首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Blattella bisignata (Brunner) and B. germanica (L.) are oviparous cockroaches with cyclic reproductive behaviour, but in B. germanica only males show circadian rhythmicity of locomotion at 28°C and DD (constant darkness). In B. bisignata, males and virgin females cockroaches entrained by light–dark cycles show free‐running rhythmicity in DD, and most activities occur during the subjective night. Daily locomotor activities of virgin females show cyclic changes that coincided with ovarian development. Virgin females also exhibit calling behaviour during the subjective night, and this shows a free‐running rhythm. Male mate‐finding locomotion and female calling behaviour are under circadian control, so the timing for both behaviours is synchronized. However, most mated females do not show a locomotor free‐running rhythm under DD conditions. Our results indicate that only mated females could not express a circadian locomotor rhythm. Pregnancy reduces a female’s locomotory intensity and masks the expression of a circadian locomotor rhythm. We attribute the differences in circadian locomotory rhythms between these two species to their living environments and mate‐finding strategies.  相似文献   

2.
Exposure to constant light abolishes circadian behavioral rhythms of locomotion and feeding as well as circulating melatonin rhythms in pigeons (Columba livia). To determine if feeding rhythmicity could be maintained in pigeons exposed to constant light, periodic infusions (10h/day) of melatonin were administered to pinealectomized and bilaterally retinectomized/pinealectomized pigeons under conditions of both constant darkness and constant light. The infusions were sufficient to entrain rhythmicity in pinealectomized pigeons in constant darkness and to restore and maintain rhythmicity in bilaterally retinectomized/pinealectomized pigeons in constant darkness. On subsequent exposure to constant light, rhythmicity remained phase locked to the melatonin infusions in bilaterally retinectomized/pinealectomized pigeons but was abolished in sighted pinealectomized birds. These results suggest that while endogenous melatonin rhythms are both necessary and sufficient to maintain behavioral rhythms in DD, their effect can be overridden by constant light but only if perceived by the eyes. Thus, constant light may abolish behavioral rhythmicity in intact pigeons (and perhaps in other species) by a mechanism other than suppression of endogenous melatonin rhythmicity. Such a mechanism might involve direct stimulation of locomotor or feeding activity by retinally perceived (but not by extra-retinally perceived) light, or alternatively by suppression of a hypothalamic oscillator that receives its major light input from the retinae.Abbreviations PX pinealectomized - EX bilaterally enucleated - LD light:dark cycle - LL constant light - DD constant darkness - DDb constant darkness before exposure to constant light - DDa constant darkness after exposure to constant light  相似文献   

3.
To investigate daily feeding rhythms in zebrafish, the authors have developed a new self-feeding system with an infrared photocell acting as a food-demand sensor, which lets small-size fish such as zebrafish trigger a self-feeder. In this paper, the authors used eight groups of 20 fish. Locomotor activity rhythms were also investigated by means of infrared sensors. Under a 12?h:12?h light (L)-dark (D) cycle, zebrafish showed a clear nocturnal feeding pattern (88.0% of the total daily food-demands occurring in the dark phase), concentrated during the last 4?h of the dark phase. In contrast, locomotor activity was mostly diurnal (88.2% of total daily activity occurring in the light phase). Moreover, both feeding and locomotor rhythms were endogenously driven, as they persisted under free-running conditions. The average period length (τ) of the locomotor and feeding rhythms was shorter (τ?=?22.9?h) and longer (τ?=?24.6?h) than 24?h, respectively. During the time that food availability was restricted, fish could only feed during ZT0-ZT12 or ZT12-ZT16. This resulted in feeding activity being significantly modified according to feeding time, whereas the locomotor activity pattern remained synchronized to the LD cycle and did not change during this trial. These findings revealed an independent phasing between locomotor and feeding activities (which were mostly nocturnal or diurnal, respectively), thus supporting the concept of multioscillatory control of circadian rhythmicity in zebrafish.  相似文献   

4.
Fifteen percent of intact female German cockroaches (n = 13), Blattella germanica (L.) (Dictyoptera: Blattellidae), had weak free-running locomotor rhythmicity under 28°C and constant darkness conditions. However, 86% of ovariectomized females (n = 14) showed a strong free-running rhythm under the same conditions with a circadian period of 23.60 ± 0.15 h, similar to the male's period of 23.45±0.03 h. In addition, the locomotory activities occurred mainly during the subjective night under DD conditions as was the case in males. These results indicated that female locomotion was under the control of a circadian oscillator, which was masked by the existence of ovaries. This internal masking effect could be removed by the existence of males, but females had no effect on the locomotor pattern of another female. Since the male failed to entrain female locomotion, its role as a zeitgeber was excluded. That the locomotory pattern of the females still coincided with their reproductive cycle when exposed to male odor suggests that exposure to a male only partially removed the internal masking effects.  相似文献   

5.
To investigate daily feeding rhythms in zebrafish, the authors have developed a new self-feeding system with an infrared photocell acting as a food-demand sensor, which lets small-size fish such as zebrafish trigger a self-feeder. In this paper, the authors used eight groups of 20 fish. Locomotor activity rhythms were also investigated by means of infrared sensors. Under a 12?h:12?h light (L)-dark (D) cycle, zebrafish showed a clear nocturnal feeding pattern (88.0% of the total daily food-demands occurring in the dark phase), concentrated during the last 4?h of the dark phase. In contrast, locomotor activity was mostly diurnal (88.2% of total daily activity occurring in the light phase). Moreover, both feeding and locomotor rhythms were endogenously driven, as they persisted under free-running conditions. The average period length (τ) of the locomotor and feeding rhythms was shorter (τ?=?22.9?h) and longer (τ?=?24.6?h) than 24?h, respectively. During the time that food availability was restricted, fish could only feed during ZT0–ZT12 or ZT12–ZT16. This resulted in feeding activity being significantly modified according to feeding time, whereas the locomotor activity pattern remained synchronized to the LD cycle and did not change during this trial. These findings revealed an independent phasing between locomotor and feeding activities (which were mostly nocturnal or diurnal, respectively), thus supporting the concept of multioscillatory control of circadian rhythmicity in zebrafish. (Author correspondence: )  相似文献   

6.
A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.  相似文献   

7.
Alkaloids (ergotamine and ergometrine) were shown to slow down rhythmic locomotion in even distantly related molluscs. The same is true for crawling pulmonate, pond snail Lymnaea stagnalis. The ergotamine activation of a powerful inhibitory input to pedal neurones involved in locomotor rhythmicity, was shown. The data obtained suggest that the conservative target for ergots is located outside rather than within the central pattern generator for locomotion.  相似文献   

8.
A comparative analysis of phases of the locomotor cycle and the dynamics of changes in hind limb joint angles during swimming and stepping movements (on a treadmill), involving the fore- and hind limbs to different degrees, were undertaken in rats. Differences in the sequence and degree of changes in joint angles during locomotion of the types investigated were participation of the forelimbs in locomotion was found to be accompanied by more marked forward carrying of the hind limb. Dependence of the swing phase on duration of the cycle was observed and differences were found in the period of protraction of the limb (F period) during swimming and stepping. The role of central spinal processes and influences of peripheral afferents in the formation of different types of locomotion is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 189–198, March–April, 1985.  相似文献   

9.
Intramuscular electromyography (EMG) was used to determine and compare the recruitment patterns of the rat soleus (Sol), tibialis anterior (TA), and a deep and a superficial portion of the medial gastrocnemius (MG) during treadmill locomotion at various speeds and inclines and during swimming. Raw EMG signals for 10-20 step or stroke cycles were rectified, averaged, and processed to determine cycle period (EMG onset of one cycle to EMG onset of the next cycle), EMG burst duration, and integrated area of the rectified burst (IEMG). Mean EMG per burst was calculated as IEMG/burst duration. IEMG/min was calculated as IEMG times the number of bursts (cycles) per minute. Cycle period and burst duration of the extensors decreased hyperbolically, while the TA burst duration was unchanged, with increased treadmill speed. With increased treadmill speed, IEMG was decreased in the Sol and unchanged in the MG and TA, whereas IEMG/min decreased in the Sol and increased in the MG and TA. An elevation in treadmill incline resulted in an increase in the activation levels of the MG but not in the Sol or TA. These data indicate that the additional power required at increased speeds and/or inclines of treadmill locomotion is derived from the recruitment of the fast extensors, e.g., the MG. The mean cycle period during swimming was similar to that observed during the fastest treadmill locomotion. EMG burst durations and amplitudes, however, were higher in the TA, relatively similar in the MG, and lower in the Sol during swimming than treadmill locomotion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow‐water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef‐dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine‐scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes.  相似文献   

11.
The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed.  相似文献   

12.
13.
ABSTRACT. Behavioural evidence is presented for the presence of an oscillation underlying feeding and a number of other activities in fifth-instar Locusta migratoria nymphs raised and observed under LD 12:12 with constant access to food. With the oscillation represented for convenience as a sine wave, these behaviours occurred significantly more often in the peak half of the cycle than in the trough half. The period of the oscillation differed between insects, the range being from 12.0 to 16.5 min, but was constant for each insect. Feeding did not occur on every cycle but when it did occur it usually began near the peak of an oscillation. Off-peak feeding was generally associated with defecation. Other more frequently exhibited behaviours, such as the initiation of locomotion and a variety on non-locomotory behaviours, occurred on peaks when there was no feeding. Once feeding or locomotion had commenced and during the short period of settling afterwards, rhythmicity in the non-locomotory behaviour was lost. The nature of the oscillator is not known, other than it is apparently endogenous and is not reset during a 12-h light phase. The presence of such an intermediate length oscillator may have important implications in the organization of complex behaviour  相似文献   

14.
To study the effects of pinealectomy on the circadian rhythms of locomotor activity and feeding. European starlings (Sturnus vulgaris) were held in constant light (0.2 lux and 200 lux) and under constant temperature conditions. Locomotor activity was measured by means of perches with microswitches mounted underneath, and feeding with an infrared photocell system at the feeder. Pinealectomy consistently led to disturbances in perch-hopping rhythms and often to a complete loss of rhythmicity as revealed by periodogram analysis. In some birds, perch-hopping rhythms recovered following a period of initial arrhythmicity. When a perch-hopping rhythm was present, its period was usually shorter than it had been before pinealectomy. In contrast to its effects on perch hopping, pinealectomy had no effect on the persistence of feeding rhythmicity, although its period, like that of the hopping rhythm, decreased after this operation. These results support the hypothesis derived from previous studies that the circadian organization of feeding is different from that of perch hopping. Different circadian pacemakers may be involved, but other models may possibly explain the data just as well.  相似文献   

15.
Feeding and locomotor activities of the Japanese catfish Plotosus japonicus under solitary condition were recorded to identify mechanisms controlling these behaviours. In the absence of food, the catfish showed nocturnal locomotor activity, but no feeding activity. Under ad libitum food conditions, both feeding and locomotor activities occurred during the dark period and were synchronized with light/dark (LD) cycles. Feeding activity lasted for 11–24 days when food was stopped after ad libitum food availability. Restricted food during the light phase produced both food-anticipatory and light-entrainable feeding activity. Furthermore, this condition produced weak food-anticipatory and light-entrainable locomotor activity. Under the light/light (LL) condition, restricted food produced food-anticipatory feeding and locomotor activities, suggesting that a food-entrainable oscillator controls both feeding and locomotor activities. However, under the LL condition, light-entrainable feeding and locomotor activities were not observed, suggesting that a light-entrainable oscillator controls both feeding and locomotor activities. During a restricted food schedule, LD cycle shifts resulted in disrupted synchronization of feeding activity onset in three of the four fish, but one fish showed synchronized feeding activity. These results suggest that the food- and the light-entrainable oscillator may control feeding and locomotor activities, respectively.  相似文献   

16.
17.
Devonian stem tetrapods are thought to have used ‘crutching’ on land, a belly-dragging form of synchronous forelimb action-powered locomotion. During the Early Carboniferous, early tetrapods underwent rapid radiation, and the terrestrial locomotion of crown-group node tetrapods is believed to have been hindlimb-powered and ‘raised’, involving symmetrical gaits similar to those used by modern salamanders. The fossil record over this period of evolutionary transition is remarkably poor (Romer’s Gap), but we hypothesize a phase of belly-dragging sprawling locomotion combined with symmetrical gaits. Since belly-dragging sprawling locomotion has differing functional demands from ‘raised’ sprawling locomotion, we studied the limb mechanics of the extant belly-dragging blue-tongued skink. We used X-ray reconstruction of moving morphology to quantify the three-dimensional kinematic components, and simultaneously recorded single limb substrate reaction forces (SRF) in order to calculate SRF moment arms and the external moments acting on the proximal limb joints. In the hindlimbs, stylopodal long-axis rotation is more emphasized than in the forelimbs, and much greater vertical and propulsive forces are exerted. The SRF moment arm acting on the shoulder is at a local minimum at the instant of peak force. The hindlimbs display patterns that more closely resemble ‘raised’ sprawling species. External moment at the shoulder of the skink is smaller than in ‘raised’ sprawlers. We propose an evolutionary scenario in which the locomotor mechanics of belly-dragging early tetrapods were gradually modified towards hindlimb-powered, raised terrestrial locomotion with symmetrical gait. In accordance with the view that limb evolution was an exaptation for terrestrial locomotion, the kinematic pattern of the limbs for the generation of propulsion preceded, in our scenario, the evolution of permanent body weight support.  相似文献   

18.
《Journal of morphology》2017,278(10):1333-1353
Locomotor mode is an important component of an animal's ecology, relating to both habitat and substrate choice (e.g., arboreal versus terrestrial) and in the case of carnivores, to mode of predation (e.g., ambush versus pursuit). Here, we examine how the morphology of the calcaneum, the ‘heel bone’ in the tarsus, correlates with locomotion in extant carnivores. Other studies have confirmed the correlation of calcaneal morphology with locomotion behaviour and habitat. The robust nature of the calcaneum means that it is frequently preserved in the fossil record. Here, we employ linear measurements and 2D‐geometric morphometrics on a sample of calcanea from eighty‐seven extant carnivorans and demonstrate a signal of correlation between calcaneal morphology and locomotor mode that overrides phylogeny. We used this correlation to determine the locomotor mode, and hence aspects of the palaeobiology of, 47 extinct carnivorous mammal taxa, including both Carnivora and Creodonta. We found ursids (bears), clustered together, separate from the other carnivorans. Our results support greater locomotor diversity for nimravids (the extinct ‘false sabertooths’, usually considered to be more arboreal), than previously expected. However, there are limitations to interpretation of extinct taxa because their robust morphology is not fully captured in the range of modern carnivoran morphology.  相似文献   

19.
While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional approaches such as stem cell therapies or a more adapted treadmill training protocol may be required to optimize this repair strategy in order to induce sustained functional locomotor improvement.  相似文献   

20.
The evolutionary history of aquatic invasion in birds would be incomplete without incorporation of extinct species. We show that aquatic affinities in fossil birds can be inferred by multivariate analysis of skeletal features and locomotion of 245 species of extant birds. Regularized discriminant analyses revealed that measurements of appendicular skeletons successfully separated diving birds from surface swimmers and flyers, while also discriminating among different underwater modes of swimming. The high accuracy of this method allows detection of skeletal characteristics that are indicative of aquatic locomotion and inference of such locomotion in bird species with insufficient behavioural information. Statistical predictions based on the analyses confirm qualitative assessments for both foot‐propelled (Hesperornithiformes) and wing‐propelled (Copepteryx) underwater locomotion in fossil birds. This is the first quantitative inference of underwater modes of swimming in fossil birds, enabling future studies of locomotion in extinct birds and evolutionary transitions among locomotor modes in avian lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号