首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most carnivorous plants utilize insects in two ways: the flowers attract insects as pollen vectors for sexual reproduction, and the leaves trap insects for nutrients. Feeding on insects has been explained as an adaptation to nutrient‐poor soil, and carnivorous plants have been shown to benefit from insect capture through increased growth, earlier flowering and increased seed production. Most carnivorous plant species seem to benefit from insect pollination, although many species autonomously self‐pollinate and some propagate vegetatively. However, assuming that outcross pollen is advantageous and is a more important determinant of reproductive success than the nutrients gained from prey, there should be a selective pressure on carnivorous plants not to feed on their potential pollen vectors. Therefore, it has been suggested that carnivorous plants are subject to a conflict, often called the pollinator‐prey conflict (PPC). The conflict results from a trade‐off of the benefits from feeding on potentially pollinating insects versus the need to use them as pollen vectors for sexual reproduction. In this review we analyze the conditions under which a PPC may occur, review the evidence for the existence of PPCs in carnivorous plants, and explore the mechanisms that may be in place to prevent or alleviate a PPC. With respect to the latter, we discuss how plant signals such as olfactory and visual cues may play a role in separating the functions of pollinator attraction and prey capture.  相似文献   

2.
Carnivorous plants potentially trap their own pollinators and it has been argued that considerable spatial separation of flowers and traps has evolved to protect pollinators. We investigated flower-trap separation of Drosera and Utricularia . Short Drosera had a greater element of floral–trap separation than tall Drosera . Such a relationship is unexpected for plants whose peduncles were evolved to protect their pollinators. Utricularia can not trap pollinators but this genus still produces exceptionally long peduncles. We propose that flower-trap separation evolved because carnivorous plants are often short and need to project their flowers well above ground level to make them more attractive to pollinators.  相似文献   

3.
4.
5.
The cost-benefit model for the evolution of carnivorous plants posits a trade-off between photosynthetic costs associated with carnivorous structures and photosynthetic benefits accrued through additional nutrient acquisition. The model predicts that carnivory is expected to evolve if its marginal benefits exceed its marginal costs. Further, the model predicts that when nutrients are scarce but neither light nor water is limiting, carnivorous plants should have an energetic advantage in competition with non-carnivorous plants. Since the publication of the cost-benefit model over 20 years ago, marginal photosynthetic costs of carnivory have been demonstrated but marginal photosynthetic benefits have not. A review of published data and results of ongoing research show that nitrogen, phosphorus, and potassium often (co-)limit growth of carnivorous plants and that photosynthetic nutrient use efficiency is 20 - 50 % of that of non-carnivorous plants. Assessments of stoichiometric relationships among limiting nutrients, scaling of leaf mass with photosynthesis and nutrient content, and photosynthetic nutrient use efficiency all suggest that carnivorous plants are at an energetic disadvantage relative to non-carnivorous plants in similar habitats. Overall, current data support some of the predictions of the cost-benefit model, fail to support others, and still others remain untested and merit future research. Rather than being an optimal solution to an adaptive problem, botanical carnivory may represent a set of limited responses constrained by both phylogenetic history and environmental stress.  相似文献   

6.
M. Thum 《Oecologia》1986,68(4):601-605
Summary Labelled nitrogen was used to evaluate the effects of intensive forest management on soil nitrogen transformations. The total release of N into inorganic forms (ammonium plus nitrate) was much greater than net N mineralization in all treatments. Immobilization of N by microbes was greatest in minimally-treated harvested plots, while the turnover of N within soil microbes was greatest in intensively-treated plots. Ammonium was immobilized 2.4–3.2 times more rapidly than nitrate in havested plots; nitrification in disturbed sites could thus increase the availability of N to regrowing vegetation.  相似文献   

7.
Carnivorous sundew plants catch and digest insect prey for their own nutrition. The sundew species Drosera capensis shows a pronounced leaf bending reaction upon prey capture in order to form an ‘outer stomach’. This formation is triggered by jasmonates, phytohormones typically involved in defence reactions against herbivory and wounding. Whether jasmonates still have this function in D. capensis in addition to mediating the leaf bending reaction was investigated here. Wounded, insect prey‐fed and insect‐derived oral secretion‐treated leaves of D. capensis were analysed for jasmonates (jasmonic acid, JA; jasmonic acid‐isoleucine conjugate, JA‐Ile) using LC‐MS/MS. Prey‐induced jasmonate accumulation in D. capensis leaves was persistent, and showed high levels of JA and JA‐Ile (575 and 55.7 pmol·g·FW?1, respectively), whereas wounding induced a transient increase of JA (maximum 500 pmol·g·FW?1) and only low (3.1 pmol·g·FW?1) accumulation of JA‐Ile. Herbivory, mimicked with a combined treatment of wounding plus oral secretion (W+OS) obtained from Spodoptera littoralis larvae induced both JA (4000 pmol·g·FW?1) and JA‐Ile (25 pmol·g·FW?1) accumulation, with kinetics similar to prey treatment. Only prey and W+OS, but not wounding alone or OS, induced leaf bending. The results indicate that both mechanical and chemical stimuli trigger JA and JA‐Ile synthesis. Differences in kinetics and induced jasmonate levels suggest different sensing and signalling events upon injury and insect‐dependent challenge. Thus, in Drosera, jasmonates are still part of the response to wounding. Jasmonates are also employed in insect‐induced reactions, including responses to herbivory and carnivory.  相似文献   

8.
Some predatory animals, represented by large carnivores, forage in groups and benefit from this behavior. We tested the hypothesis that carnivorous plants also benefit from group foraging to improve the efficiency of trapping large prey using Drosera makinoi (Droseraceae). As a result of our field observations, it was found that larger neighboring D. makinoi density yields a greater number of large preys (≥3 mm) and total prey biomass per plant. Results showed that a total of 43.4% of the events to trap large prey was achieved by two trap leaves belonging to two neighboring D. makinoi plants. Our results proved that group foraging in D. makinoi enables them to trap large prey.  相似文献   

9.
The Nepenthes species are carnivorous plants that have evolved a specialized leaf organ, the 'pitcher', to attract, capture, and digest insects. The digested insects provide nutrients for growth, allowing these plants to grow even in poor soil. Several proteins have been identified in the pitcher fluid, including aspartic proteases (nepenthesin I and II) and pathogenesis-related (PR) proteins (β-1,3-glucanase, class IV chitinase, and thaumatin-like protein). In this study, we collected and concentrated pitcher fluid to identify minor proteins. In addition, we tried to identify the protein secreted in response to trapping the insect. To make a similar situation in which the insect falls into the pitcher, chitin which was a major component of the insect exoskeleton was added to the fluid in the pitcher. Three PR proteins, class III peroxidase (Prx), β-1,3-glucanase, and class III chitinase, were newly identified. Prx was induced after the addition of chitin to the pitcher fluid. Proteins in the pitcher fluid of the carnivorous plant Nepenthes alata probably have two roles in nutrient supply: digestion of prey and the antibacterial effect. These results suggest that the system for digesting prey has evolved from the defense system against pathogens in the carnivorous plant Nepenthes.  相似文献   

10.
Abstract: A new ELF (enzyme labelled fluorescence) assay was applied to detect phosphatase activity in glandular structures of 47 carnivorous plant species, especially Lentibulariaceae, in order to understand their digestive activities. We address the following questions: (1) Are phosphatases produced by the plants and/or by inhabitants of the traps? (2) Which type of hairs/glands is involved in the production of phosphatases? (3) Is this phosphatase production a common feature among carnivorous plants or is it restricted to evolutionarily advanced species? Our results showed activity of the phosphatases in glandular structures of the majority of the plants tested, both from the greenhouse and from sterile culture. In addition, extracellular phosphatases can also be produced by trap inhabitants. In Utricularia, activity of phosphatase was detected in internal glands of 27 species from both primitive and advanced sections and different ecological groups. Further positive reactions were found in Genlisea, Pinguicula, Aldrovanda, Dionaea, Drosera, Drosophyllum, Nepenthes, and Cephalotus. In Utricularia and Genlisea, enzymatic secretion was independent of stimulation by prey. Byblis and Roridula are usually considered as “proto‐carnivores”, lacking digestive enzymes. However, we found high activity of phosphatases in both species. Thus, they should be classified as true carnivores. We suggest that the inflorescence of Byblis and some Pinguicula species might also be an additional “carnivorous organ”, which can trap a prey, digest it, and finally absorb available nutrients.  相似文献   

11.
Avian population dynamics are influenced by the availability of spatiotemporally variable prey resources, but the conditions producing abundant and accessible prey are not always clear. In the Florida Everglades, wading birds nest in the dry season when receding water levels concentrate prey and facilitate improved foraging efficiency. White Ibis (Eudocimus albus) feed extensively on crayfish in sloughs, and previous studies have demonstrated that crayfish move downgradient from higher elevation, heavily vegetated ridge habitats into adjacent less‐vegetated sloughs when ridges are almost dry. Most White Ibis foraging is thought to occur in sloughs with relatively shallow water (< 19 cm), but crayfish move and their densities peak when water in sloughs is deeper (~ 21–32 cm). We conducted an observational study of White Ibis foraging in drying wetlands to determine if White Ibis restricted their foraging to shallow water or if they foraged in relatively deep water when crayfish were migrating. In a series of large drying wetlands, we used time‐lapse imagery to quantify White Ibis foraging activity over 61 d from February to April 2017 and we also quantified crayfish biomass density in sloughs. Crayfish biomass density peaked when ridges were almost dry. Most White Ibis foraging occurred over 2–3 d when ridges were almost dry and water in sloughs averaged ≥ 29 cm deep. White Ibis selected slough edges for foraging, suggesting that they were capturing crayfish migrating between habitats. Our results point to a new mechanism of prey exploitation driven by inter‐habitat prey flux when ridge habitat dries. Although the results of previous studies suggest that White Ibis will not forage on fish in deeper water (> 25 cm), we found that White Ibis will forage on crayfish in water at those depths. Maintenance of habitat elevational differences and hydro‐patterns that promote crayfish production will be necessary to promote this predator–prey interaction in the ridge‐slough landscape of the Everglades.  相似文献   

12.
13.
Within carnivorous plants, the bladderworts (Utricularia) possess the most complicated traps whose mechanisms are not yet completely understood. For the first time, a representative survey of different traps from both subgenera (Utricularia and Polypompholyx) is presented.

Based on scanning- and transmission electron microscopy, traps of 14 species of Utricularia (out of 215 species) representing 11 sections (out of 35 sections) and including all life forms (aquatic, epiphytic, and terrestrial) were investigated. Additionally, it was tested whether life forms correlate with trapping mechanisms. Most morphological and anatomical features of the traps vary considerably between the different life forms, e.g. position of trap and trap entrance as well as form and position of trap appendages. Morphological data support the basal position of subgenus Polypompholyx within the genus. Some characteristics of the traps of terrestrial Utricularia multifida (subgenus Polypompholyx) differ remarkably from traps of the other species, e.g. trap-door anatomy and trap walls. This might be an indication for a primordial (non-suction) trapping mechanism in the former species, similar to that of the eel-traps of the closely related genus Genlisea.  相似文献   


14.
15.
Diet analysis is an important aspect when investigating the ecology of fish‐eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time‐consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two‐step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species‐specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field‐collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost‐effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity.  相似文献   

16.
The pine sawyer beetle Monochamus galloprovincialis, a secondary pest of pines in Europe and North Africa, has become important as it was identified as the vector in Europe of Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). An effective trapping system is needed, not only for monitoring the insect vector but also for direct control of its population. Trapping may also provide key information on the nematode load carried by the beetles, allowing early detection of infections, provided that captured beetles remain alive within the trap. Highly effective attractants have been developed in recent years that are commonly used in combination with diverse standard trap designs. In this study, several trap designs were developed and compared to commercial standard models in order to determine which designs maximized the number of attracted insects actually caught and the proportion of them remaining alive. In total, 12 trap designs were evaluated in five field experiments carried out in France, Spain and Portugal. Teflon coating applied to the whole trap and extended, ventilated collecting cups resulted in a significant improvement of trap performance. These modifications led to significant increases of pine sawyer catches, up to 275%, when applied to multiple‐funnel or black cross‐vane traps, compared to standard designs. Furthermore, a significant proportion of the captured beetles remained alive within the trap. These findings have been used to develop new commercial traps (Econex Multifunnel‐12® and Crosstrap®; Econex, Murcia, Spain) available to forest managers. A model for insect survival within the trap was also fitted. Elapsed time between consecutive samplings, mean relative humidity and maximum radiation were the three most significant variables. Thus, traps should provide a suitable sample of live insects if sun exposure of the trap is minimized and a reasonable sampling schedule is implemented.  相似文献   

17.
The carnivorous pitcher plants of the Sarraceniaceae, Nepenthaceae and Cephalotaceae seem to have developed attraction and rewarding systems which resemble those of many flowers. Contrary to a previous view, Batcsian mimicry does not appear to apply to pitcher traps because: (a) there is no evidence of insects visiting traps by mistake, (b) no model is known for any one of the traps, (c) the duration of the trap activity and the structure of the plant community are not compatible with a deceptive mimetic status, (d) nectar which is a real reward is provided to visiting insects by the pitcher plants. It is suggested that these plants perform mutual rather than deceptive relations with the insect communities in their habitats. Insects benefit from nectar which is provided by pitchers and which serves for their nutrition in habitats where sources of floral nectar might be either uncommon or absent. At the same time the insects pay the plants in a small portion of their community which is 'sacrificed' as prey and consumed by the plants, which grow in nutrient deficient soils.  相似文献   

18.
Uptake of nitrogen from prey and substrate and partitioning of prey-derived nitrogen were studied in the carnivorous plant species Pinguicula alpina, P. villosa, P. vulgaris and Drosera rotundifolia in a subarctic environment. Efficiency in nitrogen uptake from prey was evaluated by tracing 15N from 15N-enriched Drosophila flies fed to the plants. The in situ uptake efficiency differed somewhat between species and ranged from 29 to 41% of prey N. This efficiency was not affected by different feeding levels or plant reproductive status (flowering or non-flowering). A test of the amount of N absorbed from prey caught on flower stalks of Pinguicula villosa and P. vulgaris showed that both species took up little of what was available in prey (2.5% or less). The uptake efficiency found in greenhouse grown plants was higher than in plants in situ (40–50% vs. 30–40% respectively). This could probably best be explained by the absence of rain and a higher temperature in the greenhouse. The prey-derived 15N was traced to reproductive organs and winter buds. Non-flowering individuals allocated 58–97% of the N derived from prey to their winter buds. Flowering individuals allocated 17–43% of the N income from prey to reproduction, while 34–71% were allocated to buds. Root uptake of nitrogen was stimulated by increased prey capture. This increase in uptake of nitrogen from the substrate was larger than the potential direct uptake of nitrogen from captured prey.  相似文献   

19.
Diet studies are fundamental for understanding trophic connections in marine ecosystems. In the southeastern US, the common bottlenose dolphin Tursiops truncatus is the predominant marine mammal in coastal waters, but its role as a top predator has received little attention. Diet studies of piscivorous predators, like bottlenose dolphins, start with assessing prey otoliths recovered from stomachs or feces, but digestive erosion hampers species identification and underestimates fish weight (FW). To compensate, FW is often estimated from the least affected otoliths and scaled to other otoliths, which also introduces bias. The sulcus, an otolith surface feature, has a species‐specific shape of its ostium and caudal extents, which is within the otolith edge for some species. We explored whether the sulcus could improve species identification and estimation of prey size using a case study of four sciaenid species targeted by fisheries and bottlenose dolphins in North Carolina. Methods were assessed first on otoliths from a reference collection (n = 421) and applied to prey otoliths (n = 5,308) recovered from 120 stomachs of dead stranded dolphins. We demonstrated in reference‐collection otoliths that cauda to sulcus length (CL:SL) could discriminate between spotted seatrout (Cynoscion nebulosus) and weakfish (Cynoscion regalis) (classification accuracy = 0.98). This method confirmed for the first time predation of spotted seatrout by bottlenose dolphins in North Carolina. Using predictive models developed from reference‐collection otoliths, we provided evidence that digestion affects otolith length more than sulcus or cauda length, making the latter better predictors. Lastly, we explored scenarios of calculating total consumed biomass across degrees of digestion. A suggested approach was for the least digested otoliths to be scaled to other otoliths iteratively from within the same stomach, month, or season as samples allow. Using the otolith sulcus helped overcome challenges of species identification and fish size estimation, indicating their potential use in other diet studies.  相似文献   

20.
Adamec L 《Annals of botany》2007,100(4):849-856
BACKGROUND AND AIMS: Species of Utricularia and Genlisea (Lentibulariaceae) are carnivorous, capturing small prey in traps which are physiologically very active, with abundant quadrifid and bifid glands. Traps of Utricularia have walls composed of two cell layers, and are filled with water. Diverse communities of commensal microorganisms often live inside the traps. Genlisea forms long, hollow subterranean traps of foliar origin, growing in anoxic wet substrate. Knowledge of the O(2) concentrations inside Utricularia and Genlisea traps is vital for understanding their physiological functioning and conditions for the life of commensals. To test the hypothesis that prey are killed by anoxia inside the traps, and to measure respiration of traps, [O(2)] was measured in the fluid in mature traps of these species. METHODS: Oxygen concentration and electrical redox potential were measured using a small Clark-type oxygen sensor and a miniature platinum electrode, respectively, in the fluid of excised and intact traps of six aquatic Utricularia species and in Genlisea hispidula traps. KEY RESULTS: Steady-state [O(2)] in the traps of both genera always approached zero (median 0.0-4.7 microm). The [O(2)] decreased after electrodes were inserted into Utricularia traps at a rate which ranged from 0.09 to 1.23 mm h(-1) and was lower in traps of irradiated and intact shoots with higher [O(2)] in shoot tissues. Redox potential ranged from -24 to -105 mV in the traps, confirming the very small or zero [O(2)]. CONCLUSIONS: Very small or zero [O(2)], effectively anoxia, is demonstrated in Utricularia and Genlisea traps. This is probably below the critical [O(2)] for prey survival, and causes captured prey to die of suffocation. Internal trap glands and trap commensals are considered to be adapted to facultative anoxia interrupted by limited periods of higher [O(2)] after firings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号