首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20‐week experiment that included a 4‐week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3 cm?2 day?1) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem‐level response to future conditions.  相似文献   

2.
Ocean warming and acidification from increasing levels of atmospheric CO2 represent major global threats to coral reefs, and are in many regions exacerbated by local‐scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local‐scale disturbances on reefs is growing, but their relative contribution to reef resilience and vulnerability in the future is unclear. Here, we analyse quantitatively how different combinations of CO2 and fishing pressure on herbivores will affect the ecological resilience of a simplified benthic reef community, as defined by its capacity to maintain and recover to coral‐dominated states. We use a dynamic community model integrated with the growth and mortality responses for branching corals (Acropora) and fleshy macroalgae (Lobophora). We operationalize the resilience framework by parameterizing the response function for coral growth (calcification) by ocean acidification and warming, coral bleaching and mortality by warming, macroalgal mortality by herbivore grazing and macroalgal growth via nutrient loading. The model was run for changes in sea surface temperature and water chemistry predicted by the rise in atmospheric CO2 projected from the IPCC's fossil‐fuel intensive A1FI scenario during this century. Results demonstrated that severe acidification and warming alone can lower reef resilience (via impairment of coral growth and increased coral mortality) even under high grazing intensity and low nutrients. Further, the threshold at which herbivore overfishing (reduced grazing) leads to a coral–algal phase shift was lowered by acidification and warming. These analyses support two important conclusions: Firstly, reefs already subjected to herbivore overfishing and nutrification are likely to be more vulnerable to increasing CO2. Secondly, under CO2 regimes above 450–500 ppm, management of local‐scale disturbances will become critical to keeping reefs within an Acropora‐rich domain.  相似文献   

3.
Climate change‐induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co‐occurring warming (+3°C) and ocean acidification (+1,600 μatm CO2), using the key subarctic planktonic copepod, Calanus finmarchicus, as a model species. The animals were generally negatively affected by warming, which significantly reduced the females’ energy status and reproductive parameters (respectively, 95% and 69%–87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%–340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.  相似文献   

4.
Ocean acidification and warming will be most pronounced in the Arctic Ocean. Aragonite shell‐bearing pteropods in the Arctic are expected to be among the first species to suffer from ocean acidification. Carbonate undersaturation in the Arctic will first occur in winter and because this period is also characterized by low food availability, the overwintering stages of polar pteropods may develop into a bottleneck in their life cycle. The impacts of ocean acidification and warming on growth, shell degradation (dissolution), and mortality of two thecosome pteropods, the polar Limacina helicina and the boreal L. retroversa, were studied for the first time during the Arctic winter in the Kongsfjord (Svalbard). The abundance of L. helicina and L. retroversa varied from 23.5 to 120 ind m?2 and 12 to 38 ind m?2, and the mean shell size ranged from 920 to 981 μm and 810 to 823 μm, respectively. Seawater was aragonite‐undersaturated at the overwintering depths of pteropods on two out of ten days of our observations. A 7‐day experiment [temperature levels: 2 and 7 °C, pCO2 levels: 350, 650 (only for L. helicina) and 880 μatm] revealed a significant pCO2 effect on shell degradation in both species, and synergistic effects between temperature and pCO2 for L. helicina. A comparison of live and dead specimens kept under the same experimental conditions indicated that both species were capable of actively reducing the impacts of acidification on shell dissolution. A higher vulnerability to increasing pCO2 and temperature during the winter season is indicated compared with a similar study from fall 2009. Considering the species winter phenology and the seasonal changes in carbonate chemistry in Arctic waters, negative climate change effects on Arctic thecosomes are likely to show up first during winter, possibly well before ocean acidification effects become detectable during the summer season.  相似文献   

5.
Coral reefs are threatened by global and local stressors. Yet, reefs appear to respond differently to different environmental stressors. Using a global dataset of coral reef occurrence as a proxy for the long‐term adaptation of corals to environmental conditions in combination with global environmental data, we show here how global (warming: sea surface temperature; acidification: aragonite saturation state, Ωarag) and local (eutrophication: nitrate concentration, and phosphate concentration) stressors influence coral reef habitat suitability. We analyse the relative distance of coral communities to their regional environmental optima. In addition, we calculate the expected change of coral reef habitat suitability across the tropics in relation to an increase of 0.1°C in temperature, an increase of 0.02 μmol/L in nitrate, an increase of 0.01 μmol/L in phosphate and a decrease of 0.04 in Ωarag. Our findings reveal that only 6% of the reefs worldwide will be unaffected by local and global stressors and can thus act as temporary refugia. Local stressors, driven by nutrient increase, will affect 22% of the reefs worldwide, whereas global stressors will affect 11% of these reefs. The remaining 61% of the reefs will be simultaneously affected by local and global stressors. Appropriate wastewater treatments can mitigate local eutrophication and could increase areas of temporary refugia to 28%, allowing us to ‘buy time’, while international agreements are found to abate global stressors.  相似文献   

6.
Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1–0.3 pH units and sea surface temperature to increase by 1–4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals'' response to these stressors was evident across all three of the experiment''s 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate—suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.  相似文献   

7.
Rising atmospheric CO2 concentrations are placing spatially divergent stresses on the world's tropical coral reefs through increasing ocean surface temperatures and ocean acidification. We show how these two stressors combine to alter the global habitat suitability for shallow coral reef ecosystems, using statistical Bioclimatic Envelope Models rather than basing projections on any a priori assumptions of physiological tolerances or fixed thresholds. We apply two different modeling approaches (Maximum Entropy and Boosted Regression Trees) with two levels of complexity (one a simplified and reduced environmental variable version of the other). Our models project a marked temperature‐driven decline in habitat suitability for many of the most significant and bio‐diverse tropical coral regions, particularly in the central Indo‐Pacific. This is accompanied by a temperature‐driven poleward range expansion of favorable conditions accelerating up to 40–70 km per decade by 2070. We find that ocean acidification is less influential for determining future habitat suitability than warming, and its deleterious effects are centered evenly in both hemispheres between 5° and 20° latitude. Contrary to expectations, the combined impact of ocean surface temperature rise and acidification leads to little, if any, degradation in future habitat suitability across much of the Atlantic and areas currently considered ‘marginal’ for tropical corals, such as the eastern Equatorial Pacific. These results are consistent with fossil evidence of range expansions during past warm periods. In addition, the simplified models are particularly sensitive to short‐term temperature variations and their projections correlate well with reported locations of bleaching events. Our approach offers new insights into the relative impact of two global environmental pressures associated with rising atmospheric CO2 on potential future habitats, but greater understanding of past and current controls on coral reef ecosystems is essential to their conservation and management under a changing climate.  相似文献   

8.
鱼类对海洋升温与酸化的响应   总被引:1,自引:0,他引:1  
自工业革命以来,空气中人为排放CO2量增加,引起温室效应,导致地球表面温度升高和海水升温;同时,由于海-气界面气体交换,大气中CO2部分溶解于海洋,引起海洋酸化。海洋升温加快鱼体内生化反应和代谢速率,并通过影响生长、觅食和繁殖等生命过程中能量供给,间接影响到鱼类种群分布、群落结构及生态系统的功能。而海水酸化会干扰海洋鱼类仔稚鱼的感觉和行为,增加其被捕食率,并削弱其野外生存能力,可能威胁自然种群补给量。综述了海洋升温、海洋酸化及其两者共同作用对海洋鱼类的影响,为预测鱼类响应全球海洋环境变化的响应趋势提供相关依据。  相似文献   

9.
Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA‐associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2: 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre‐exposed to pH 7.7 (pCO2 = 1187 μatm) and below over a 6‐week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2 = 464 μatm) and pH 7.9 (pCO2 = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally.  相似文献   

10.
11.
The health and functioning of reef‐building corals is dependent on a balanced association with prokaryotic and eukaryotic microbes. The coral skeleton harbours numerous endolithic microbes, but their diversity, ecological roles and responses to environmental stress, including ocean acidification (OA), are not well characterized. This study tests whether pH affects the diversity and structure of prokaryotic and eukaryotic algal communities associated with skeletons of Porites spp. using targeted amplicon (16S rRNA gene, UPA and tufA) sequencing. We found that the composition of endolithic communities in the massive coral Porites spp. inhabiting a naturally high pCO2 reef (avg. pCO2 811 μatm) is not significantly different from corals inhabiting reference sites (avg. pCO2 357 μatm), suggesting that these microbiomes are less disturbed by OA than previously thought. Possible explanations may be that the endolithic microhabitat is highly homeostatic or that the endolithic micro‐organisms are well adapted to a wide pH range. Some of the microbial taxa identified include nitrogen‐fixing bacteria (Rhizobiales and cyanobacteria), algicidal bacteria in the phylum Bacteroidetes, symbiotic bacteria in the family Endozoicomoniaceae, and endolithic green algae, considered the major microbial agent of reef bioerosion. Additionally, we test whether host species has an effect on the endolithic community structure. We show that the endolithic community of massive Porites spp. is substantially different and more diverse than that found in skeletons of the branching species Seriatopora hystrix and Pocillopora damicornis. This study reveals highly diverse and structured microbial communities in Porites spp. skeletons that are possibly resilient to OA.  相似文献   

12.
Ocean acidification (OA) may alter the behaviour of sediment‐bound metals, modifying their bioavailability and thus toxicity. We provide the first experimental test of this hypothesis with the amphipod Corophium volutator. Amphipods were exposed to two test sediments, one with relatively high metals concentrations (Σmetals 239 mg kg?1) and a reference sediment with lower contamination (Σmetals 82 mg kg?1) under conditions that mimic current and projected conditions of OA (390–1140 μatm pCO2). Survival and DNA damage was measured in the amphipods, whereas the flux of labile metals was measured in the sediment and water column (WC) using Diffusive Gradients in Thin‐films. The contaminated sediments became more acutely toxic to C. volutator under elevated pCO2 (1140 μatm). There was also a 2.7‐fold increase in DNA damage in amphipods exposed to the contaminated sediment at 750 μatm pCO2, as well as increased DNA damage in organisms exposed to the reference sediment, but only at 1140 μatm pCO2. The projected pCO2 concentrations increased the flux of nickel and zinc to labile states in the WC and pore water. However, the increase in metal flux at elevated pCO2 was equal between the reference and contaminated sediments or, occasionally, greater from reference sediments. Hence, the toxicological interaction between OA and contaminants could not be explained by e ffects of pH on metal speciation. We propose that the additive physiological effects of OA and contaminants will be more important than changes in metal speciation in determining the responses of benthos to contaminated sediments under OA. Our data demonstrate clear potential for near‐future OA to increase the susceptibility of benthic ecosystems to contaminants. Environmental policy should consider contaminants within the context of changing environmental conditions. Specifically, sediment metals guidelines may need to be reevaluated to afford appropriate environmental protection under future conditions of OA.  相似文献   

13.
Understanding long‐term, ecosystem‐level impacts of climate change is challenging because experimental research frequently focuses on short‐term, individual‐level impacts in isolation. We address this shortcoming first through an interdisciplinary ensemble of novel experimental techniques to investigate the impacts of 14‐month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterize a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual‐level responses, while acidification had a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual‐level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large‐scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local‐environmental conditions and resource availability. Such changes in macro‐scale distributions cannot be predicted by investigating individual‐level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long‐term, multiscale responses to multiple stressors, in an ecosystem context.  相似文献   

14.
Future coral reefs are expected to be subject to higher pCO2 and temperature due to anthropogenic greenhouse gas emissions. Such global stressors are often paired with local stressors thereby potentially modifying the response of organisms. Benthic macroalgae are strong competitors to corals and are assumed to do well under future conditions. The present study aimed to assess the impact of past and future CO2 emission scenarios as well as nutrient enrichment on the growth, productivity, pigment, and tissue nutrient content of the common tropical brown alga Chnoospora implexa. Two experiments were conducted to assess the differential impacts of the manipulated conditions in winter and spring. Chnoospora implexa's growth rate averaged over winter and spring declined with increasing pCO2 and temperature. Furthermore, nutrient enrichment did not affect growth. Highest growth was observed under spring pre‐industrial (PI) conditions, while slightly reduced growth was observed under winter A1FI (“business‐as‐usual”) scenarios. Productivity was not a good proxy for growth, as net O2 flux increased under A1FI conditions. Nutrient enrichment, whilst not affecting growth, led to luxury nutrient uptake that was greater in winter than in spring. The findings suggest that in contrast with previous work, C. implexa is not likely to show enhanced growth under future conditions in isolation or in conjunction with nutrient enrichment. Instead, the results suggest that greatest growth rates for this species appear to be a feature of the PI past, with A1FI winter conditions leading to potential decreases in the abundance of this species from present day levels.  相似文献   

15.
Human‐induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+?5°C, +?700 μatm CO2) using multifactorial long‐term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12‐week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti‐fouling and anti‐herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti‐microfouling activity was highest during winter under warming, while anti‐macrofouling and anti‐herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti‐fouling and anti‐herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.  相似文献   

16.
Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.  相似文献   

17.
Ocean warming (OW) and acidification (OA) are intensively investigated as they pose major threats to marine organism. However, little effort is dedicated to another collateral climate change stressor, the increased frequency, and intensity of storm events, here referred to as intensified hydrodynamics. A 2‐month experiment was performed to identify how OW and OA (temperature: 21°C; pHT: 7.7, 7.4; control: 17°C‐pHT7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus lividus using an integrative approach that includes physiology, biomechanics, and behavior. Biomechanics was studied under both no‐flow condition at the tube foot (TF) scale and flow condition at the individual scale. For the former, TF disk adhesive properties (attachment strength, tenacity) and TF stem mechanical properties (breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. For the latter, resistance to flow was addressed as the flow velocity at which individuals detached. Under near‐ and far‐future OW and OA, individuals fully balanced their acid‐base status, but skeletal growth was halved. TF adhesive properties were not affected by treatments. Compared to the control, mechanical properties were in general improved under pHT7.7 while in the extreme treatment (21°C‐pHT7.4) breaking force was diminished. Three behavioral strategies were implemented by sea urchins and acted together to cope with flow: improving TF attachment, streamlining, and escaping. Behavioral responses varied according to treatment and flow velocity. For instance, individuals at 21°C‐pHT7.4 increased the density of attached TF at slow flows or controlled TF detachment at fast flows to compensate for weakened TF mechanical properties. They also showed an absence of streamlining favoring an escaping behavior as they ventured in a riskier faster movement at slow flows. At faster flows, the effects of OW and OA were detrimental causing earlier dislodgment. These plastic behaviors reflect a potential scope for acclimation in the field, where this species already experiences diel temperature and pH fluctuations.  相似文献   

18.
Seawater acidification from increasing CO2 is often enhanced in coastal waters due to elevated nutrients and sedimentation. Our understanding of the effects of ocean and coastal acidification on present‐day ecosystems is limited. Here we use data from three independent large‐scale reef monitoring programs to assess coral reef responses associated with changes in mean aragonite saturation state (Ωar) in the Great Barrier Reef World Heritage Area (GBR). Spatial declines in mean Ωar are associated with monotonic declines in crustose coralline algae (up to 3.1‐fold) and coral juvenile densities (1.3‐fold), while non‐calcifying macroalgae greatly increase (up to 3.2‐fold), additionally to their natural changes across and along the GBR. These three key groups of organisms are important proxies for coral reef health. Our data suggest a tipping point at Ωar 3.5–3.6 for these coral reef health indicators. Suspended sediments acted as an additive stressor. The latter suggests that effective water quality management to reduce suspended sediments might locally and temporarily reduce the pressure from ocean acidification on these organisms.  相似文献   

19.
海洋酸化和海洋变暖是当下及未来海洋生物及其依存生态系统面临的主要环境压力和生态问题。当前,海洋生物早期发育气候变化生物学的研究主要集中于海洋酸化的影响,为了更好地探究海洋气候变化对海洋生物的影响,有必要研究海洋酸化和变暖联合作用下海洋生物的生态响应。以受精后24天的刺参稚参为研究对象,通过模拟当前和本世纪末海洋环境,观察海水酸化和升温对刺参稚参在体色发育关键时期生长、发育及体色变化的影响。实验设置对照组(大连近海水温,pCO2 400 mg·kg-1)、升温组(对照组水温+2℃,pCO2 400 mg·kg-1)、酸化组(对照组水温,pCO2 1000 mg·kg-1)、酸化升温组(对照组水温+2℃,pCO2 1000 mg·kg-1)。结果表明:温度升高2℃能够显著提高稚参发育速率,体色变化加快; pH值降低0.23个单位显著延迟稚参生长,体色变化减缓,个体间体重差异变大;升温2℃能抵消pH降低0.23个单位对...  相似文献   

20.
Anthropogenic global change and local stressors are impacting coral growth and survival worldwide, altering the structure and function of coral reef ecosystems. Here, we show that skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals (Siderastrea siderea, Pseudodiploria strigosa) declined across the Belize Mesoamerican Barrier Reef System (MBRS) over the past century, while offshore coral conspecifics exhibited relatively stable extension rates over the same temporal interval. This decline has caused nearshore coral extension rates to converge with those of their historically slower growing offshore coral counterparts. For both species, individual mass coral bleaching events were correlated with low rates of skeletal extension within specific reef environments, but no single bleaching event was correlated with low skeletal extension rates across all reef environments. We postulate that the decline in skeletal extension rates for nearshore corals is driven primarily by the combined effects of long‐term ocean warming and increasing exposure to higher levels of land‐based anthropogenic stressors, with acute thermally induced bleaching events playing a lesser role. If these declining trends in skeletal growth of nearshore S. siderea and P. strigosa continue into the future, the structure and function of these critical nearshore MBRS coral reef systems is likely to be severely impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号