首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Conventional forensic DNA analysis involves a matching principle, which compares DNA profiles from evidential samples to those from reference samples of known origin. In casework, however, the accessibility to a reference sample is not guaranteed which limits the use of DNA as an investigative tool. This has led to the development of phenotype prediction, which uses SNP analysis to estimate the physical appearance of the sample donor. Physical traits, such as eye, hair and skin colour, have been associated with certain alleles within specific genes involved in the melanogenesis pathways. These genetic markers are also associated with ancestry and their trait prediction ability has mainly been assessed in European and North American populations. This has prompted research investigating the discriminatory power of these markers in other populations, especially those exhibiting admixture. South Africa is well known for its diversity, and the viability of these particular SNPs still needs to be assessed within this population. South African law currently restricts the use of DNA for molecular phenotyping, and there are also numerous ethical and social considerations, all of which are discussed.  相似文献   

2.
This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto ‘gold standard’ human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid‐1990s. Crime laboratory accreditation ensures that genetic test results have the courts’ confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample handling, evidence testing, statistical analysis and reporting that meet the rules of scientific acceptance, reliability and human forensic identification standards.  相似文献   

3.
Microsatellites or short tandem repeats (STRs) markers are important tools for mapping disease-causing genes by linkage, for performing investigations in forensic medicine, for population genetic studies and for studying genetic modifications in tumors. In forensic applications neoplastic tissues can be used as a source of genetic information for personal identification or paternity testing when no other specimen is available. Cancer tissues can show microsatellite instability (MSI) and loss of heterozygosity (LOH) also for the STRs used in the forensic field. In this study, we screened 56 sporadic gastrointestinal carcinomas in order to provide further data for the evaluation of the incidence of allelic alterations for 15 STR loci and the suitability of using cancerous tissues in forensic applications. Sixty-six percent of the cancerous tissues were found to possess allelic alterations of the microsatellites analyzed with a high incidence of MSI-L (microsatellite instability low) when compared to the corresponding normal tissue. The most frequently altered loci were D18S51, VWA, and FGA. From a forensic perspective, great care must be taken in evaluating the DNA typing results obtained from cancerous tissue samples.  相似文献   

4.
The forensic evaluation of bacterial pathogens presents new challenges to the forensic science community. This review examines bacterial pathogens as objects of forensic comparison, focusing on their nucleic acid sequences as an important aspect of the comparison process. Because of the clonal propagation of most bacterial pathogens, a phylogenetic approach to understanding the diversity and using this understanding to address common forensic questions is explored. As a general phylogenetic framework is now employed in human mitochondrial DNA analysis, we will use the relevant concepts and approaches common in this area to develop this approach further. We also address the impact of the current ease and prevalence of whole‐genome DNA sequence analysis in the forensic comparison process.  相似文献   

5.
Zhivotovskiĭ LA 《Genetika》2006,42(10):1426-1436
The paper presents the methodology of forensic genetics as a synthesis of population genetics and forensic medicine. Main population genetic problems, appearing in calculation of probability statistics and interpretation of the results of forensic genetic investigations, are discussed in detail.  相似文献   

6.
The paper presents the methodology of forensic genetics as a synthesis of population genetics and forensic medicine. Main population genetic problems, appearing in calculation of probability statistics and interpretation of the results of forensic genetic investigations, are discussed in detail.  相似文献   

7.
The national DNA Database of England & Wales is the largest forensic DNA database in the world. Since 1995 it has quickly developed to hold the genetic profiles of over two million people. This collection of tissue samples, taken without consent from a sizeable collection of the population, has engendered a number of ethical commentaries on its legitimacy as a proportionate response to crime. This paper examines the ways in which the ethical discourses, which surround the uses of the National DNA Database, drew upon and deployed a number of distinct representations of DNA. It is argued that key ideas about DNA have become central to everyday assertions about the benefits and dangers of this forensic technology.  相似文献   

8.
Mobile elements are commonly referred to as selfish repetitive DNA sequences. However, mobile elements represent a unique and underutilized group of molecular markers. Several of their characteristics make them ideally suited for use as tools in forensic genomic applications. These include their nature as essentially homoplasy-free characters, they are identical by descent, the ancestral state of any insertion is known to be the absence of the element, and many mobile element insertions are lineage specific. In this review, we provide an overview of mobile element biology and describe the application of certain mobile elements, especially the SINEs and other retrotransposons, to forensic genomics. These tools include quantitative species-specific DNA detection, analysis of complex biomaterials, and the inference of geographic origin of human DNA samples.  相似文献   

9.
The national DNA Database of England & Wales is the largest forensic DNA database in the world. Since 1995 it has quickly developed to hold the genetic profiles of over two million people. This collection of tissue samples, taken without consent from a sizeable collection of the population, has engendered a number of ethical commentaries on its legitimacy as a proportionate response to crime. This paper examines the ways in which the ethical discourses, which surround the uses of the National DNA Database, drew upon and deployed a number of distinct representations of DNA. It is argued that key ideas about DNA have become central to everyday assertions about the benefits and dangers of this forensic technology.  相似文献   

10.
Evidentiary items sometimes contain an insufficient quantity of DNA for routine forensic genetic analysis. These so-called low copy number DNA samples (< 100 pg of genomic DNA) often fall below the sensitivity limitations of routine DNA analysis methods. Theoretically, one way of making such intractable samples amenable to analysis would be to increase the number of starting genomes available for subsequent STR (short tandem repeat) analysis by a whole genome amplification strategy (WGA). Although numerous studies employing WGA have focused primarily on clinical applications, few in-depth studies have been conducted to evaluate the potential usefulness of these methods in forensic casework. After an initial evaluation of existing methods, a modified WGA strategy was developed that appears to have utility for low copy number forensic casework specimens. The method employs a slight, but important, modification of the "improved primer extension preamplification PCR" method (I-PEP-PCR), which we term mIPEP (modified-I-PEP-PCR). Complete autosomal STR and Y-STR (Y chromosome short tandem repeat) profiles were routinely obtained with 5 pg of template DNA, which is equivalent to 1-2 diploid cells. Remarkably, partial Y- and autosomal STR profiles were obtained from mIPEP-treated DNA recovered from bloodstains exposed to the outside environment for 1 year whereas non-mIPEP-treated samples did not produce profiles. STR profiles were obtained from contact DNA from single dermal ridge fingerprints when the DNA was subjected to prior mIPEP amplification but not when the mIPEP step was omitted.  相似文献   

11.
DNA typing offers a unique opportunity to identify individuals for medical and forensic purposes. Probabilistic inference regarding the chance occurrence of a match between the DNA type of an evidentiary sample and that of an accused suspect, however, requires reliable estimation of genotype and allele frequencies in the population. Although population-based data on DNA typing at several hypervariable loci are being accumulated at various laboratories, a rigorous treatment of the sample size needed for such purposes has not been made from population genetic considerations. It is shown here that the loci that are potentially most useful for forensic identification of individuals have the intrinsic property that they involve a large number of segregating alleles, and a great majority of these alleles are rare. As a consequence, because of the large number of possible genotypes at the hypervariable loci that offer the maximum potential for individualization, the sample size needed to observe all possible genotypes in a sample is large. In fact, the size is so large that even if such a huge number of individuals could be sampled, it could not be guaranteed that such a sample was drawn from a single homogeneous population. Therefore adequate estimation of genotypic probabilities must be based on allele frequencies, and the sample size needed to represent all possible alleles is far more reasonable. Further economization of sample size is possible if one wants to have representation of only the frequent alleles in the sample, so that the rare allele frequencies can be approximated by an upper bound for forensic applications.  相似文献   

12.
The application of DNA technology in forensic investigations has grown rapidly in the last 25 years and with an exponential increase of short tandem repeats (STRs) data, usually presented as allele frequencies, that may be later used as databases for forensic and population genetics purposes. Thereby, classes of molecular markers such as single nucleotide polymorphisms and insertions/deletions (InDels) have been presented as another option of genetic marker sets. These markers can be used in paternity cases, when mutations in STR polymorphisms are present, as well as in highly degraded DNA analysis. In the present study, the allele frequencies and heterozygosity (H) of a 30 InDel markers set were determined and the forensic efficacy was evaluated through estimation of discrimination power (DP), match probability, typical paternity index and power of paternity exclusion in 108 unrelated volunteers from the State of Santa Catarina (South Brazil). The observed H per locus showed a range between 0.370 and 0.574 (mean = 0.479). HLD128 was the locus with the highest DP (DP = 0.656). DP for all markers combined was greater than 99.9999999999646 % which provides satisfactory levels of information for forensic demands. Genetic comparisons (exact tests of population differentiation and pairwise genetic distances) revealed that the population of Santa Catarina State differs from Korea and USA Afro-American populations but is similar to the Portuguese, German, Polish, Spanish and Basque populations.  相似文献   

13.
Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010–2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references.  相似文献   

14.
15.
Forensic scientists are often expected to present the likelihood of DNA identifications in US courts based on comparative population data, yet forensic anthropologists tend not to quantify the strength of an osteological identification. Because forensic anthropologists are trained first and foremost as physical anthropologists, they emphasize estimation problems at the expense of evidentiary problems, but this approach must be reexamined. In this paper, the statistical bases for presenting osteological and dental evidence are outlined, using a forensic case as a motivating example. A brief overview of Bayesian statistics is provided, and methods to calculate likelihood ratios for five aspects of the biological profile are demonstrated. This paper emphasizes the definition of appropriate reference samples and of the "population at large," and points out the conceptual differences between them. Several databases are introduced for both reference information and to characterize the "population at large," and new data are compiled to calculate the frequency of specific characters, such as age or fractures, within the "population at large." Despite small individual likelihood ratios for age, sex, and stature in the case example, the power of this approach is that, assuming each likelihood ratio is independent, the product rule can be applied. In this particular example, it is over three million times more likely to obtain the observed osteological and dental data if the identification is correct than if the identification is incorrect. This likelihood ratio is a convincing statistic that can support the forensic anthropologist's opinion on personal identity in court.  相似文献   

16.
H Andréasson  A Asp  A Alderborn  U Gyllensten  M Allen 《BioTechniques》2002,32(1):124-6, 128, 130-3
Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.  相似文献   

17.
Several suggestions have been made for avoiding errors in mitochondrial DNA (mtDNA) sequencing and documentation. Unfortunately, the current clinical, forensic, and population genetic literature on mtDNA still delivers a large number of studies with flawed sequence data, which, in extreme cases, damage the whole message of a study. The phylogenetic approach has been shown to be useful for pinpointing most of the errors. However, many geneticists, especially in the forensic and medical fields, are not familiar with either effective search strategies or the evolutionary terminology. We here provide a manual that should help prevent errors at any stage by re-examining data fresh from the sequencer in the light of previously published data. A fictitious case study of a European mtDNA data set (albeit composed from the literature) then demonstrates the steps one has to go through in order to assess the quality of sequencing and documentation.  相似文献   

18.
The detection of DNA polymorphisms by RFLP analysis is having a major impact on identity testing in forensic science. At present, this approach is the best effort a forensic scientist can make to exclude an individual who has been falsely associated with an evidentiary sample found at a crime scene. When an analysis fails to exclude a suspect as a potential contributor of an evidentiary sample, a means should be provided to assess suitable weight to the putative match. Most important, the statistical analysis should not place undue weight on a genetic profile derived from an unknown sample that is attributed to an accused individual. The method must allow for limitations in conventional agarose-submarine-gel electrophoresis and Southern blotting procedure, limited sample population data, possible subpopulation differences, and potential sampling error. A conservative statistical method was developed based on arbitrarily defined fixed bins. This approach permits classification of continuous allelic data, provides for a simple and portable data-base system, and is unlikely to underestimate the frequency of occurrence of a set of alleles. This will help ensure that undue weight is not placed on a sample attributed to an accused individual.  相似文献   

19.
An mRNA and DNA co-isolation method for forensic casework samples   总被引:2,自引:0,他引:2  
RNA analysis is expected to play an increasingly important role in the area of biomolecular forensic analysis. For example, mRNA expression analysis performed on a total RNA sample isolated from a biological stain may be used to identify the nature of the tissue(s) comprising the stain. Many of the physiological stains encountered at crime scenes involve heterogeneous mixtures of different body fluids (e.g., semen and saliva, semen and vaginal secretions). Separate sampling of these mixed stains from different "geographical" locations of the stains to isolate DNA and RNA could result in a misleading estimate of the ratio of the body fluids present and, in extreme cases, even fail to detect one of the contributors. Thus, a prerequisite for the use of mRNA expression profiling in routine forensic analysis is the ability to co-extract DNA and RNA from the same stain. This article describes an optimized method that was specifically developed to co-extract mRNA and DNA from the same physiological stain and that appears to be sufficiently sensitive and robust for routine forensic use.  相似文献   

20.
全基因组扩增技术及其在法医个体识别中的应用   总被引:1,自引:0,他引:1  
Cai HQ  Liu HT  Shi B  Li A  Tang WR  Luo Y 《遗传》2010,32(11):1119-1125
全基因组扩增(Whole genome amplification,WGA)技术是一种对全部基因组序列进行非选择性扩增的技术。近几年来,对WGA技术扩增痕量DNA检材的研究日渐深入,这些研究可望用于刑案现场采集到的痕量DNA样品的扩增,为法医个体识别提供足量的DNA模板。然而,对实际案件中复杂检材的扩增偏差问题一直困扰着法医工作者,寻求一个低扩增偏差、高扩增产率的WGA技术是法医工作者的主要目标。文章综述了WGA技术在法医个体识别中的研究进展及应用前景,为法医解决扩增偏差问题提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号