首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim   To examine the way in which 'area' and 'habitat diversity' interact in shaping species richness and to find a simple and valid way to express this interaction.
Location   The Natura 2000 network of terrestrial protected areas in Greece, covering approximately 16% of the national territory.
Methods   We used the Natura 2000 framework, which provides a classification scheme for natural habitat types, to quantify habitat heterogeneity. We analysed data for the plant species composition in 16,143 quadrats in which 5044 species and subspecies of higher plants were recorded. We built a simple mathematical model that incorporates the effect of habitat diversity on the species–area relationship (SAR).
Results   Our analysis showed that habitat diversity was correlated with area. However, keeping habitat diversity constant, species richness was related to area; while keeping area constant, species richness was related to habitat diversity. Comparing the SAR of the 237 sites we found that the slope of the species–area curve was related to habitat diversity.
Main conclusions   Discussion of the causes of the SAR has often focused on the primacy of area per se versus habitat heterogeneity, even though the two mechanisms are not mutually exclusive and should be considered jointly. We find that increasing habitat diversity affects the SAR in different ways, but the dominant effect is to increase the slope of the SAR. While a full model fit typically includes a variety of terms involving both area and habitat richness, we find that the effect of habitat diversity can be reduced to a linear perturbation of the slope of the species accumulation curve.  相似文献   

2.
Aim The aims of this study are to resolve terminological confusion around different types of species–area relationships (SARs) and their delimitation from species sampling relationships (SSRs), to provide a comprehensive overview of models and analytical methods for SARs, to evaluate these theoretically and empirically, and to suggest a more consistent approach for the treatment of species–area data. Location Curonian Spit in north‐west Russia and archipelagos world‐wide. Methods First, I review various typologies for SARs and SSRs as well as mathematical models, fitting procedures and goodness‐of‐fit measures applied to SARs. This results in a list of 23 function types, which are applicable both for untransformed (S) and for log‐transformed (log S) species richness. Then, example data sets for nested plots in continuous vegetation (n = 14) and islands (n = 6) are fitted to a selection of 12 function types (linear, power, logarithmic, saturation, sigmoid) both for S and for log S. The suitability of these models is assessed with Akaike’s information criterion for S and log S, and with a newly proposed metric that addresses extrapolation capability. Results SARs, which provide species numbers for different areas and have no upper asymptote, must be distinguished from SSRs, which approach the species richness of one single area asymptotically. Among SARs, nested plots in continuous ecosystems, non‐nested plots in continuous ecosystems, and isolates can be distinguished. For the SARs of the empirical data sets, the normal and quadratic power functions as well as two of the sigmoid functions (Lomolino, cumulative beta‐P) generally performed well. The normal power function (fitted for S) was particularly suitable for predicting richness values over ten‐fold increases in area. Linear, logarithmic, convex saturation and logistic functions generally were inappropriate. However, the two sigmoid models produced unstable results with arbitrary parameter estimates, and the quadratic power function resulted in decreasing richness values for large areas. Main conclusions Based on theoretical considerations and empirical results, I suggest that the power law should be used to describe and compare any type of SAR while at the same time testing whether the exponent z changes with spatial scale. In addition, one should be aware that power‐law parameters are significantly influenced by methodology.  相似文献   

3.
The universality of the shape of the species–area relationship (SAR) is subject to regular debate. Recently, Storch et al. (2012) argued that species–area relationships collapse into a single curve at continental scales after the axes are rescaled adjusting the area‐axis being to the mean range size of species and the species‐axis to the species richness of an area equal to mean range size. It has been claimed that this rescaling generates a universal model, invariant of taxon and continent, and that it is driven by differences in range sizes. Here, we test the universality of the rescaled SAR across scales smaller than the continental level, using presence data for plants, birds and butterflies. We also test an alternative rescaling approach, by using the total extent of the study area and total species richness. At the scales analysed here, we found that the proposed rescaling by Storch et al. adjusts for differences in the extent of the study area and for variation in gamma diversity. Consequently, while the rescaled curves were closely aligned, they did not converge into a single curve. The observed remaining variation is independent of scale and biogeographical region, and is correlated with beta diversity; thus, it reflects the differentiation of species composition in space.  相似文献   

4.
Abstract. One long tradition in ecology is that discrete communities exist, at least in the sense that there are areas of relatively uniform vegetation, with more rapid change in species composition between them. The alternative extreme view is the Self‐similarity concept – that similar community variation occurs at all spatial scales. We test between these two by calculating species‐area curves within areas of vegetation that are as uniform as can be found, and then extrapolating the within‐community variation to much larger areas, that will contain many ‘communities’. Using the Arrhenius species‐area model, the extrapolations are remarkably close to the observed number of species at the regional/country level. We conclude that the type of heterogeneity that occurs within ‘homogeneous’ communities is sufficient to explain species richness at much larger scales. Therefore, whilst we can speak of ‘communities’ for convenience, the variation that certainly exists at the ‘community’ level can be seen as only a larger‐scale manifestation of micro‐habitat variation.  相似文献   

5.
The increase of species richness with sampling area and the decrease with latitude and altitude are two of the most frequently studied patterns in biogeography. However, few studies have simultaneously examined these two patterns to investigate how species–area relationships (SAR) vary with latitude and altitude. In this study, we explore the spatial patterns of SAR in forests in China by investigating numbers of species by life form group (trees, shrubs and herbs) in 32 nested plots from 12 mountains ranging from 18.7°N to 51.9°N in latitude and from 300 to 3150 m in altitude. The slopes of the power law SAR (z‐values) decreased with increasing latitude for all life forms except herbaceous plants, and also decreased with increasing altitude for all life forms but not for shrubs. Latitude and altitude, as well as their interactions, together explained 65.4, 61.8, 48.9 and 45.3% of the variation in z‐values for overall species, trees, shrubs and herbaceous plants, respectively. In addition, actual evapotranspiration affected SAR significantly, but this effect varied significantly among life forms. We concluded that there are significant geographical patterns of SAR for China's forests, which is primarily controlled by energy availability.  相似文献   

6.
7.
8.
Long‐distance seed dispersal is generally assumed to be important for the regional survival of plant species. In this study, we quantified the importance of long‐distance seed dispersal for regional survival of plant species using wind dispersal as an example. We did this using a new approach, by first relating plant species’ dispersal traits to seed dispersal kernels and then relating the kernels to regional survival of the species. We used a recently developed and tested mechanistic seed dispersal model to calculate dispersal kernels from dispersal traits. We used data on 190 plant species and calculated their regional survival in two ways, using species distribution data from 36,800 1 km2‐grid cells and 10,754 small plots covering the Netherlands during the largest part of the 20th century. We carried out correlation and stepwise multiple regression analyses to quantify the importance of long‐distance dispersal, expressed as the 99‐percentile dispersal distance of the dispersal kernels, relative to the importance of median‐distance dispersal and other plant traits that are likely to contribute to the explanation of regional survival: plant longevity (annual, biennial, perennial), seed longevity, and plant nutrient requirement. Results show that long‐distance dispersal plays a role in determining regional survival, and is more important than median‐distance dispersal and plant longevity. However, long‐distance dispersal by wind explains only 1–3% of the variation in regional survival between species and is equally important as seed longevity and much less important than nutrient requirement. In changing landscapes such as in the Netherlands, where large‐scale eutrophication and habitat destruction took place in the 20th century, plant traits indicating ability to grow under the changed, increasingly nutrient‐rich conditions turn out to be much more important for regional survival than seed dispersal.  相似文献   

9.
Plant species in fire‐prone environments possess specific traits which allow them to survive fire. Species are commonly classified according to whether they survive fire and resprout or whether they are killed by fire and regenerate from seed. However, different populations of the same species have been shown to vary in their responses. Therefore, the classification of a species into a single category based on fire‐response traits may not necessarily be representative of every population under every circumstance. This study examined the extent of within‐species variation in fire‐response traits of woody plants in south‐eastern Australia after the 2003 fires. Species were then classified using two approaches: (i) using data from a field survey of fire‐response traits, taking into account within‐species variation; and (ii) using species' fire responses listed in a pre‐existing fire‐response database compiled from a variety of primary sources. Field data showed that the majority of species in the study area resprouted after fire with around one in 10 species variable in their resprouting response. Almost half of all species varied from site to site according to whether they regenerated from seed, either solely or in addition to resprouting. The numbers of species classified as resprouters and seed regenerators varied according to the classification method used. Differences were also found between the classification method when calculating the mean proportion of resprouters and seed regenerators across sites. The fire‐response traits for some species from the database were found to differ from the observed field responses. This study demonstrated that the application of a fire‐response trait, reported in a trait database, to an entire species, may not adequately represent the actual fire responses of the populations of interest. Rather than considering the fire‐response traits of a species, accurate prediction may be better achieved by considering how different populations of plants will respond to fire.  相似文献   

10.
11.
Athrey G  Lance RF  Leberg PL 《Molecular ecology》2012,21(17):4359-4370
Understanding the interplay of dispersal and how it translates into gene flow is key to understanding population processes, and especially so for endangered species occupying fragmented habitats. In migratory songbirds, there is evidence that long‐distance movement capabilities do not translate well into observed dispersal. Our objectives were to (i) define the fine‐scale spatial genetic structure in endangered black‐capped vireos to characterize dispersal patterns and (ii) to correlate dispersal dynamics to overall population genetic structure using a simulation approach. We sampled 160 individuals over 2 years to (i) describe the fine‐scale genetic structuring and (ii) used this information to model scenarios to compare with actual data on change in population structuring over a 100‐year interval. We found that black‐capped vireos exhibit male philopatry and restricted dispersal distances, relative to females. Our simulations also support a sex‐biased dispersal model. Additionally, we find that fragmentation related changes in rates of dispersal might be a likely cause for increasing levels of population structure over a 100‐year period. We show that restricted sex‐biased dispersal can explain population structuring in this species and that changes in dispersal rates due to fragmentation may be a continuing threat to genetic viability in this species.  相似文献   

12.
13.
Bark beetles are well‐known forest pests, some species inducing massive attacks on trees, resulting in the devastation of entire woodlands. Bark beetles are associated with microorganisms, forming an entity known as ‘holobiont’. Beetles and fungi are the best‐studied members of this multipartite symbiosis. However, recent studies have shown that bacteria may play important roles in the bark beetle holobiont, such as providing certain nutrients, promoting the growth of beneficial fungi, detoxifying the environment by lowering the levels of phenolic compounds synthesised by the host tree or by inhibiting the growth of antagonistic fungi whereas some bacterial symbionts have the potential to kill beetles under certain conditions. Therefore, bacteria probably greatly affect the life cycle of bark beetles; hence, more research is needed to clarify the extent to which a bacterial associate is implicated in a bacterial bark beetle symbiosis and how much it determines host's performance. This review summarises all of the known activities of bacteria present in the bark beetle holobiont, indicates some important gaps in the knowledge of this symbiosis and provides some guidance for overcoming the difficulties in investigating this relationship in future studies.  相似文献   

14.
Species distribution models rely on the assumption that species' distributions are at equilibrium with environmental conditions within a region – i.e. they occur in all suitable habitats. If this assumption holds, species occurrence should be predictable from measures of the environment. Introduced species may be poor candidates for distribution models due to their presumed lack of equilibrium within the landscapes they occupy, although predicting their potential distributions is often of critical importance to natural resource managers. We determined if the accuracy of species distribution models differed between 17 native and 17 introduced riparian plant species in the western United States. We also assessed if model accuracy was associated with both environmental and biological factors that can influence dispersal. We used Random Forests to model species distributions and linear regression to determine if model accuracy was associated with dispersal‐related traits. Model accuracy for introduced species was higher than that for native species. Dispersal‐related traits did not affect model accuracy or improvement, though two other traits, family affiliation and rarity on the landscape, did have an effect. Distance‐based measures of dispersal potential improved model fit equally for both native and introduced species and for species with a variety of dispersal traits, suggesting that the importance of regional propagule pressure is relatively constant across species with different dispersal opportunities. Several lines of future questioning are suggested by our results, including why introduced species may in some cases produce more accurate distribution models than native species and how species dispersal traits relate to distribution model accuracy at different spatial scales.  相似文献   

15.
Many plant species are dependent on soil‐stored seeds for their persistence in fire‐prone systems. Seed germination is often stimulated by fire‐related cues including heat and smoke, but the way these cues promote germination may differ between structurally distinct plant communities with historically different fire regimes. In this study, we examined the effects of heat, smoke and their interactions on the germination of soil‐stored seeds from shrubby woodlands and herbaceous forests in south‐east Australia. The effect of these treatments on species richness, diversity and composition, and species richness and density of germinants within life‐forms (grass, forb and shrub) were assessed. Soils from each community were subjected to low heat (40°C), low heat with smoke, smoke, high heat (80°C), high heat with smoke and untreated (control) before being placed in a glasshouse, where the germinants were identified and counted. Greater species richness was stimulated by high heat treatments and smoke in both communities, a trend driven by shrubs and forbs, rather than grasses. Greater species diversity was stimulated by high heat with smoke in both communities. Greater densities of grass germinants were stimulated by all treatments, except low heat, in both communities. For forbs and shrubs, the effect of treatment depended on community. Compared to the control, low heat with smoke (forbs) and both low heat and low heat with smoke (shrubs) increased densities in the woodland but not in the forest. There were unique species compositions, different from the control, in all treatments in the forest but not in the woodland, where composition in low heat was not different from the control. These results indicate the importance of high soil temperatures and smoke in both communities. In the absence of wildfires, recurring prescribed burns that heat the soil to low temperatures are likely to reduce plant richness, diversity, and density resulting in a change in understorey species composition and structure.  相似文献   

16.
Populations of three‐spined sticklebacks Gasterosteus aculeatus originating from contrasting habitats were studied to determine if habitat can affect the ability to combine spatial cues. Previous work has shown that different species combine spatial cues in different ways, and this study showed these differences also arose within a species: all fish were able to use geometrical cues to locate a maze exit, but only fish collected from river populations combined geometric cues with a non‐geometric global landmark cue.  相似文献   

17.
Two hypotheses have been proposed to explain the abundance–occupancy relationship (AOR) in parasites. The niche breadth hypothesis suggests that host generalists are more abundant and efficient at colonizing different host communities than specialists. The trade‐off hypothesis argues that host specialists achieve high density across their hosts' ranges, whereas generalists incur the high cost of adaptation to diverse immuno‐defence systems. We tested these hypotheses using 386 haemosporidian cytochrome‐b lineages (1894 sequences) recovered from 2318 birds of 103 species sampled in NW Africa, NW Iberia, W Greater Caucasus and Transcaucasia. The number of regions occupied by lineages was associated with their frequency suggesting the presence of AOR in avian Haemosporidia. However, neither hypothesis provided a better explanation for the AOR. Although the host generalist Plasmodium SGS1 was over three times more abundant than other widespread lineages, both host specialists and generalists were successful in colonizing all study regions and achieved high overall prevalence.  相似文献   

18.
When group members possess differing information about the environment, they may disagree on the best movement decision. Such conflicts result in group break‐ups, and are therefore a fundamental driver of fusion–fission group dynamics. Yet, a paucity of empirical work hampers our understanding of how adaptive evolution has shaped plasticity in collective behaviours that promote and maintain fusion–fission dynamics. Using movement data from GPS‐collared bison, we found that individuals constantly associated with other animals possessing different spatial knowledge, and both personal and conspecific information influenced an individual's patch choice decisions. During conflict situations, bison used group familiarity coupled with their knowledge of local foraging options and recently sampled resource quality when deciding to follow or leave a group – a tactic that led to energy‐rewarding movements. Natural selection has shaped collective behaviours for coping with social conflicts and resource heterogeneity, which maintain fusion–fission dynamics and play an essential role in animal distribution.  相似文献   

19.
Question: To what extent do low flammability fuel traits enhance the survival and persistence of fire‐sensitive (slowing‐growing, non‐serotinous, non‐resprouting) dominant trees in highly flammable landscapes, under varying fire‐weather conditions? Location: Mixed forests co‐dominated by flammable Eucalyptus species and fire‐sensitive Callitris glaucophylla in Pilliga State Forest, southeast Australia. Methods: The influence of vegetation composition (relative abundance of Callitris and flammable Eucalyptus) on fire intensity and survival of fire‐sensitive Callitris was assessed across gradients of Callitris abundance in mixed EucalyptusCallitris forests that burned under low‐moderate and extreme fire‐weather conditions. Results: In areas that burned under low‐moderate fire‐weather conditions, as Callitris abundance increased, fire intensity declined and Callitris survival increased (46%). By comparison, in extreme fire‐weather conditions, lower fire intensity at higher levels of Callitris abundance, was not sufficient to increase Callitris survival (4%). Callitris survival was also positively related to trunk diameter. Ground fuel type, but not biomass, varied with vegetation composition. Conclusions: These results demonstrate that flammable feedbacks, mediated by low flammability fuel traits of dominant trees, can provide an important mechanism for enhancing the survival and persistence of slow‐growing, non‐serotinous, non‐resprouting, fire‐killed trees in highly flammable landscapes. By modifying vegetation and fuel structure, patches of fire‐sensitive Callitris reduce fire intensity, and thereby reduce Callitris mortality, enhancing population persistence. However, this feedback loop is insufficient to ensure Callitris survival under extreme fire‐weather conditions, when fire intensity is greater. After burning, stands remain vulnerable to future fires, until trees grow large enough to modify fuel levels and reduce stand flammability.  相似文献   

20.
Visual performance of the vertebrate eye requires large amounts of oxygen, and thus the retina is one of the highest oxygen-consuming tissues of the body. Here we show that neuroglobin, a neuron-specific respiratory protein distantly related to hemoglobin and myoglobin, is present at high amounts in the mouse retina (approximately 100 microm). The estimated concentration of neuroglobin in the retina is thus about 100-fold higher than in the brain and is in the same range as that of myoglobin in the muscle. Neuroglobin is expressed in all neurons of the retina but not in the retinal pigment epithelium. Neuroglobin mRNA was detected in the perikarya of the nuclear and ganglion layers of the neuronal retina, whereas the protein was present mainly in the plexiform layers and in the ellipsoid region of photoreceptor inner segment. The distribution of neuroglobin correlates with the subcellular localization of mitochondria and with the relative oxygen demands, as the plexiform layers and the inner segment consume most of the retinal oxygen. These findings suggest that neuroglobin supplies oxygen to the retina, similar to myoglobin in the myocardium and the skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号