首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence of an atmospheric CO2 fertilization effect on radial growth rates was uncovered by examining climate–growth relationships for seven western juniper tree‐ring chronologies in central Oregon using multiple regression models. Consistent upward trends of the residuals from dendroclimatic models indicated a decreased ability for climate parameters to predict growth with time. Additionally, an assessment was made of whether enhanced growth was detectable under drought conditions, because a major benefit of elevated atmospheric CO2 is the reduction of water stress. Mean ring indices were compared between ecologically comparable drought years, when atmospheric CO2 was lower (1896–1949), and more recent drought years that occurred under higher atmospheric CO2 concentrations (1950–96/98). The results presented herein show that: (i) residuals from climate/growth models had a significant positive trend at six of seven sites, suggesting the presence of a nonclimatic factor causing increased growth during recent decades; (ii) overall growth was 23% greater in the latter half of the 20th century; (iii) growth indices during matched drought and matched wet years were 63% and 30% greater, respectively, in the later 20th century than the earlier 20th century; and (iv) harsher sites had greater responses during drought periods between early and late periods. While it is not possible to rule out other factors, these results are consistent with expectations for CO2 fertilization effects.  相似文献   

2.
Atmospheric CO2 concentrations are now 1.7 times higher than the preindustrial values. Although photosynthetic rates are hypothesized to increase in response to rising atmospheric CO2 concentrations, results from in situ experiments are inconsistent in supporting a CO2 fertilization effect of tree growth. Tree‐ring data provide a historical record of tree‐level productivity that can be used to evaluate long‐term responses of tree growth. We use tree‐ring data from old‐growth, subalpine forests of western Canada that have not had a stand‐replacing disturbance for hundreds of years to determine if growth has increased over 19th and 20th centuries. Our sample consisted of 5,858 trees belonging to five species distributed over two sites in the coastal zone and two in the continental climate of the interior. We calculated annual increments in tree basal area, adjusted these increments for tree size and age, and tested whether there was a detectable temporal trend in tree growth over the 19th and 20th centuries. We found a similar pattern in 20th century growth trends among all species at all sites. Growth during the 19th century was mostly stable or increasing, with the exception of one of the coastal sites, where tree growth was slightly decreasing; whereas growth during the 20th century consistently decreased. The unexpected decrease in growth during the 20th century indicates that there was no CO2 fertilization effect on photosynthesis. We compared the growth trends from our four sites to the trends simulated by seven Earth System Models, and saw that most of the models did not predict these growth declines. Overall, our results indicate that these old‐growth forests are unlikely to increase their carbon storage capacity in response to rising atmospheric CO2, and thus are unlikely to contribute substantially to offsetting future carbon emissions.  相似文献   

3.

Aim

We examined whether and how tree radial‐growth responses to climate have changed for the world's southernmost conifer species throughout its latitudinal distribution following rapid climate change in the second half of the 20th century.

Location

Temperate forests in southern South America.

Methods

New and existing tree‐ring radial growth chronologies representing the entire latitudinal range of Pilgerodendron uviferum were grouped according to latitude and then examined for differences in growth trends and non‐stationarity in growth responses to a drought severity index (scPDSI) over the 1900–1993 AD period and also before and after significant shifts in climate in the 1950s and 1970s.

Results

The radial‐growth response of P. uviferum climate was highly variable across its full latitudinal distribution. There was a long‐term and positive association between radial growth and higher moisture at the northern and southern edges of the distribution of this species and the opposite relationship for the core of its distribution, especially following the climatic shifts of the 1950s and 1970s. In addition, non‐stationarity in moisture‐radial growth relationships was observed in all three latitudinal groups (southern and northern edges and core) for all seasons during the 20th century.

Main conclusions

Climate shifts in southern South America in the 1950s and 1970s resulted in different responses in the mean radial growth of P. uviferum at the southern and northern edges and at the core of its range. Dendroclimatic analyses document that during the first half of the 20th century climate‐growth relationships were relatively similar between the southern and northern range edges but diverged after the 1950s. Our findings imply that simulated projections of climate impacts on tree growth, and by implication on forest ecosystem productivity, derived from models of past climate‐growth relationships need to carefully consider different and non‐stationarity responses along the wide latitudinal distribution of this species.  相似文献   

4.
The rise in atmospheric CO2 concentrations (Ca) has been related to tree growth enhancement and increasing intrinsic water‐use efficiency (iWUE). However, the extent that rising Ca has led to increased long‐term iWUE and whether climate could explain deviations from expected Ca‐induced growth enhancement are still poorly understood. The aim of this research was to use Ca and local climatic variability to explain changes during the 20th century in growth and tree ring and needle δ13C in declining and nondeclining Abies alba stands from the Spanish Pyrenees, near the southern distribution limit of this species. The temporal trends of iWUE were calculated under three theoretical scenarios for the regulation of plant‐gas exchange at increasing Ca. We tested different linear mixed‐effects models by multimodel selection criteria to predict basal area increment (BAI), a proxy of tree radial growth, using these scenarios and local temperature together with precipitation data as predictors. The theoretical scenario assuming the strongest response to Ca explained 66–81% of the iWUE variance and 28–56% of the observed BAI variance, whereas local climatic variables together explained less than 11–21% of the BAI variance. Our results are consistent with a drought‐induced limitation of the tree growth response to rising CO2 and a decreasing rate of iWUE improvement from the 1980s onward in declining A. alba stands subjected to lower water availability.  相似文献   

5.
Climatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate‐driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901–2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large‐scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.  相似文献   

6.
Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data‐based evaluations of emergent ecosystem responses to climate and CO2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities found in tree‐ring reconstructions of NPP and raw ring‐width series at six temperate forest sites. These model‐data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree‐ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm‐growing season temperatures, while tree‐ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO2, but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO2 in individual models.  相似文献   

7.
Tropical forest responses to climatic variability have important consequences for global carbon cycling, but are poorly understood. As empirical, correlative studies cannot disentangle the interactive effects of climatic variables on tree growth, we used a tree growth model (IBTREE) to unravel the climate effects on different physiological pathways and in turn on stem growth variation. We parameterized the model for canopy trees of Toona ciliata (Meliaceae) from a Thai monsoon forest and compared predicted and measured variation from a tree‐ring study over a 30‐year period. We used historical climatic variation of minimum and maximum day temperature, precipitation and carbon dioxide (CO2) in different combinations to estimate the contribution of each climate factor in explaining the inter‐annual variation in stem growth. Running the model with only variation in maximum temperature and rainfall yielded stem growth patterns that explained almost 70% of the observed inter‐annual variation in stem growth. Our results show that maximum temperature had a strong negative effect on the stem growth by increasing respiration, reducing stomatal conductance and thus mitigating a higher transpiration demand, and – to a lesser extent – by directly reducing photosynthesis. Although stem growth was rather weakly sensitive to rain, stem growth variation responded strongly and positively to rainfall variation owing to the strong inter‐annual fluctuations in rainfall. Minimum temperature and atmospheric CO2 concentration did not significantly contribute to explaining the inter‐annual variation in stem growth. Our innovative approach – combining a simulation model with historical data on tree‐ring growth and climate – allowed disentangling the effects of strongly correlated climate variables on growth through different physiological pathways. Similar studies on different species and in different forest types are needed to further improve our understanding of the sensitivity of tropical tree growth to climatic variability and change.  相似文献   

8.
As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree‐ring records. Yet typical tree‐ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses related to climate change alone.  相似文献   

9.
10.
Aim Woody plant expansion and infilling in grasslands and savannas are occurring across a broad range of ecosystems around the globe and are commonly attributed to fire suppression, livestock grazing, nutrient enrichment and/or climate variability. In the western Great Plains, ponderosa pine (Pinus ponderosa) woodlands are expanding across broad geographical and environmental gradients. The objective of this study was to reconstruct the establishment of ponderosa pine in woodlands in the west‐central Great Plains and to identify whether it was mediated by climate variability. Location Our study took place in a 400‐km wide region from the base of the Front Range Mountains (c. 105° W) to the central Great Plains (c. 100° W) and from Nebraska (43° N) to northern New Mexico (36° N), USA. Methods Dates for establishment of ponderosa pine were reconstructed with tree rings in 11 woodland sites distributed across the longitudinal and latitudinal gradients of the study area. Temporal trends in decadal pine establishment were compared with summer Palmer Drought Severity Index (PDSI). Annual trends in pine establishment from 1985 to 2005 were compared with seasonal PDSI, temperature and moisture availability. Results Establishment of ponderosa pine occurred in the study area in all but one decade (1770s) between the 1750s and the early 2000s, with over 35% of establishment in the region occurring after 1980. Pine establishment was highly variable among sites. Across the region, decadal pine establishment was persistently low from 1940 to 1960, when PDSI was below average. Annual pine establishment from 1985 to 2005 was positively correlated with summer PDSI and inversely correlated with minimum spring temperatures. Main conclusions Most ponderosa pine woodlands pre‐date widespread Euro‐American settlement of the region around c. ad 1860 and currently have stable tree populations. High variability in the timing of establishment of pine among sites highlights the multiplicity of factors that can drive woodland dynamics, including land use, fire history, CO2 enrichment, tree population dynamics and climate. Since the 1840s, the influence of climate was most notable across the study area during the mid‐20th century, when the establishment of pine was suppressed by two significant droughts. The past sensitivity of establishment of ponderosa pine to drought suggests that woodland expansion will be negatively affected by predicted increases in temperature and drought in the Great Plains.  相似文献   

11.
Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth–climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km2) in northeastern Siberia using satellite‐derived normalized difference vegetation indices (NDVI), tree ring‐width measurements, and climate data. Mean summer temperatures (Ts) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy). Mean summer NDVI (NDVIs) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub‐dominated areas. NDVIs positively correlated (P < 0.05) with Ts across 56% of the watershed (r = 0.52 ± 0.09, mean ± SD), principally in cold areas, and with CMIgy across 9% of the watershed (r = 0.45 ± 0.06), largely in warm areas. Larch ring‐width measurements from nine sites revealed that year‐to‐year (i.e., high‐frequency) variation in growth positively correlated (P < 0.05) with June temperature (= 0.40) and prior summer CMI (r = 0.40) from 1938 to 2007. An unexplained multi‐decadal (i.e., low‐frequency) decline in annual basal area increment (BAI) occurred following the mid‐20th century, but over the NDVI record there was no trend in mean BAI (P > 0.05), which significantly correlated with NDVIs (r = 0.44, P < 0.05, 1982–2007). Both satellite and tree‐ring analyses indicated that plant growth was constrained by both low temperatures and limited moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations.  相似文献   

12.
Aim The goals of this study are: (1) to determine whether increasing atmospheric CO2 concentrations and changing climate increased intrinsic water use efficiency (iWUE, as detected by changes in Δ13C) over the last four decades; and if it did increase iWUE, whether it led to increased tree growth (as measured by tree‐ring growth); (2) to assess whether CO2 responses are biome dependent due to different environmental conditions, including availability of nutrients and water; and (3) to discuss how the findings of this study can better inform assumptions of CO2 fertilization and climate change effects in biospheric and climate models. Location A global range of sites covering all major forest biome types. Methods The analysis encompassed 47 study sites including boreal, wet temperate, mediterranean, semi‐arid and tropical biomes for which measurements of tree ring Δ13C and growth are available over multiple decades. Results The iWUE inferred from the Δ13C analyses of comparable mature trees increased 20.5% over the last 40 years with no significant differences between biomes. This increase in iWUE did not translate into a significant overall increase in tree growth. Half of the sites showed a positive trend in growth while the other half had a negative or no trend. There were no significant trends within biomes or among biomes. Main conclusions These results show that despite an increase in atmospheric CO2 concentrations of over 50 p.p.m. and a 20.5% increase in iWUE during the last 40 years, tree growth has not increased as expected, suggesting that other factors have overridden the potential growth benefits of a CO2‐rich world in many sites. Such factors could include climate change (particularly drought), nutrient limitation and/or physiological long‐term acclimation to elevated CO2. Hence, the rate of biomass carbon sequestration in tropical, arid, mediterranean, wet temperate and boreal ecosystems may not increase with increasing atmospheric CO2 concentrations as is often implied by biospheric models and short‐term elevated CO2 experiments.  相似文献   

13.
Tree growth at northern treelines is generally temperature‐limited due to cold and short growing seasons. However, temperature‐induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree‐ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell‐wall thickness, cell number) and TRW were correlated with the drought‐sensitive standardized precipitation–evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925–1946), cool/wet (1947–1976) and again warm/dry (1977–1998) climate regimes. Xylem anatomical traits revealed water‐limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture‐driven shift in growth‐limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture‐driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.  相似文献   

14.
Silver fir Abies alba is an indigenous tree species present in many southern European mountain forests. Its distribution area and its adaptive capacity to climate variability, expressed in tree‐ring growth series, make it a very suitable target species for studying responses to climate particularly in a complex area like the Mediterranean basin where significant changes are expected. We used a set of 52 site chronologies (784 trees) in the Italian Alps and Apennines (38.1°– 46.6°N and 6.7°– 16.3°E) and temperature and precipitation monthly data for the period 1900–1995. Principal component analyses of the tree‐ring site network was applied to extract common modes of variability in annual radial growth among the chronologies. Climate/growth relationships and their stationarity and consistency over time were computed by means of correlation and moving correlation functions. Tree‐ring chronologies show a clear distinction between the Alpine and the Mediterranean sites and a further separation of the Alpine region in western and eastern sectors. Accordingly, we found different transient and contrasting regional responses in time with the trends found in the Mediterranean sites marking a relaxation of some of the major climate limiting factors recorded prior to the last decades. Species’ sensitivity to global change may result in distinct spatial responses reflecting the complexity of the Mediterranean climate, with large differences between various areas of the basin. It is still unclear if these contrasting tree‐ring growth to climate responses of Abies alba are due to the corresponding separation between the Alpine and Mediterranean climate modes, the atmospheric CO2 fertilization effect, the environmentally most fitted genetic pools of the southern fir ecotypes or a combination of all factors. Climate–growth analysis based on a wide site network and on long‐term weather records confirmed to be excellent tools to detect spatial and temporal variability of species’ responses to climate.  相似文献   

15.
Climate increases regional tree-growth variability in Iberian pine forests   总被引:3,自引:0,他引:3  
Tree populations located at the geographical distribution limit of the species may provide valuable information about tree‐growth response to changes on climatic conditions. We established nine Pinus nigra, 12 P. sylvestris and 17 P. uncinata tree‐ring width chronologies along the eastern and northern Iberian Peninsula, where these species are found at the edge of their natural range. Tree‐growth variability was analyzed using principal component analysis (PCA) for the period 1885–1992. Despite the diversity of species, habitats and climatic regimes, a common macroclimatic signal expressed by the first principal component (PC1) was found. Moreover, considering the PC1 scores as a regional chronology, significant relations were established with Spanish meteorological data. The shared variance held by the tree chronologies, the frequency of narrow rings and the interannual growth variability (sensitivity) increased markedly during the studied period. This shows an enhancement of growth synchrony among forests indicating that climate might have become more limiting to growth. Noticeably, an upward abrupt shift in common variability at the end of the first half of the 20th century was detected. On the other hand, moving‐interval response functions showed a change in the growth–climate relationships during the same period. The relationship between growth and late summer/autumn temperatures of the year before growth (August–September, negative correlation, and November, positive correlation) became stronger. Hence, water stress increase during late summer previous to tree growth could be linked to the larger growth synchrony among sites, suggesting that climate was driving the growth pattern changes. This agrees with the upward trend in temperature observed in these months. Moreover, the higher occurrence of extreme years and the sensitivity increase in the second half of the 20th century were in agreement with an increment in precipitation variability during the growing period. Precipitation variability was positively related to tree‐growth variability, but negatively to radial growth. In conclusion, a change in tree‐growth pattern and in the climatic response of the studied forests was detected since the mid‐20th century and linked to an increase in water stress. These temporal trends were in agreement with the observed increase in warmer conditions and in precipitation variability.  相似文献   

16.
High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near‐zero sink of atmospheric CO2 (NEE: ?0.3 ± 13.5 g C m?2). A nearby meadow wetland accumulated over 300 times more carbon (NEE: ?79.3 ± 20.0 g C m?2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on‐site was low (mean: 0.120–0.157) and similar to satellite measurements (mean: 0.155–0.163). However, weak plant growth resulted in poor satellite NDVI–NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate‐related changes to productivity on polar semideserts may be restricted.  相似文献   

17.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

18.
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.  相似文献   

19.
Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought‐prone areas, tree populations located at the driest and southernmost distribution limits (rear‐edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear‐edges of the continuous distributions of these tree species. We used tree‐ring width data from a network of 110 forests in combination with the process‐based Vaganov–Shashkin‐Lite growth model and climate–growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear‐edge. By contrast, growth of high‐elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of ?10.7% and ?16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear‐edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear‐edge stands. Our modeling approach provides accessible tools to evaluate forest vulnerability to warmer conditions.  相似文献   

20.
The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree‐ring sites located across Europe are investigated to determine the intrinsic water‐use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX‐Bern 1.0) that integrates numerous ecosystem and land–atmosphere exchange processes in a theoretical framework. The spatial pattern of tree‐ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south‐to‐north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil‐water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation–climate feedbacks are currently still poorly constrained by observational data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号