis that the extent of activation of different metabolic pathways, including carbon fixation via PEPC, organic acid synthesis-related enzymes and oxygen consumption is different among species, and this could modulate the different levels of efficiency in Strategy I plants.  相似文献   

6.
Rengel  Z.  Römheld  V. 《Plant and Soil》2000,222(1-2):25-34
Tolerance to Zn deficiency in wheat germplasm may be inversely related to uptake and transport of Fe to shoots. The present study examined eight bread (Triticum aestivum) and two durum (T. turgidum L. conv. durum) wheat genotypes for their capacity to take up and transport Fe when grown under either Fe or Zn deficiency. Bread wheat genotypes Aroona, Excalibur and Stilleto showed tolerance to Zn and Fe deficiency, while durum wheat genotypes are clearly less tolerant to either deficiency. Roots of bread wheats tolerant to Zn deficiency exuded more phytosiderophores than sensitive bread and durum genotypes. Greater amounts of phytosideophores were exuded by roots grown under Fe than Zn deficiency. A relatively poor relationship existed between phytosiderophore exudation or the Fe uptake rate and relative shoot growth under Fe deficiency. At advanced stages of Zn deficiency, genotypes tolerant to Zn deficiency (Aroona and Stilleto) had a greater rate of Fe uptake than other genotypes. Zinc deficiency depressed the rate of Fe transport to shoots in all genotypes in early stages, while advanced Zn deficiency had the opposite effect. Compared with Zn-sufficient plants, 17-day-old Zn-deficient plants of genotypes tolerant to Zn deficiency had a lower rate of Fe transport to shoots, while genotypes sensitive to Zn deficiency (Durati, Yallaroi) had the Fe transport rate increased by Zn deficiency. A proportion of total amount of Fe taken up that was transported to shoots increased with duration of either Fe or Zn deficiency. It is concluded that greater tolerance to Zn deficiency among wheat genotypes is associated with the increased exudation of phytosiderophores, an increased Fe uptake rate and decreased transport of Fe to shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Chromium (Cr) is very toxic to both humans and plants. This investigation aimed to understand the physiological and molecular responses of rice seedlings to Cr stress. Cr toxicity did not significantly affect morphological features and Cr accumulation in roots and shoots in Pokkali but not in BRRI 51, although there was a reduction in chlorophyll concentration in leaves of both genotypes. These results imply that Pokkali has mechanisms to cope with Cr supplementation. We therefore performed quantitative real‐time PCR on the expression pattern of two chelator genes, OsPCS1 and OsMT1, but there were no significant changes in expression in roots and shoots of Pokkali and BRRI 51 following Cr stress. This suggests that there was no metal sequestration following heavy metal stress in roots of these genotypes. Moreover, no expression of two heavy metal transporter genes, OsHMA3 and OsNRAMP1, was induced after Cr stress in roots and shoots, suggesting that these transporter genes are not induced by Cr stress or might not be involved in Cr uptake in rice. We also performed a targeted study on the effect of Cr on Fe uptake mechanisms. Our studies showed a consistent reduction in Fe uptake, Fe reductase activity and expression of Fe‐related genes (OsFRO1 and OsIRT1) under Cr stress in both roots and leaves of Pokkali. In contrast, these parameters and genes were significantly increased in Cr‐sensitive BRRI 51 under Cr stress. The results confirm that limiting Fe uptake through the down‐regulation of Fe reductase and Fe transporter genes is the main strategy of Cr‐tolerant Pokkali to cope with Cr stress. Finally, increased CAT, POD and GR activity and elevated glutathione and proline synthesis might provide strong antioxidant defence against Cr stress in Pokkali. Taken together, our findings reveal that Cr stress tolerance in rice (Pokkali) is not related to metal sequestration but is associated with reduced Fe transport and increased antioxidant defence.  相似文献   

8.
To elucidate the mechanism of adaptation of leguminous plants to iron (Fe)‐deficient environment, comprehensive analyses of soybean (Glycine max) plants (sampled at anthesis) were conducted under Fe‐sufficient control and Fe‐deficient treatment using metabolomic and physiological approach. Our results show that soybeans grown under Fe‐deficient conditions showed lower nitrogen (N) fixation efficiency; however, ureides increased in different tissues, indicating potential N‐feedback inhibition. N assimilation was inhibited as observed in the repressed amino acids biosynthesis and reduced proteins in roots and nodules. In Fe‐deficient leaves, many amino acids increased, accompanied by the reduction of malate, fumarate, succinate, and α‐ketoglutarate, which implies the N reprogramming was stimulated by the anaplerotic pathway. Accordingly, many organic acids increased in roots and nodules; however, enzymes involved in the related metabolic pathway (e.g., Krebs cycle) showed opposite activity between roots and nodules, indicative of different mechanisms. Sugars increased or maintained at constant level in different tissues under Fe deficiency, which probably relates to oxidative stress, cell wall damage, and feedback regulation. Increased ascorbate, nicotinate, raffinose, galactinol, and proline in different tissues possibly helped resist the oxidative stress induced by Fe deficiency. Overall, Fe deficiency induced the coordinated metabolic reprogramming in different tissues of symbiotic soybean plants.  相似文献   

9.
Jin CW  You GY  He YF  Tang C  Wu P  Zheng SJ 《Plant physiology》2007,144(1):278-285
Phenolic compounds are frequently reported to be the main components of root exudates in response to iron (Fe) deficiency in Strategy I plants, but relatively little is known about their function. Here, we show that removal of secreted phenolics from the root-bathing solution almost completely inhibited the reutilization of apoplastic Fe in roots of red clover (Trifolium pratense). This resulted in much lower levels of shoot Fe and significantly higher root Fe compared with control and also resulted in leaf chlorosis, suggesting this approach stimulated Fe deficiency. This was supported by the observation that phenolic removal significantly enhanced root ferric chelate reductase activity, which is normally induced by plant Fe deficiency. Furthermore, root proton extrusion, which also is normally increased during Fe deficiency, was found to be higher in plants exposed to the phenolic removal treatment too. These results indicate that Fe deficiency-induced phenolics secretion plays an important role in the reutilization of root apoplastic Fe, and this reutilization is not mediated by proton extrusion or the root ferric chelate reductase. In vitro studies with extracted root cell walls further demonstrate that excreted phenolics efficiently desorbed a significant amount of Fe from cell walls, indicating a direct involvement of phenolics in Fe remobilization. All of these results constitute the first direct experimental evidence, to our knowledge, that Fe deficiency-induced secretion of phenolics by the roots of a dicot species improves plant Fe nutrition by enhancing reutilization of apoplastic Fe, thereby improving Fe nutrition in the shoot.  相似文献   

10.
Abdelmajid Krouma 《Phyton》2023,92(7):2133-2150
Iron is an essential element for plants as well as all living organisms, functioning in various physiological and biochemical processes such as photosynthesis, respiration, DNA synthesis, and N2 fixation. In the soil, Fe bioavailability is extremely low, especially under aerobic conditions and at high pH ranges. In contrast, plants with nodules on their roots that fix atmospheric nitrogen need much more iron. To highlight the physiological traits underlying the tolerance of N2-fixing common bean to iron deficiency, two genotypes were hydroponically cultivated in a greenhouse: Coco nain (CN) and Coco blanc (CB). Plants were inoculated with an efficient strain of Rhizobium tropici, CIAT899, and received a nutrient solution added with 0 µM Fe (severe Fe deficiency, SFeD), 5 µM Fe (moderate Fe deficiency, MFeD) or 45 µM Fe (control, C). Several physiological parameters related to photosynthesis and symbiotic nitrogen fixation were then analyzed. Iron deficiency significantly reduced whole plant and nodule growth, chlorophyll biosynthesis, photosynthesis, leghemoglobin (LgHb), nitrogenase (N2ase) activity, nitrogen, and Fe nutrition, with some genotypic differences. As compared to CB, CN maintained better Fe allocation to shoots and nodules, allowing it to preserve the integrity of its photosynthetic and symbiotic apparatus, thus maintaining the key functional traits of the plant metabolism (chlorophyll biosynthesis and photosynthesis in shoots, leghemoglobin accumulation, and nitrogenase activity in root nodules). Plant growth depends on photosynthesis, which needs to be supplied with sufficient iron and nitrogen. Fe deficiency stress index (FeD-SI) and Fe use efficiency (FeUE) are two physiological traits of tolerance that discriminated the studied genotypes.  相似文献   

11.
12.
Induction of ferric reductase activity in dicots and nongrass monocots is a well-recognized response to Fe deficiency. Recent evidence has shown that Cu deficiency also induces plasma membrane Fe reduction. In this study we investigated whether other nutrient deficiencies could also induce ferric reductase activity in roots of pea (Pisum sativum L. cv Sparkle) seedlings. Of the nutrient deficiencies tested (K, Mg, Ca, Mn, Zn, Fe, and Cu), only Cu and Fe deficiencies elicited a response. Cu deficiency induced an activity intermediate between Fe-deficient and control plant activities. To ascertain whether the same reductase is induced by Fe and Cu deficiency, concentration- and pH-dependent kinetics of root ferric reduction were compared in plants grown under control, -Fe, and -Cu conditions. Additionally, rhizosphere acidification, another process induced by Fe deficiency, was quantified in pea seedlings grown under the three regimes. Control, Fe-deficient, and Cu-deficient plants exhibited no major differences in pH optima or Km for the kinetics of ferric reduction. However, the Vmax for ferric reduction was dramatically influenced by plant nutrient status, increasing 16- to 38-fold under Fe deficiency and 1.5- to 4-fold under Cu deficiency, compared with that of control plants. These results are consistent with a model in which varying amounts of the same enzyme are deployed on the plasma membrane in response to plant Fe or Cu status. Rhizosphere acidification rates in the Cu-deficient plants were similarly intermediate between those of the control and Fe-deficient plants. These results suggest that Cu deficiency induces the same responses induced by Fe deficiency in peas.  相似文献   

13.
We investigated the effects of Fe and Cu status of pea (Pisum sativum L.) seedlings on the regulation of the putative root plasma-membrane Fe(III)-chelate reductase that is involved in Fe(III)-chelate reduction and Fe2+ absorption in dicotyledons and nongraminaceous monocotyledons. Additionally, we investigated the ability of this reductase system to reduce Cu(II)-chelates as well as Fe(III)-chelates. Pea seedlings were grown in full nutrient solutions under control, -Fe, and -Cu conditions for up to 18 d. Iron(III) and Cu(II) reductase activity was visualized by placing roots in an agarose gel containing either Fe(III)-EDTA and the Fe(II) chelate, Na2bathophenanthrolinedisulfonic acid (BPDS), for Fe(III) reduction, or CuSO4, Na3citrate, and Na2-2,9-dimethyl-4,7-diphenyl-1, 10-phenanthrolinedisulfonic acid (BCDS) for Cu(II) reduction. Rates of root Fe(III) and Cu(II) reduction were determined via spectrophotometric assay of the Fe(II)-BPDS or the Cu(I)-BCDS chromophore. Reductase activity was induced or stimulated by either Fe deficiency or Cu depletion of the seedlings. Roots from both Fe-deficient and Cu-depleted plants were able to reduce exogenous Cu(II)-chelate as well as Fe(III)-chelate. When this reductase was induced by Fe deficiency, the accumulation of a number of mineral cations (i.e., Cu, Mn, Fe, Mg, and K) in leaves of pea seedlings was significantly increased. We suggest that, in addition to playing a critical role in Fe absorption, this plasma-membrane reductase system also plays a more general role in the regulation of cation absorption by root cells, possibly via the reduction of critical sulfhydryl groups in transport proteins involved in divalent-cation transport (divalent-cation channels?) across the root-cell plasmalemma.  相似文献   

14.
We review the detrimental effects of waterlogging on physiology, growth and yield of wheat. We highlight traits contributing to waterlogging tolerance and genetic diversity in wheat. Death of seminal roots and restriction of adventitious root length due to O2 deficiency result in low root:shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short‐term, and thereafter, seminal root re‐growth upon re‐aeration is limited. Genotypes differ in adventitious root numbers and in aerenchyma formation within these roots, resulting in varying waterlogging tolerances. Root extension is restricted by capacity for internal O2 movement to the apex. Sub‐optimal O2 restricts root N uptake and translocation to the shoots, with N deficiency causing reduced shoot growth and grain yield. Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N‐use efficiency; exploiting the genetic diversity in wheat for these and other traits should enable improvement of waterlogging tolerance.  相似文献   

15.
The variability of the developmental responses of two contrasting cultivars of pea (Pisum sativum) was studied in relation to the genetic diversity of their nitrogen-fixing symbiont Rhizobium leguminosarum bv. viciae. A sample of 42 strains of pea rhizobia was chosen to represent 17 genotypes predominating in indigenous rhizobial populations, the genotypes being defined by the combination of haplotypes characterized with rDNA intergenic spacer and nodD gene regions as markers. We found contrasting effects of the bacterial genotype, especially the nod gene type, on the development of nodules, roots and shoots. A bacterial nod gene type was identified that induced very large, branched nodules, smaller nodule numbers, high nodule biomass, but reduced root and aerial part development. The plants associated with this genotype accumulated less N in shoots, but N concentration in leaves was not affected. The results suggest that the plant could not control nodule development sustaining the energy demand for nodule functioning and its optimal growth. The molecular and physiological mechanisms that may be involved are discussed.  相似文献   

16.
The effects of placing solid implants containing Fe sulfate in branches of Fe-deficient pear and peach trees on the composition of the xylem sap have been studied. Iron sulfate implants are commercially used in northeastern Spain to control iron chlorosis in fruit trees. Implants increased Fe concentrations and decreased organic acid concentrations in the xylem sap, whereas xylem sap pH was only moderately changed. The citrate to Fe ratios decreased markedly after implants, therefore improving the possibility that Fe could be reduced by the leaf plasma membrane enzyme reductase, known to be inhibited by high citrate/Fe ratios. In peach, the effects of the implants could be observed many months post treatment. In pear, some effects were still observed one year after the implants had taken place. Results obtained indicate that solid Fe sulfate implants were capable of significantly changing the chemical composition of the xylem sap in fruit trees.  相似文献   

17.
To acquire iron, many plant species reduce soil Fe(III) to Fe(II) by Fe(III)-chelate reductases embedded in the plasma membrane of root epidermal cells. The reduced product is then taken up by Fe(II) transporter proteins. These activities are induced under Fe deficiency. We describe here the FRO1 gene from pea (Pisum sativum), which encodes an Fe(III)-chelate reductase. Consistent with this proposed role, FRO1 shows similarity to other oxidoreductase proteins, and expression of FRO1 in yeast conferred increased Fe(III)-chelate reductase activity. Furthermore, FRO1 mRNA levels in plants correlated with Fe(III)-chelate reductase activity. Sites of FRO1 expression in roots, leaves, and nodules were determined. FRO1 mRNA was detected throughout the root, but was most abundant in the outer epidermal cells. Expression was detected in mesophyll cells in leaves. In root nodules, mRNA was detected in the infection zone and nitrogen-fixing region. These results indicate that FRO1 acts in root Fe uptake and they suggest a role in Fe distribution throughout the plant. Characterization of FRO1 has also provided new insights into the regulation of Fe uptake. FRO1 expression and reductase activity was detected only in Fe-deficient roots of Sparkle, whereas both were constitutive in brz and dgl, two mutants with incorrectly regulated Fe accumulation. In contrast, FRO1 expression was responsive to Fe status in shoots of all three plant lines. These results indicate differential regulation of FRO1 in roots and shoots, and improper FRO1 regulation in response to a shoot-derived signal of iron status in the roots of the brz and dgl mutants.  相似文献   

18.
Fan XH  Tang C  Rengel Z 《Annals of botany》2002,90(3):315-323
Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots.  相似文献   

19.
Iron (Fe) deficiency is one of the major environmental stresses affecting plant production in the world. The selection of tolerant genotypes is considered an effective remediation strategy for this stress. The present study was carried out in order to investigate the biodiversity within Medicago truncatula plants in response to Fe deficiency, to identify tolerant genotypes and to assess the main tolerance mechanisms. To do this, a screening test was performed on 20 M. truncatula genotypes cultivated in minimal medium. Biometric and physiological markers were analyzed, including plant biomass, chlorophyll and root architecture. Results showed a biodiversity among the 20 genotypes. Interestingly, Fe deficiency tolerance was highest in TN8.20 and A17 genotypes. However, the lowest tolerance behavior was observed in TN1.11 and TN6.18. In order to investigate the main tolerance mechanisms, an experiment was conducted in the hydroponic system on already selected genotypes. Assessment of Fe deficiency tolerance was performed mainly on plant growth parameters, Fe (III)-chelate-reductase activity, rhizosphere acidification and antioxidant system defense. The relative better tolerance of A17 and TN8.20 to Fe deficiency was positively correlated with their capacity to maintain higher Fe-acquisition efficiency in roots via rhizosphere acidification and the stimulation of Fe (III)-chelate-reductase activity. Moreover, tolerant genotypes showed the lowest decreases in chlorophyll content and photosynthetic activity (CO2 assimilation) compared to the sensitive ones. The efficiency of antioxidant capacity of the tolerant genotypes was revealed in stimulation of catalase (CAT) and peroxidase (POX) activities as well as accumulation of polyphenols, leading to the maintenance of cell integrity under Fe deficiency.  相似文献   

20.
Reduction of Fe(III) to Fe(II) by Fe(III) chelate reductase is thought to be an obligatory step in iron uptake as well as the primary factor in making iron available for absorption by all plants except grasses. Fe(III) chelate reductase has also been suggested to play a more general role in the regulation of cation absorption. In order to experimentally address the importance of Fe(III) chelate reductase activity in the mineral nutrition of plants, three Arabidopsis thaliana mutants (frd1-1, frd1-2 and frd1-3), that do not show induction of Fe(III) chelate reductase activity under iron-deficient growth conditions, have been isolated and characterized. These mutants are still capable of acidifying the rhizosphere under iron-deficiency and accumulate more Zn and Mn in their shoots relative to wild-type plants regardless of iron status. frd1 mutants do not translocate radiolabeled iron to the shoots when roots are presented with a tightly chelated form of Fe(III). These results: (1) confirm that iron must be reduced before it can be transported, (2) show that Fe(III) reduction can be uncoupled from proton release, the other major iron-deficiency response, and (3) demonstrate that Fe(III) chelate reductase activity per se is not necessarily responsible for accumulation of cations previously observed in pea and tomato mutants with constitutively high levels of Fe(III) chelate reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号