首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Satsuma (Citrus unshiu [Mak] Marc.) and Clementine (Citrus reticulata [Hort.] Ex. Tanaka, cv Oroval) are two species of seedless mandarins differing in their tendency to develop parthenocarpic fruits. Satsuma is a male-sterile cultivar that shows a high degree of natural parthenocarpy and a high fruit set. Seedless Clementine varieties are self-incompatible, and in the absence of cross-pollination show a very low ability to set fruit. The gibberellins (GAs) GA53, putative 17-OH-GA53, GA44, GA17, GA19, GA20, GA29, GA1, 3-epi-GA1, GA8, GA24, GA9, and GA4 have been identified from developing fruits of both species by full-scan combined gas chromatography-mass spectrometry. Using selected ion monitoring with [2H2]- and [13C]-labeled internal standards, the levels of GA53, GA44, GA19, GA20, GA1, GA8, GA4, and GA9 were determined in developing ovaries at anthesis and 7 days before and after anthesis, from both species. Except for GA8, levels of the 13-hydroxy-GAs were higher in Satsuma than in Clementine, and these differences were more prominent for developing young fruits. At petal fall, Satsuma had, on a nanograms per gram dry weight basis, higher levels of GA53 (10.4x), GA44 (13.9x), GA19 (3.0x), GA20 (11.2x), and GA1 (2.0x). By contrast, levels of GA8 were always higher in Clementine, whereas levels of GA4 did not differ greatly. Levels of GA9 were very low in both species. At petal fall, fruitlets of Satsuma and Clementine contained 65 and 13 picograms of GA1, respectively. At this time, the application of 25 micrograms of paclobutrazol to fruits increased fruit abscission in both varieties. This effect was reversed by the simultaneous applications of 1 microgram of GA3. GA3 alone improved the set in Clementine (13x), but had little influence on Satsuma. Thus, seedless fruits of the self-incompatible Clementine mandarin may not have adequate GA levels for fruit set. Collectively, these results suggest that endogenous GA content in developing ovaries is the limiting factor controlling the parthenocarpic development of the fruits.  相似文献   

2.
Tetranychus urticae is a key pest of citrus in Spain, especially of clementine mandarin trees. The effects of this mite on fruit production were assessed in 24 clementine trees for three consecutive years. Trees were visited weekly and spider mite and phytoseiid mite populations and leaf flush patterns were estimated. At the end of the season, mandarins were harvested, weighed, and mite damage (scarring on the fruit) characterized. Negative relationships between spider mite density and yield (kg/tree) and fruit damage (% scarred fruit rind) were found. The multivariate regressions highlighted the key role of phytoseiid mites and leaf flush patterns, which were negatively related to fruit damage. The shortest sampling period that satisfactorily predicted fruit damage at harvest, extended from August to mid-October. For IPM purposes, an action threshold of 31.1 mites m?2 of symptomatic leaf was estimated. Taking into account spider mite dynamics, the economic threshold ranged from 10 to 15 mites m?2 of symptomatic leaf. When this threshold is exceeded growers would have a 1-week window to apply the control technologies against T. urticae of their choice.  相似文献   

3.
Polyamines have been attributed a general role in fruit development in several plants like pea and tomato. To investigate the involvement of these compounds in parthenocarpic fruit development in Citrus clementina, we have isolated three genes encoding aminopropyl transferases in this species: CcSPDS, CcSPM1 and CcACL5. The unambiguous identity of the proteins encoded by these genes was confirmed by phylogenetic analysis and by heterologous expression in yeast mutants deficient in aminopropyl transferase activity. The expression of these genes in C. clementina is not restricted to ovaries and fruits, but it is also detectable all throughout the plant. More importantly, gibberellin-induced parthenocarpic fruit set caused a decrease in CcSPDS expression in ovaries, paralleled by a decrease in spermidine; while the expression of CcSPM1 and CcACL5 was basically unaffected, resulting in the maintenance of spermine concentration during early fruit development. In addition, the variation in putrescine content was paralleled by changes in the expression of one of the two putative CcODC paralogs.  相似文献   

4.
Satsuma [Citrus unshiu (Mak) Marc.] and Clementine [Citrus reticulata (Hort.) Ex. Tanaka, cv. Oroval] are two related species of seedless mandarins which differ in their tendency to set parthenocarpic fruits. Satsuma fruits naturally set parthenocarpically whereas Clementine mandarins show very low ability to set fruit in the absence of cross-pollination. The endogenous levels of gibberellins (GAs) and free and conjugated indole-acetic acid (IAA) and abscisic acid (ABA) throughout early stages of fruit development were investigated in seedless cultivars of both species. Analyses performed by full-scan combined gas chromatography-mass spectrometry (GC-MS) of extracts from ovaries at anthesis demonstrated the presence of GA19, GA20, GA29, GA1, GA8, GA3 and iso-GA3 in Satsuma mandarin, whereas only GA29, GA3 and trace levels of GA8 were detected in Clementine. At this developmental stage GA-like substances, as estimated by bioassay, reached their highest levels in Satsuma, while Clementine mandarins contained relatively lower levels. In both species the highest levels of free IAA were found at petal-fall stage at which time free ABA levels also peaked. Developing fruits of Clementine had higher amounts of both free IAA and ABA. In Satsuma, levels of conjugated IAA remained low throughout reproductive development whereas in Clementine they increased as the free form declined. In contrast, conjugated ABA was at low levels in Clementine but reached higher concentrations in Satsuma. These results suggest that in these mandarins the potential for setting parthenocarpic fruits is mainly influenced by the hormonal status of the fruit during the later stages of cell division and early stages of cell enlargement. Thus, the condition of low ability to set parthenocarpic fruits appears to be associated with lower levels of active GAs, lower capability to catabolize ABA to conjugated ABA and higher ability to conjugate IAA during this period.  相似文献   

5.
? Premise of the study: Indel markers were developed from BAC-end sequences of Citrus clementina cv. Nules. Transferability and polymorphism were tested in the Citrus genus to estimate the potential of indel markers mined from a single genotype for use in genetic studies. ? Methods and Results: Using polyacrylamide gel electrophoresis and DNA silver staining, 89 indel markers were tested for their transferability and polymorphism. Thirty-eight markers were selected. Heterozygosity in C. clementina cv. Nules was confirmed for 33 of these indel pairs. A preliminary diversity study using a capillary electrophoresis fragment analyzer was conducted with 21 indels using 45 accessions representing Citrus genus diversity. Intraspecific and interspecific polymorphisms were observed. ? Conclusions: These results indicate the utility of indel markers developed from sequence data of a single genotype of interspecific origin. In Citrus, these markers will be useful for genetic mapping, germplasm characterization, and phylogenetic assignment of DNA fragments.  相似文献   

6.
The terrestrial orchid Epipactis helleborine is a morphologically variable species with a wide geographical distribution. It is found throughout Europe and continues eastwards to Siberia, China and Japan. It is usually pollinated by social wasps and displays the morphological characteristics of an outcrossing species. In warm, temperate areas of Japan, E. helleborine often appears in alpine or subalpine regions, and has never been found in low‐altitude forests, except for coastal pine forests. The coastal population of E. helleborine is often classified at the variety level, as E. helleborine var. sayekiana, and the inland populations are known as E. helleborine var. papillosa. It is possible that E. helleborine var. sayekiana possesses a distinctive selfing strategy, as its autonomous self‐pollination has evolved in dry habitats, such as coastal dunes. The present study investigated the pollination biology of E. helleborine var. sayekiana and var. papillosa to detect differences in their reproductive systems. Unexpectedly, both E. helleborine var. papillosa and E. helleborine var. sayekiana were found to possess a self‐pollination strategy and were therefore rarely visited by insects. Self‐pollination occurs at the end of the flowering season and probably acts to ensure pollination even if insect‐mediated pollination fails. Moreover, there are no floral differences between E. helleborine var. papillosa and E. helleborine var. sayekiana. These observations suggest that it is not necessary to distinguish between these two varieties. Furthermore, E. helleborine var. papillosa was pollinated by hoverflies, suggesting that E. helleborine var. papillosa is probably biologically distinct from its mother species, E. helleborine. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 733–743.  相似文献   

7.
? Premise of the study: Microsatellite primers were developed from bacterial artificial chromosome (BAC) end sequences of Citrus clementina and their transferability and polymorphism tested in the genus Citrus for future anchorage of physical and genetic maps and comparative interspecific genetic mapping. ? Methods and Results: Using PAGE and DNA silver staining, 79 primer pairs were selected for their transferability and polymorphism among 526 microsatellites mined in BES. A preliminary diversity study in Citrus was conducted with 18 of them, in C. reticulata, C. maxima, C. medica, C. sinensis, C. aurantium, C. paradisi, C. lemon, C. aurantifolia, and some papedas (wild citrus), using a capillary electrophoresis fragment analyzer. Intra- and interspecific polymorphism was observed, and heterozygous markers were identified for the different genotypes to be used for genetic mapping. ? Conclusions: These results indicate the utility of the developed primers for comparative mapping studies and the integration of physical and genetic maps.  相似文献   

8.
9.
Pollen germination and pollen‐tube growth under natural conditions were observed in a population of a distylous species, Primula sieboldii, in which partial self‐compatibility has been demonstrated in some long‐styled genets. We observed post‐pollination processes microscopically in styles collected after self‐morph and inter‐morph hand pollination (with standardized pollen load on the stigmas) in four genets each from the following three ‘genet types’: self‐incompatible long‐styled (SI), partially self‐compatible long‐styled (SC) and self‐incompatible short‐styled morph genets. Irrespective of the genet type, pollen germination began within 24 h after pollination and tubes of pollen reached to the style base with 48–96 h after inter‐morph pollination. Although pollen tubes germinated after self‐pollination in the SC genets, the number of germinated pollen tubes was significantly lower than in the case of inter‐morph pollination. Few pollen tubes germinated after self‐pollination of the SI or short‐styled genets. In SC genets, the rate of pollen‐tube growth did not differ between self‐morph and inter‐morph pollination (~1.9 mm/day). Therefore, differences in self‐compatibility between SC and SI genets in P. sieboldii are likely to be attributable to differential pollen germination rates rather than to differential pollen‐tube growth rates.  相似文献   

10.
  • One of the key environmental factors affecting plant reproductive systems is temperature. Characterising such effects is especially relevant for some commercially important genera such as Citrus. In this genus, failure of fertilisation results in parthenocarpic fruit development and seedlessness, which is a much‐prized character. Here, we characterise the effects of temperature on flower and ovary development, and on pollen–pistil interactions in ‘Comune’ clementine (Citrus clementina Hort. ex Tan.).
  • We examine flower bud development, in vitro pollen germination and pollen–pistil interaction at different temperatures (15, 20, 25 or 30 °C). These temperatures span the range from ‘cold’ to ‘hot’ weather during the flowering season in many citrus‐growing regions.
  • Temperature had a strong effect on flower and ovary development, pollen germination, and pollen tube growth kinetics. In particular, parthenocarpic fruit development (indicated by juice vesicle growth) was initiated early if flowers were exposed to warmer temperatures during anthesis.
  • Exposure to different temperatures during flower bud development also alters expression of the self‐incompatibility reaction. This affects the point in the pistil at which pollen tube growth is arrested and confirms the role of sub‐ and supra‐optimal temperatures in determining the numbers of pollen tubes reaching the ovary.
  相似文献   

11.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

12.
《Genomics》2022,114(5):110446
Multidrug and toxic compound extrusion (MATE) proteins are a class of secondary active multidrug transporters. In plants, this family has significantly expanded and is involved in numerous plant physiological processes. Although MATE proteins have been identified in an increasing number of species, the understanding about this family in citrus remains unclear. In this study, a total of 69 MATE transporters were identified in the citrus genome (Citrus clementina) and classified into four groups by phylogenetic analysis. Tandem and segmental duplication events were the main causes of the citrus MATE family expansion. RNA-seq and qRT-PCR analyses were performed during citrus fruit development. The results indicated that CitMATE genes showed specific expression profiles in citrus peels and flesh at different developmental stages. Combined with the variations of flavonoids and citrate levels in citrus fruit, we suggested that CitMATE43 and CitMATE66 may be involved in the transport process of flavonoids and citrate in citrus fruit, respectively. In addition, two flavonoids positive regulators, CitERF32 and CitERF33, both directly bind to and activated the CitMATE43 promoter. Our results provide comprehensive information on citrus MATE genes and valuable understanding for the flavonoids and citrate metabolism in citrus fruit.  相似文献   

13.
Self‐interference is one of the most important selective forces in shaping floral evolution. Herkogamy and dichogamy both can achieve reductions in the extent of self‐interference, but they may have different roles in minimizing self‐interference in a single species. We used four self‐incompatible Epimedium species to explore the roles of herkogamy and dichogamy in avoiding self‐interference and to test the hypothesis that herkogamy and dichogamy may be separated and become selected preferentially in the taxa. Two species (Efranchetii and Emikinorii) expressed strong herkogamy and weak protogyny (adichogamy), whereas another two species (Esutchuenense and Eleptorrhizum) expressed slight herkogamy and partial protandry. Field investigations indicated that there was no physical self‐interference between male function and female function regarding pollen removal and pollen deposition in all species. Self‐pollination (autonomous or facilitated) was greater in species with slight herkogamy than in those with strong herkogamy. Artificial pollination treatments revealed that self‐pollination could reduce outcrossed female fertility in all species, and we found evidence that self‐interference reduced seed set in E. sutchuenense and E. leptorrhizum in the field, but not in E. franchetii and E. mikinorii. These results indicate that well‐developed herkogamy is more effective compared with dichogamy in avoiding self‐interference in the four species. In genus Epimedium, herkogamy instead of dichogamy should be selected preferentially and evolved as an effective mechanism for avoiding self‐interference and might not need to evolve linked with dichogamy.  相似文献   

14.
Flowering plants typically use floral rewards to attract animal pollinators. Unlike nectar, pollen rewards are usually visible and may thus function as a signal that influences landing decisions by pollen‐seeking insects. Here we artificially manipulate the presence of both pollen and staminal hairs (a putative false signal of pollen reward availability) in the hermaphroditic lily Bulbine abyssinica (Xanthorrhoeaceae) to investigate their effects on bee visitation and fecundity, and also test for trade‐offs between pollen production and seed production. Honeybees, the primary floral visitors, are probably not able to distinguish between colours of petals, staminal hairs and pollen of B. abyssinica, according to analysis of reflectance spectra in a bee vision model. Flowers with both pollen and hairs removed had the lowest levels of bee visitation, seed set and seed abortions. Flowers containing hairs had an ~50% increase in visitation rate and seed set compared with emasculated flowers, while intact controls had the highest seed abortion rate. Ovule discounting in intact flowers is probably due to ovarian self‐incompatibility (or strong early inbreeding depression) as ovules penetrated by tubes from self‐pollen uniformly failed to develop into seeds. These results show that staminal hairs can enhance plant fecundity by increasing attraction of pollen‐seeking insects to flowers without increasing the risk of ovule discounting through pollinator‐mediated self‐pollination. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 481–490.  相似文献   

15.
Genetically controlled self‐incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual‐based spatial simulation to investigate the demographic and genetic consequences of different self‐incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self‐incompatible species will often be smaller and less viable than self‐compatible species, particularly for shorter‐lived organisms or where potential fecundity is low. At high ovule production and low mortality, self‐incompatible and self‐compatible species are demographically similar, thus self‐incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self‐incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self‐incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue.  相似文献   

16.
It has been suggested that plants that are good colonizers will generally have either an ability to self‐fertilize or a generalist pollination system. This prediction is based on the idea that these reproductive traits should confer resistance to Allee effects in founder populations and was tested using Gomphocarpus physocarpus (Asclepiadoideae: Apocynaceae), a species native to South Africa that is invasive in other parts of the world. We found no significant relationships between the size of G. physocarpus populations and various measures of pollination success (pollen deposition, pollen removal and pollen transfer efficiency) and fruit set. A breeding system experiment showed that plants in a South African population are genetically self‐incompatible and thus obligate outcrossers. Outcrossing is further enhanced by mechanical reconfiguration of removed pollinaria before the pollinia can be deposited. Self‐pollination is reduced when such reconfiguration exceeds the average duration of pollinator visits to a plant. Observations suggest that a wide variety of wasp species in the genera Belonogaster and Polistes (Vespidae) are the primary pollinators. We conclude that efficient pollination of plants in small founding populations, resulting from their generalist wasp‐pollination system, contributes in part to the colonizing success of G. physocarpus. The presence of similar wasps in other parts of the world has evidently facilitated the expansion of the range of this milkweed.  相似文献   

17.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

18.
The frameworks (key mechanisms) of the self/non‐self‐discrimination systems that are found in various organisms have not been actively selected for, but have evolved by genetic drift such that the genetic frequency of random, advantageous mutations has increased within the genomes of these species by natural selection. The passive nature of this process leads to an important conclusion: in the self/non‐self‐discrimination system, the number of self‐recognizing determinants becomes one compared to multiple non‐self‐recognizing determinants. Thus, the number of determinants is defined not by the character of the determinant, but by the system framework. Mol. Reprod. Dev. 80: 2–7, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Cross‐ and self‐fertilization in angiosperms are regulated by several factors, and a knowledge of the mechanism and time of spontaneous self‐pollination offers opportunities for a better understanding of the evolution of mating systems and floral traits. The floral biology of five species of Gentianaceae found in high‐altitude neotropical grassland is presented, with emphasis on the mechanisms that promote spontaneous self‐pollination. A presumed floral Batesian mimicry system is suggested between the rare and rewardless Zygostigma australe and Calydorea campestris, a species of Iridaceae with pollen‐flowers, pollinated by syrphids and bees. The floral morphology of the other four gentian species points to three different pollination syndromes: melittophily, phalaenophily and ornithophily. However, with the exception of the nocturnal Helia oblongifolia, flowers are nectarless and appear to exhibit non‐model deceptive mechanisms, providing similar floral cues to some sympatric rewarding species with the same syndrome. The similar mechanism of spontaneous self‐pollination in Calolisianthus pedunculatus, Calolisianthus pendulus and H. oblongifolia (Helieae) is based on the stigmatic movements towards the anthers. Selfing is promoted by movements of the style/stigma and of the corolla in Deianira nervosa and Z. australe (Chironieae), respectively. The movements of stamens, style and stigma during anthesis seem to be the most common method of spontaneous self‐pollination in angiosperms. It is suggested that the evolution of delayed spontaneous self‐pollination would be more expected in those taxa with dichogamous flowers associated with herkogamy. Such a characteristic is frequent in long‐lived flowers of certain groups of Asteridae, which comprise most documented cases of autonomous selfing. Thus, the presence of dichogamy associated with herkogamy (which supposedly evolved as a result of selection to promote both separation of male and female functions and the efficient transfer of cross pollen) may be the first step in the adaptive evolution of delayed selfing to provide reproductive assurance. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 357–368.  相似文献   

20.
Sweet cherry is a self‐incompatible fruit tree species in the Rosaceae. As other species in the family, sweet cherry exhibits S‐RNase‐based gametophytic self‐incompatibility. This mechanism is genetically determined by the S‐locus that encodes the pollen and pistil determinants, SFB and S‐RNase, respectively. Several self‐compatible sweet cherry genotypes have been described and most of them have mutations at the S‐locus leading to self‐compatibility. However, ‘Cristobalina’ sweet cherry is self‐compatible due to a mutation in a pollen function modifier that is not linked to the S‐locus. To investigate the physiology of self‐compatibility in this cultivar, S‐locus segregation in crosses involving ‘Cristobalina’ pollen, and pollen tube growth in self‐ and cross‐pollinations, were studied. In the crosses with genotypes sharing only one S‐haplotype, the non‐self S‐haplotype was inherited more frequently than the self S‐haplotype. Pollen tube growth studies revealed that the time to travel the whole length of the style was longer for self‐pollen tubes than for cross‐pollen tubes. Together, these results suggest that ‘Cristobalina’ pollen tube growth is slower after self‐pollination than after cross‐pollination. This reproductive strategy would allow self‐fertilisation in the absence of compatible pollen but would promote cross‐fertilisation if cross‐compatible pollen is available, a possible case of cryptic self‐incompatibility. This bet‐hedging strategy might be advantageous for an ecotype that is native to the mountains of the Spanish Mediterranean coast, in the geographical limits of the distribution of this species. ‘Cristobalina’ blooming takes place very early in the season when mating possibilities are scarce and, consequently, self‐compatibility may be the only possibility for this genotype to produce offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号