首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global‐scale agro‐ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field‐trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high‐performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC‐Environmental Policy Integrated Climate (HPC‐EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field‐trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.  相似文献   

2.
Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. In this study, we investigate an alternative cropping system where bioenergy crops are grown in buffer strips adjacent to current agricultural crops such that nutrients present in runoff and leachate from the traditional row‐crops are reused by the bioenergy crops (switchgrass, miscanthus and native prairie grasses) in the buffer strips, thus providing environmental services and meeting economic needs of farmers. The process‐based biogeochemical model Denitrification‐Decomposition (DNDC) was used to simulate crop yield, nitrous oxide production and nitrate concentrations in leachate for a typical agricultural field in Illinois. Model parameters have been developed for the first time for miscanthus and switchgrass in DNDC. Results from model simulations indicated that growing bioenergy crops in buffer strips mitigated nutrient runoff, reduced nitrate concentrations in leachate by 60–70% and resulted in a reduction of 50–90% in nitrous oxide emissions compared with traditional cropping systems. While all the bioenergy crop buffers had significant positive environmental benefits, switchgrass performed the best with respect to minimizing nutrient runoff and nitrous oxide emissions, while miscanthus had the highest yield. Overall, our model results indicated that the bioenergy crops grown in these buffer strips achieved yields that are comparable to those obtained for traditional agricultural systems while simultaneously providing environmental services and could be used to design sustainable agricultural landscapes.  相似文献   

3.
Reduction in energy sector greenhouse gas GHG emissions is a key aim of European Commission plans to expand cultivation of bioenergy crops. Since agriculture makes up 10–12% of anthropogenic GHG emissions, impacts of land‐use change must be considered, which requires detailed understanding of specific changes to agroecosystems. The greenhouse gas (GHG) balance of perennials may differ significantly from the previous ecosystem. Net change in GHG emissions with land‐use change for bioenergy may exceed avoided fossil fuel emissions, meaning that actual GHG mitigation benefits are variable. Carbon (C) and nitrogen (N) cycling are complex interlinked systems, and a change in land management may affect both differently at different sites, depending on other variables. Change in evapotranspiration with land‐use change may also have significant environmental or water resource impacts at some locations. This article derives a multi‐criteria based decision analysis approach to objectively identify the most appropriate assessment method of the environmental impacts of land‐use change for perennial energy crops. Based on a literature review and conceptual model in support of this approach, the potential impacts of land‐use change for perennial energy crops on GHG emissions and evapotranspiration were identified, as well as likely controlling variables. These findings were used to structure the decision problem and to outline model requirements. A process‐based model representing the complete agroecosystem was identified as the best predictive tool, where adequate data are available. Nineteen models were assessed according to suitability criteria, to identify current model capability, based on the conceptual model, and explicit representation of processes at appropriate resolution. FASSET, ECOSSE, ANIMO, DNDC, DayCent, Expert‐N, Ecosys, WNMM and CERES‐NOE were identified as appropriate models, with factors such as crop, location and data availability dictating the final decision for a given project. A database to inform such decisions is included.  相似文献   

4.
To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield‐scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield‐scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed‐effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2O and yield‐scaled N2O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield‐scaled CH4 emissions decreased with N addition. Overall, yield‐scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2O emissions are the primary contributor to GWP, meaning yield‐scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield‐scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield‐scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems.  相似文献   

5.
One of the major objectives of the current expansion in bioenergy cropping is to reduce global greenhouse gas emissions for environmental benefit. The cultivation of bioenergy and biofuel crops also affects biodiversity more directly, both positively and negatively. Ecological impact assessment methods for bioenergy projects (including changes to policy and land use) should address not simply changes to species abundance at field level, but include larger scale issues, including changes to landscape diversity, potential impacts to primary and secondary habitats and potential impacts on climate change. Such assessments require a correspondingly broad range of scientific methods, including modelling of climate and land use as well as the observation of biodiversity and landscape indicators. It is also possible to adopt evidence-based guidelines for good practice for situations where comprehensive assessments are not available. These might include favouring projects and policies that avoid gene flow to wild relatives of crops in centres of diversity, that do not result in invasion by the crop into other habitats, that enhance field-scale biodiversity, that increase landscape diversity, that do not threaten valued habitats within the local landscape, that promote the sustainable management of biodiverse habitats, that do not increase the risk of loss of primary habitats and that result in a proportionately large reduction in greenhouse gas emissions.  相似文献   

6.
Perennial grasses have been proposed as viable bioenergy crops because of their potential to yield harvestable biomass on marginal lands annually without displacing food and to contribute to greenhouse gas (GHG) reduction by storing carbon in soil. Switchgrass, miscanthus, and restored native prairie are among the crops being considered in the corn and agricultural regions of the Midwest and eastern United States. In this study, we used an extensive dataset of site observations for each of these crops to evaluate and improve the DayCent biogeochemical model and make predictions about how both yield and GHG fluxes would respond to different management practices compared to a traditional corn‐soy rotation. Using this model‐data integration approach, we found 30–75% improvement in our predictions over previous studies and a subsequent evaluation with a synthesis of sites across the region revealed good model‐data agreement of harvested yields (r2 > 0.62 for all crops). We found that replacement of corn‐soy rotations would result in a net GHG reduction of 0.5, 1.0, and 2.0 Mg C ha?1 yr?1 with average annual yields of 3.6, 9.2, and 17.2 Mg of dry biomass per year for native prairie, switchgrass, and miscanthus respectively. Both the yield and GHG balance of switchgrass and miscanthus were affected by harvest date with highest yields occurring near onset of senescence and highest GHG reductions occurring in early spring before the new crops emergence. Addition of a moderate length rotation (10–15 years) caused less than a 15% change to yield and GHG balance. For policy incentives aimed at GHG reduction through onsite management practices and improvement of soil quality, post‐senescence harvests are a more effective means than maximizing yield potential.  相似文献   

7.
The introduction of new crops to agroecosystems can change the chemical composition of the atmosphere by altering the amount and type of plant‐derived biogenic volatile organic compounds (BVOCs). BVOCs are produced by plants to aid in defense, pollination, and communication. Once released into the atmosphere, they have the ability to influence its chemical and physical properties. In this study, we compared BVOC emissions from three potential bioenergy crops and estimated their theoretical impacts on bioenergy agroecosystems. The crops chosen were miscanthus (Miscanthus × giganteus), switchgrass (Panicum virgatum), and an assemblage of prairie species (mix of ~28 species). The concentration of BVOCs was different within and above plant canopies. All crops produced higher levels of emissions at the upper canopy level. Miscanthus produced lower amounts of volatiles compared with other grasses. The chemical composition of volatiles differed significantly among plant communities. BVOCs from miscanthus were depleted in terpenoids relative to the other vegetation types. The carbon flux via BVOC emissions, calculated using the flux‐gradient method, was significantly higher in the prairie assemblage compared with miscanthus and switchgrass. The BVOC carbon flux was approximately three orders of magnitude lower than the net fluxes of carbon measured over the same fields using eddy covariance systems. Extrapolation of our findings to the landscape scale leads us to suggest that the widespread adoption of bioenergy crops could potentially alter the composition of BVOCs in the atmosphere, thereby influencing its warming potential, the formation of atmospheric particulates, and interactions between plants and arthropods. Our data and projections indicate that, among at least these three potential options for bioenergy production, miscanthus is likely to have lower impacts on atmospheric chemistry and biotic interactions mediated by these volatiles when miscanthus is planted on the landscape scale.  相似文献   

8.
We present the first assessment of the impact of land use change (LUC) to second‐generation (2G) bioenergy crops on ecosystem services (ES) resolved spatially for Great Britain (GB). A systematic approach was used to assess available evidence on the impacts of LUC from arable, semi‐improved grassland or woodland/forest, to 2G bioenergy crops, for which a quantitative ‘threat matrix’ was developed. The threat matrix was used to estimate potential impacts of transitions to either Miscanthus, short‐rotation coppice (SRC, willow and poplar) or short‐rotation forestry (SRF). The ES effects were found to be largely dependent on previous land uses rather than the choice of 2G crop when assessing the technical potential of available biomass with a transition from arable crops resulting in the most positive effect on ES. Combining these data with constraint masks and available land for SRC and Miscanthus (SRF omitted from this stage due to lack of data), south‐west and north‐west England were identified as areas where Miscanthus and SRC could be grown, respectively, with favourable combinations of economic viability, carbon sequestration, high yield and positive ES benefits. This study also suggests that not all prospective planting of Miscanthus and SRC can be allocated to agricultural land class (ALC) ALC 3 and ALC 4 and suitable areas of ALC 5 are only minimally available. Beneficial impacts were found on 146 583 and 71 890 ha when planting Miscanthus or SRC, respectively, under baseline planting conditions rising to 293 247 and 91 318 ha, respectively, under 2020 planting scenarios. The results provide an insight into the interplay between land availability, original land uses, bioenergy crop type and yield in determining overall positive or negative impacts of bioenergy cropping on ecosystems services and go some way towards developing a framework for quantifying wider ES impacts of this important LUC.  相似文献   

9.
Renewable fuel standards in the US and elsewhere mandate the production of large quantities of cellulosic biofuels with low greenhouse gas (GHG) footprints, a requirement which will likely entail extensive cultivation of dedicated bioenergy feedstock crops on marginal agricultural lands. Performance data for such systems is sparse, and non‐linear interactions between the feedstock species, agronomic management intensity, and underlying soil and land characteristics complicate the development of sustainable landscape design strategies for low‐impact commercial‐scale feedstock production. Process‐based ecosystem models are valuable for extrapolating field trial results and making predictions of productivity and associated environmental impacts that integrate the effects of spatially variable environmental factors across diverse production landscapes. However, there are few examples of ecosystem model parameterization against field trials on both prime and marginal lands or of conducting landscape‐scale analyses at sufficient resolution to capture interactions between soil type, land use, and management intensity. In this work we used a data‐diverse, multi‐criteria approach to parameterize and validate the DayCent biogeochemistry model for upland and lowland switchgrass using data on yields, soil carbon changes, and soil nitrous oxide emissions from US field trials spanning a range of climates, soil types, and management conditions. We then conducted a high‐resolution case study analysis of a real‐world cellulosic biofuel landscape in Kansas in order to estimate feedstock production potential and associated direct biogenic GHG emissions footprint. Our results suggest that switchgrass yields and emissions balance can vary greatly across a landscape large enough to supply a biorefinery in response to variations in soil type and land‐use history, but that within a given land base both of these performance factors can be widely modulated by changing management intensity. This in turn implies a large sustainable cellulosic biofuel landscape design space within which a system can be optimized to meet economic or environmental objectives.  相似文献   

10.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

11.
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.  相似文献   

12.
Greenhouse gas (GHG) emissions from soils are a key sustainability metric of cropping systems. During crop establishment, disruptive land‐use change is known to be a critical, but under reported period, for determining GHG emissions. We measured soil N2O emissions and potential environmental drivers of these fluxes from a three‐year establishment‐phase bioenergy cropping systems experiment replicated in southcentral Wisconsin (ARL) and southwestern Michigan (KBS). Cropping systems treatments were annual monocultures (continuous corn, corn–soybean–canola rotation), perennial monocultures (switchgrass, miscanthus, and poplar), and perennial polycultures (native grass mixture, early successional community, and restored prairie) all grown using best management practices specific to the system. Cumulative three‐year N2O emissions from annuals were 142% higher than from perennials, with fertilized perennials 190% higher than unfertilized perennials. Emissions ranged from 3.1 to 19.1 kg N2O‐N ha?1 yr?1 for the annuals with continuous corn > corn–soybean–canola rotation and 1.1 to 6.3 kg N2O‐N ha?1 yr?1 for perennials. Nitrous oxide peak fluxes typically were associated with precipitation events that closely followed fertilization. Bayesian modeling of N2O fluxes based on measured environmental factors explained 33% of variability across all systems. Models trained on single systems performed well in most monocultures (e.g., R= 0.52 for poplar) but notably worse in polycultures (e.g., R= 0.17 for early successional, R= 0.06 for restored prairie), indicating that simulation models that include N2O emissions should be parameterized specific to particular plant communities. Our results indicate that perennial bioenergy crops in their establishment phase emit less N2O than annual crops, especially when not fertilized. These findings should be considered further alongside yield and other metrics contributing to important ecosystem services.  相似文献   

13.
Sweetcane (Erianthus arundinaceus [Retzius] Jeswiet) is an ecologically dominant warm‐season perennial grass native to southern China. It traditionally plays an important role in sugarcane breeding due to its excellent biological traits and genetic relatedness to sugarcane. Recent studies have shown that sweetcane has a great potential in bioenergy and environmental remediation. The objective of this paper is to review the current research on sweetcane biology, phenology, biogeography, agronomy, and conversion technology, in order to explore its development as a bioenergy crop with environmental remediation potential. Sweetcane is resistant to a variety of stressors and can adapt to different growth environments. It can be used for ecological restoration, soil and water conservation, contaminated land repairing, nonpoint source pollutants barriers in buffer strips along surface waters, and as an ornamental and remediation plant on roadsides and in wetlands. Sweetcane exhibits higher biomass yield, calorific value and cellulose content than other bioenergy crops under the same growth conditions, thereby indicating its superior potential in second‐generation biofuel production. However, research on sweetcane as a bioenergy plant is still in its infancy. More works need be conducted on breeding, cultivation, genetic transformation, and energy conversion technologies.  相似文献   

14.
Replacement of fossil fuels with sustainably produced biomass crops for energy purposes has the potential to make progress in addressing climate change concerns, nonrenewable resource use, and energy security. The perennial grass Miscanthus is a dedicated energy crop candidate being field tested in Ontario, Canada, and elsewhere. Miscanthus could potentially be grown in areas of the province that differ substantially in terms of agricultural land class, environmental factors and current land use. These differences could significantly affect Miscanthus yields, input requirements, production practices, and the types of crops being displaced by Miscanthus establishment. This study assesses implications on life cycle greenhouse gas (GHG) emissions of these differences through evaluating five Miscanthus production scenarios within the Ontario context. Emissions associated with electricity generation with Miscanthus pellets in a hypothetically retrofitted coal generating station are examined. Indirect land use change impacts are not quantified but are discussed. The net life cycle emissions for Miscanthus production varied greatly among scenarios (?90–170 kg CO2eq per oven dry tonne of Miscanthus bales at the farm gate). In some cases, the carbon stock dynamics of the agricultural system offset the combined emissions of all other life cycle stages (i.e., production, harvest, transport, and processing of biomass). Yield and soil C of the displaced agricultural systems are key parameters affecting emissions. The systems with the highest potential to provide reductions in GHG emissions are those with high yields, or systems established on land with low soil carbon. All scenarios have substantially lower life cycle emissions (?20–190 g CO2eq kWh?1) compared with coal‐generated electricity (1130 g CO2eq kWh?1). Policy development should consider the implication of land class, environmental factors, and current land use on Miscanthus production.  相似文献   

15.
Utility of perennial bioenergy crops (e.g., switchgrass and miscanthus) offers unique opportunities to transition toward a more sustainable energy pathway due to their reduced carbon footprint, averted competition with food crops, and ability to grow on abandoned and degraded farmlands. Studies that have examined biogeophysical impacts of these crops noted a positive feedback between near‐surface cooling and enhanced evapotranspiration (ET), but also potential unintended consequences of soil moisture and groundwater depletion. To better understand hydrometeorological effects of perennial bioenergy crop expansion, this study conducted high‐resolution (2‐km grid spacing) simulations with a state‐of‐the‐art atmospheric model (Weather Research and Forecasting system) dynamically coupled to a land surface model. We applied the modeling system over the Southern Plains of the United States during a normal precipitation year (2007) and a drought year (2011). By focusing the deployment of bioenergy cropping systems on marginal and abandoned farmland areas (to reduce the potential conflict with food systems), the research presented here is the first realistic examination of hydrometeorological impacts associated with perennial bioenergy crop expansion. Our results illustrate that the deployment of perennial bioenergy crops leads to widespread cooling (1–2 °C) that is largely driven by an enhanced reflection of shortwave radiation and, secondarily, due to an enhanced ET. Bioenergy crop deployment was shown to reduce the impacts of drought through simultaneous moistening and cooling of the near‐surface environment. However, simulated impacts on near‐surface cooling and ET were reduced during the drought relative to a normal precipitation year, revealing differential effects based on background environmental conditions. This study serves as a key step toward the assessment of hydroclimatic sustainability associated with perennial bioenergy crop expansion under diverse hydrometeorological conditions by highlighting the driving mechanisms and processes associated with this energy pathway.  相似文献   

16.
The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time‐dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time‐dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (ΔTs(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to ΔTs(n). However, the first years after establishing the willow plantation it presented a warming contribution to ΔTs(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.  相似文献   

17.
In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)‐willow. The amount of SOC sequestered in the soil is a function of site‐specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC‐willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land‐use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC‐willow. Twenty‐nine locations in the United Kingdom, comprising 19 paired transitions to SRC‐willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC‐willow plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC‐willow plantations in the United Kingdom, provide confidence in using this process‐based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.  相似文献   

18.
Climate‐smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta‐analysis of 3,049 paired measurements from 417 peer‐reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta‐analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity.  相似文献   

19.
Bioenergy plays an important role in low greenhouse gas stabilization scenarios. Among various possible sources of bioenergy, dedicated bio‐crops could contribute to most of the potential. However, large scale bio‐crop deployment raises sustainability concerns. Policies to alleviate the pressure of bio‐crops on the terrestrial environment can affect bioenergy potential and production costs. Here, we estimated the maximum bioenergy potential under environmental protection policies (biodiversity and soil protection) and societal transformation measures from demand and supply side (demand‐side policy includes sustainable diet; supply‐side policy includes advanced technology and trade openness for food) by using an integrated assessment modelling framework, which consists of a general equilibrium model (Asian‐Pacific Integrated Model/Computable General Equilibrium) and a spatial land use allocation model (Asian‐Pacific Integrated Model/Platform for Land‐Use and Environmental Model). We found that the global advanced bioenergy potential under no policy was 245 EJ/year and that 192 EJ/year could be produced under US$5/GJ. These figures were 149 EJ/year and 110 EJ/year, respectively, under a full environmental policy. Biodiversity protection has a greater impact than soil protection due to its larger coverage and stronger implementation. Societal transformation measures effectively increase them to 186 EJ/year and 143 EJ/year, respectively, even under full environmental policies. These results imply that the large‐scale bioenergy deployment possibly needed for the climate target to limit the global mean temperature increase well below 2°C compared to the preindustrial level might face a trade‐off with environmental protection targets and that possible mitigation pathways in harmony with other environmental issues need to be explored.  相似文献   

20.
Annual row cropping systems converted to perennial bioenergy crops tend to accrue soil C, likely a function of increased root production and decreased frequency of tillage; however, very little is known about the mechanisms governing the accrual and stability of this additional soil C. To address this uncertainty, we assessed the formation and stability of aggregates and soil organic C (SOC) pools under switchgrass, giant miscanthus, a native perennial grass mix and continuous corn treatments in Michigan and Wisconsin soils differing in both texture and mineralogy. We isolated different aggregate size fractions, >2 mm, 0.5–2 mm, and <0.5 mm, using a procedure intended to minimize alterations to aggregate biological and chemical properties. We determined SOC, permanganate oxidizable C (POXC), and microbial activities (i.e. enzyme activities and soil respiration rates) associated with these aggregates. Soil type strongly influenced the trajectory of aggregate formation and stabilization with differences between sites in mean aggregate size, stability, SOC and microbial activity under perennial vs. corn cropping systems. At the Michigan site, soil microbial activities were highest in the >2 mm aggregates, and higher under the perennial grasses compared to corn. Contrastingly, in Wisconsin soils, microbial activities were highest in the <0.5 mm aggregates and evidence for soil C accrual under perennial grasses was observed only in a fast turnover pool in the <0.5 mm aggregate class. Our results help explain cross‐site variability in soil C accrual under perennial bioenergy crops by demonstrating how interactions between belowground productivity, soil type, aggregation processes and microbial communities influence the rates and extent of SOC stabilization. Bioenergy cropping systems have the potential to be low‐C energy sources but first we must understand the complex interactions controlling the formation and stabilization of SOC if we are to maximize soil C accrual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号