首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Feedbacks among inundation, sediment trapping, and vegetation productivity help maintain coastal wetlands facing sea‐level rise (SLR ). However, when the SLR rate exceeds a threshold, coastal wetlands can collapse. Understanding the threshold helps address key challenges in ecology—nonlinear response of ecosystems to environmental change, promotes communication between ecologists and resource managers, and facilitates decision‐making in climate change policies. We studied the threshold of SLR rate and developed a new threshold of SLR acceleration rate on sustainability of coastal wetlands as SLR is likely to accelerate due to enhanced anthropogenic forces. Deriving these two thresholds depends on the temporal scale, the interaction of SLR with other environmental factors, and landscape metrics, which have not been fully accounted for before this study. We chose a representative marine‐dominated estuary in the northern Gulf of Mexico, Grand Bay in Mississippi, to test the concept of SLR thresholds. We developed a mechanistic model to simulate wetland change and then derived the SLR thresholds for Grand Bay. The model results show that the threshold of SLR rate in Grand Bay is 11.9 mm/year for 2050, and it drops to 8.4 mm/year for 2100 using total wetland area as a landscape metric. The corresponding SLR acceleration rate thresholds are 3.02 × 10?4 m/year2 and 9.62 × 10?5 m/year2 for 2050 and 2100, respectively. The newly developed SLR acceleration rate threshold can help quantify the temporal lag before the rapid decline in wetland area becomes evident after the SLR rate threshold is exceeded, and cumulative SLR a wetland can adapt to under the SLR acceleration scenarios. Based on the thresholds, SLR that will adversely impact the coastal wetlands in Grand Bay by 2100 will fall within the likely range of SLR under a high warming scenario (RCP 8.5), highlighting the need to avoid RCP 8.5 to preserve these marshes.  相似文献   

2.
Sea‐level rise (SLR) impacts on intertidal habitat depend on coastal topology, accretion, and constraints from surrounding development. Such habitat changes might affect species like Belding's savannah sparrows (Passerculus sandwichensis beldingi; BSSP), which live in high‐elevation salt marsh in the Southern California Bight. To predict how BSSP habitat might change under various SLR scenarios, we first constructed a suitability model by matching bird observations with elevation. We then mapped current BSSP breeding and foraging habitat at six estuarine sites by applying the elevation‐suitability model to digital elevation models. To estimate changes in digital elevation models under different SLR scenarios, we used a site‐specific, one‐dimensional elevation model (wetland accretion rate model of ecosystem resilience). We then applied our elevation‐suitability model to the projected digital elevation models. The resulting maps suggest that suitable breeding and foraging habitat could decline as increased inundation converts middle‐ and high‐elevation suitable habitat to mudflat and subtidal zones. As a result, the highest SLR scenario predicted that no suitable breeding or foraging habitat would remain at any site by 2100 and 2110. Removing development constraints to facilitate landward migration of high salt marsh, or redistributing dredge spoils to replace submerged habitat, might create future high salt marsh habitat, thereby reducing extirpation risk for BSSP in southern California.  相似文献   

3.
Factors affecting the distribution of juvenile estuarine and inshore fish   总被引:20,自引:0,他引:20  
The differential distributions of juveniles and adults of 25 species of teleost were investigated and compared from four habitat types in sub-tropical Moreton Bay, Queensland. The aim of the study was to identify factors influencing the distribution of juveniles, particularly the species which enter estuaries. The following habitats were sampled: a shallow, sheltered tidal estuary (Caboolture); a shallow, exposed bay with muddy substrates (Deception Bay); an exposed area of sandy substrates and seagrass (Toorbol Point) and a sheltered oceanic site with sandy substrates and seagrass (Kooringal). Data on diet, spawning seasons and recruitment periods of fry are presented together with measurements of salinity, temperature and turbidity. Species entering estuaries recruited mainly in summer (rainy season). The possible preference of juveniles for calm water, the roles of food and predation pressure, the effects of salinity, temperature and turbidity are discussed in relation to the biology and distribution of the fish. Salinity and temperature were probably not important to most juvenile fish. The effects of calm water, suitable food and predators vary according to species. Although all juveniles studied preferred shallow water, in the case of those entering estuaries, turbidity was the single most important factor. Juveniles of the same species occurred in both the estuary and Deception Bay where abiotic and biotic factors other than turbidity were different. During summer, turbidity gradients extended from east to west in Moreton Bay with highest turbidities in Caboolture estuary and Deception Bay. In winter, turbidities throughout Moreton Bay were low and relatively uniform. At this time many of the ‘clear water’ species occurred in Deception Bay. The influence of high turbidity on fish may be linked to reduced predation pressure and perhaps food supply in shallow water. Turbidity gradients in summer may aid fry in locating estuarine nursery grounds. It is apparent however, that juveniles of many species are probably not attracted to estuaries per se but to shallow turbid areas.  相似文献   

4.
One of the largest restoration programs in the world, the Comprehensive Everglades Restoration Plan (CERP) aims to restore freshwater inputs to Everglades wetlands and the Florida Bay estuary. This study predicted how the Florida Bay ecosystem may respond to hydrological restoration from CERP within the context of contemporary projected impacts of sea-level rise (SLR) and increased future temperatures. A spatial–temporal dynamic model (Ecospace) was used to develop a spatiotemporal food web model incorporating environmental drivers of salinity, salinity variation, temperature, depth, distance to mangrove, and seagrass abundance and was used to predict responses of biomass, fisheries catch, and ecosystem resilience between current and future conditions. Changes in biomass between the current and future scenario suggest a suite of winners and losers, with many estuarine species increasing in both total biomass and spatial distribution. Notable biomass increases were predicted for important forage species, including bay anchovy (+32%), hardhead halfbeak (+19%), and pinfish (+31%), while decreases were predicted in mullet (−88%), clupeids (−55%), hardhead silverside (−15%), mojarras (−117%), and Portunid crabs (−16%). Increases in sportfish biomass included the angler-preferred spotted seatrout (+9%), red drum (+10%), and gray snapper (+8%), while decreases included sheepshead (−40%), Atlantic tarpon (−73%), and common snook (−507%). Ecosystem resilience and fisheries catch of angler-preferred species were predicted to improve in the future scenario in total, although a localized decline in resilience predicted for the Central Region may warrant further attention. Our results suggest the Florida Bay ecosystem is likely to achieve restoration benefits in spite of, and in some cases facilitated by, the projected future impacts from climate change due to the system's shallow depth and detrital dominance. The incorporation of climate impacts into long-term restoration planning using ecosystem modeling in similar systems facing unknown futures of SLR, warming seas, and shifting species distributions is recommended.  相似文献   

5.
Aim Global sea‐level rise (SLR) could be as much as 1.8 metres by 2100, which will impact coastal wetland communities and threatened species. We evaluated the likely outcomes of SLR for wetland communities using a process‐based simulation model and coupled this with a metapopulation model for a threatened native rodent (Xeromys myoides). Furthermore, we tested the amplified impacts of SLR, urban growth and introduced predators on X. myoides persistence. Location South‐east Queensland, Australia. Methods We adapted the Sea Level Affects Marshes Model to subtropical Australia. We used LiDAR elevation data, field data to parameterize surface accretion and shallow subsidence, and local knowledge to configure wetland transitions. SLR was simulated based on the IPCC B1 and A1FI scenarios, as well as the maximal limit of 1.8 m by 2100. Further, we coupled our demographic model to projected shifts in wetland habitat, and estimates of future wetland loss to urban expansion and feral cat (Felis catus) predation. Results Our models project a general decline in wetland communities under SLR, with a noted exception of mangroves. Under the A1FI scenario, SLR allows mangroves to migrate inland, with urban development acting as an obstruction in some areas. Mangrove expansion provides an unexpected benefit for dependent X. myoides populations, although the inclusion of predation and habitat loss due to urban development still suggests extirpation in c. 50 years. Main conclusions Through this case study, we illustrate the usefulness of process‐based SLR models in understanding outcomes for wetland communities and dependent species. Our models will underscore decision‐making in a dynamic system, with global applications for urban planning, conservation prioritization and wildlife management.  相似文献   

6.
董欣怡  祝明建  栾博  管少平  林丰泽 《生态学报》2024,44(12):5116-5127
全球气候变暖所导致的海平面上升和快速城镇化将对沿海生境的分布和景观格局造成重大影响。评估海平面上升影响下的滨海湿地的脆弱性是对区域生态环境进行修复治理的重要依据。以粤港澳大湾区为例,基于SLAMM模型和Fragstas模型,针对六种海平面上升和土地利用耦合情景,对红树林、盐沼和潮滩三类海岸生境在2100年的面积变化、分布状况和脆弱程度进行了预测和分析。结果表明:1) 随着海平面上升,红树林和潮滩生境遭受严重退化。其中,红树林高脆弱性区主要分布在西江口、珠江口和黄茅海东岸。潮滩高脆弱性区则平均分布在大湾区沿海地带。相比之下,盐沼生境受海平面上升的影响较小。2) 与红树林和潮滩相比,土地利用模式对盐沼生境的影响最为显著。在保护已开发用地的情景下,珠江口西侧的盐沼面积大幅增加,脆弱性程度低。在保护所有旱地的情景下,盐沼生境面积虽然基本维持,但景观格局破坏严重,脆弱性程度高。本研究建议针对高脆弱区,动态调整土地利用策略,清理沿海湿地向内迁移的空间,增强沿海生境应对海平面上升的适应性。本研究可为沿海湿地的管理和保护提供科学支持。  相似文献   

7.
Few studies have looked into climate change resilience of populations of wild animals. We use a model higher vertebrate, the green sea turtle, as its life history is fundamentally affected by climatic conditions, including temperature‐dependent sex determination and obligate use of beaches subject to sea level rise (SLR). We use empirical data from a globally important population in West Africa to assess resistance to climate change within a quantitative framework. We project 200 years of primary sex ratios (1900–2100) and create a digital elevation model of the nesting beach to estimate impacts of projected SLR. Primary sex ratio is currently almost balanced, with 52% of hatchlings produced being female. Under IPCC models, we predict: (a) an increase in the proportion of females by 2100 to 76%–93%, but cooler temperatures, both at the end of the nesting season and in shaded areas, will guarantee male hatchling production; (b) IPCC SLR scenarios will lead to 33.4%–43.0% loss of the current nesting area; (c) climate change will contribute to population growth through population feminization, with 32%–64% more nesting females expected by 2120; (d) as incubation temperatures approach lethal levels, however, the population will cease growing and start to decline. Taken together with other factors (degree of foraging plasticity, rookery size and trajectory, and prevailing threats), this nesting population should resist climate change until 2100, and the availability of spatial and temporal microrefugia indicates potential for resilience to predicted impacts, through the evolution of nest site selection or changes in nesting phenology. This represents the most comprehensive assessment to date of climate change resilience of a marine reptile using the most up‐to‐date IPCC models, appraising the impacts of temperature and SLR, integrated with additional ecological and demographic parameters. We suggest this as a framework for other populations, species and taxa.  相似文献   

8.
海平面上升影响下广西钦州湾红树林脆弱性评价   总被引:3,自引:0,他引:3  
李莎莎  孟宪伟  葛振鸣  张利权 《生态学报》2014,34(10):2702-2711
全球气候变化所导致的海平面上升等现象对海岸带产生显著影响。红树林是生长在热带、亚热带沿海潮间带的生态系统,对海平面上升极为敏感。以广西钦州湾红树林生态系统为对象,采用SPRC(Source-Pathway-Receptor-Consequence)评估模式分析了气候变化所导致的海平面上升对红树林生态系统的主要影响。构建了以海平面上升速率、地面沉降/抬升速率、生境高程、日均淹水时间、潮滩坡度和沉积速率为指标的脆弱性评价体系。在GIS平台上量化各脆弱性指标,计算脆弱性指数并分级,建立了定量评价红树林生态系统脆弱性方法,实现了在不同海平面上升情景(近40年来广西海平面平均上升速率、IPCC预测的B1和A1FI情景)和时间尺度下(2030年、2050和2100年),广西钦州湾红树林生态系统脆弱性的定量空间评价。研究结果表明,在近40年广西海平面平均上升速率与B1情景下,钦州湾红树林在各评估时段表现为不脆弱。而在A1FI情景下,至2050年研究区域41.3%红树林为低脆弱,至2100年增加至69.8%。研究采用的SPRC评估模型、脆弱性评价指标体系和定量空间评估方法能够客观定量评价气候变化所导致的海平面上升影响下红树林生态系统脆弱性,可为制定切实可行的应对措施和保障海岸带生态系统安全提供科学依据。  相似文献   

9.
Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat‐forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia – a relatively pristine subtropical embayment whose dominant, canopy‐forming seagrass, Amphibolis antarctica, is a temperate species growing near its low‐latitude range limit – as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal‐borne video footage taken from the perspective of resident, seagrass‐associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long‐term, community‐level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal‐borne video and data‐logging systems, can make an important contribution to this framework.  相似文献   

10.
Because coastal habitats store large amounts of organic carbon (Corg), the conservation and restoration of these habitats are considered to be important measures for mitigating global climate change. Although future sea‐level rise is predicted to change the characteristics of these habitats, its impact on their rate of Corg sequestration is highly uncertain. Here we used historical depositional records to show that relative sea‐level (RSL) changes regulated Corg accumulation rates in boreal contiguous seagrass–saltmarsh habitats. Age–depth modeling and geological and biogeochemical approaches indicated that Corg accumulation rates varied as a function of changes in depositional environments and habitat relocations. In particular, Corg accumulation rates were enhanced in subtidal seagrass meadows during times of RSL rise, which were caused by postseismic land subsidence and climate change. Our findings identify historical analogs for the future impact of RSL rise driven by global climate change on rates of Corg sequestration in coastal habitats.  相似文献   

11.
A decrease in seagrass cover and a commensurate increase in Caulerpa taxifolia distribution in Moreton Bay have prompted concern for the impact that habitat change may have on faunal communities. Therefore, it is important to understand the patterns of habitat use. We examined habitat selection of three common seagrass species: double-ended pipefish (Syngnathoides biaculeatus), eastern trumpeter (Pelates quadrilineatus), and fan-bellied leatherjacket (Monacanthus chinensis) using a mesocosm experiment. Fish were given three possible habitat pairings (1) seagrass and C. taxifolia, (2) seagrass and unvegetated, and (3) C. taxifolia and unvegetated. Observation trials were conducted during the day and night over two days. In all trials, fish preferred vegetated habitat (seagrass or C. taxifolia) over unvegetated habitat (sand). In seagrass and C. taxifolia trials, all species preferred seagrass significantly over C. taxifolia. Habitat use patterns did not differ between day and night trials. Caulerpa taxifolia provides a valuable structured habitat in the absence of seagrass; however, it is unclear if C. taxifolia meadows provide other resource benefits to fishes beyond that of shelter.  相似文献   

12.
Global species range dynamics are intrinsically influenced by the interplay between human activities and climate compatibility. Snowflake coral (Carijoa riisei) is a soft octacoral species that belongs to the family Clavulariidae and can rapidly grow to colonise new habitats. This species has successfully colonised numerous habitats, displacing native species and disrupting the ecological balance in the introduced habitats. Recent investigations into species invasions in aquatic ecosystems suggest that anthropogenic activities and climate change will accelerate the introduction, establishment, and spread of invasive species to new habitats. In this study, we utilised ensemble species distribution modelling to investigate shifts in the invasive potential of Snowflake coral in current and future climatic settings on a global scale. Future distribution was forecasted using four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0, and 8.5) across two periods (2040–2050 and 2090–2100). The results accurately predicted the known distributional range of the species. Temperature, distance to the port, and bathymetry were identified as the three most significant predictor variables. The low and medium habitat suitability regions increased in all scenarios and periods. In the high habitat suitability category, only RCP 4.5 and RCP 6.0 in the 2090–2100 period exhibited an increase in percentage area. Under the worst-case climate scenario, RCP 8.5 (2090–2100), the high-suitability regions displayed a surprising decline in area percentage, which can be attributed to the temperature thresholds of the species. Our findings indicate that the species has a greater potential to spread under current climatic conditions than previously reported, and its expansion may further accelerate in the future. This highlights the urgent need for more intensive surveys employing advanced detection tools and the implementation of proactive management measures to protect vulnerable ecosystems that could be impacted by this species.  相似文献   

13.
Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.  相似文献   

14.
Caulerpa taxifolia, an invasive species elsewhere in the world, is native to Moreton Bay where its distribution has been increasing in recent years. In Australia, dense beds of C. taxifolia are predominantly found in areas of low light and high nutrients (low water quality). Monitoring data from Moreton Bay suggests that native C. taxifolia is not directly replacing seagrass, but that there is a successional trend of seagrass loss and subsequent C. taxifolia colonization. The current study examined responses of C. taxifolia in relation to changes in environmental conditions using ambient water quality and a light/nutrient manipulative experiment. In the ambient water quality experiment we found that C. taxifolia grew significantly faster in areas with higher light (lower turbidity). The manipulative experiment demonstrated that nutrients stimulate C. taxifolia growth, however, light availability and seasonality appear to influence the response of C. taxifolia growth to nutrients in Moreton Bay. These findings suggest that C. taxifolia is unlikely to colonize seagrass beds in areas with high light and low nutrients; however, in areas with moderate light and moderate to high nutrients C. taxifolia and seagrass are likely to coexist.  相似文献   

15.
Individual variation in habitat selection has emerged as an important component necessary for understanding population ecology. For threatened species, where habitat loss and alteration affect population trends, understanding habitat use provides insight into mechanisms of population change. Polar bears, Ursus maritimus, in the Western Hudson Bay subpopulation have experienced declines in body condition, survival, and abundance associated with delayed freeze-up and earlier break-up of sea ice due to climate change. Although this subpopulation has been intensively studied, sea ice habitat selection remains poorly understood. We developed a habitat selection model using a mixed conditional logistic regression to determine habitat selection across seasons (freeze-up, early winter, late winter, break-up) and assess individual variation in habitat selection. We used 8487 locations collected between 2004 and 2010 from 64 GPS satellite linked radio-collars on adult females to compare habitat selected to habitat available. Selection changed across seasons and varied the most among individuals during the freeze-up and break-up seasons. During later winter, there was less variation in habitat selection among individuals and bears showed the least amount of selection in habitat use. Distance to the denning area, a core terrestrial refuge habitat, was the top-ranked covariate in all seasons suggesting site fidelity plays a role in habitat selection. Some individual variation may have been due to reproductive status, though we could not account for this directly. Recognizing individual differences, especially in a rapidly changing environment, allows managers to identify critical habitats instead of simply average resources, and may lead to more successful efforts to protect habitats.  相似文献   

16.
Seascape-scale trophic links for fish on inshore coral reefs   总被引:2,自引:0,他引:2  
It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0–2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25–44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves (R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14–78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8–55 % to a fish species found only on reefs (Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.  相似文献   

17.
Mollusks are an important component of the mangrove ecosystem, and the vertical distributions of molluscan species in this ecosystem are primarily dictated by tidal inundation. Thus, sea level rise (SLR) may have profound effects on mangrove mollusk communities. Here, we used dynamic empirical models, based on measurements of surface elevation change, sediment accretion, and molluscan zonation patterns, to predict changes in molluscan spatial distributions in response to different sea level rise rates in the mangrove forests of Zhenzhu Bay (Guangxi, China). The change in surface elevation was 4.76–9.61 mm year−1 during the study period (2016–2020), and the magnitude of surface‐elevation change decreased exponentially as original surface elevation increased. Based on our model results, we predicted that mangrove mollusks might successfully adapt to a low rate of SLR (2.00–4.57 mm year−1) by 2100, with mollusks moving seaward and those in the lower intertidal zones expanding into newly available zones. However, as SLR rate increased (4.57–8.14 mm year−1), our models predicted that surface elevations would decrease beginning in the high intertidal zones and gradually spread to the low intertidal zones. Finally, at high rates of SLR (8.14–16.00 mm year−1), surface elevations were predicted to decrease across the elevation gradient, with mollusks moving landward and species in higher intertidal zones blocked by landward barriers. Tidal inundation and the consequent increases in interspecific competition and predation pressure were predicted to threaten the survival of many molluscan groups in higher intertidal zones, especially arboreal and infaunal mollusks at the landward edge of the mangroves, resulting in a substantial reduction in the abundance of original species on the landward edge. Thus, future efforts to conserve mangrove floral and faunal diversity should prioritize species restricted to landward mangrove areas and protect potential species habitats.  相似文献   

18.
Few studies have validated the use of artificial seagrass to study processes structuring faunal assemblages by comparison with natural seagrass. One metric (fish recruitment) for evaluating the use of artificial seagrass was used in the present study. Settlement and recruitment of juvenile fish was estimated in natural, Zostera capricorni Aschers, and artificial seagrass in Botany Bay, NSW, over 6 consecutive days. Tarwhine, Rhabdosargus sarba, dominated the catch from both habitats, and there was no significant difference in abundance of recruits among the habitats. This was at least partly caused by large spatial and temporal variation in abundance. Daily abundances of R. sarba recruits suggested movement between seagrass beds, but could not be confirmed without tagging individual fish. Rhabdosargus sarba settlers were less abundant than recruits, but were also patchily distributed amongst natural and artificial seagrass beds. Most other species were also found in similar abundance in the two habitats, except stripey, Microcanthus strigatus, which was more abundant in artificial seagrass. Overall, fish assemblages in natural and artificial seagrass were similar. Artificial seagrass may therefore be useful for monitoring settlement and recruitment of juvenile fishes to disturbed habitats, to predict the success of habitat remediation. However, if artificial seagrass is used to model processes occurring in natural seagrass, it is necessary to consider species-specific responses to the artificial habitat.  相似文献   

19.
Subtidal seagrass habitats are prime candidates for the application of principles derived from landscape ecology. Although seagrass systems are relatively simple compared to their terrestrial counterparts in terms of species diversity and structural complexity, seagrasses do display variation in spatial patterns over a variety of scales. The presence of a moving water layer and its influence on faunal dispersal may be a distinguishing feature impacting ecological processes in the subtidal zone. Studying seagrass-dominated landscapes may provide a novel approach to investigating questions regarding self-similarity of spatial patterns, and offers a new perspective for analysing habitat change in a variety of marine environments.  相似文献   

20.
Understanding how environmental and climate change can alter habitat overlap of marine predators has great value for the management and conservation of marine ecosystems. Here, we estimated spatiotemporal changes in habitat suitability and inter‐specific overlap among three marine predators: Baltic gray seals (Halichoerus grypus), harbor seals (Phoca vitulina), and harbor porpoises (Phocoena phocoena) under contemporary and future conditions. Location data (>200 tagged individuals) were collected in the southwestern region of the Baltic Sea; one of the fastest‐warming semi‐enclosed seas in the world. We used the maximum entropy (MaxEnt) algorithm to estimate changes in total area size and overlap of species‐specific habitat suitability between 1997–2020 and 2091–2100. Predictor variables included environmental and climate‐sensitive oceanographic conditions in the area. Sea‐level rise, sea surface temperature, and salinity data were taken from representative concentration pathways [RCPs] scenarios 6.0 and 8.5 to forecast potential climate change effects. Model output suggested that habitat suitability of Baltic gray seals will decline over space and time, driven by changes in sea surface salinity and a loss of currently available haulout sites following sea‐level rise in the future. A similar, although weaker, effect was observed for harbor seals, while suitability of habitat for harbor porpoises was predicted to increase slightly over space and time. Inter‐specific overlap in highly suitable habitats was also predicted to increase slightly under RCP scenario 6.0 when compared to contemporary conditions, but to disappear under RCP scenario 8.5. Our study suggests that marine predators in the southwestern Baltic Sea may respond differently to future climatic conditions, leading to divergent shifts in habitat suitability that are likely to decrease inter‐specific overlap over time and space. We conclude that climate change can lead to a marked redistribution of area use by marine predators in the region, which may influence local food‐web dynamics and ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号