首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High‐throughput DNA methods hold great promise for the study of taxonomically intractable mesofauna of the soil. Here, we assess species diversity and community structure in a phylogenetic framework, by sequencing total DNA from bulk specimen samples and assembly of mitochondrial genomes. The combination of mitochondrial metagenomics and DNA barcode sequencing of 1494 specimens in 69 soil samples from three geographic regions in southern Iberia revealed >300 species of soil Coleoptera (beetles) from a broad spectrum of phylogenetic lineages. A set of 214 mitochondrial sequences longer than 3000 bp was generated and used to estimate a well‐supported phylogenetic tree of the order Coleoptera. Shorter sequences, including cox1 barcodes, were placed on this mitogenomic tree. Raw Illumina reads were mapped against all available sequences to test for species present in local samples. This approach simultaneously established the species richness, phylogenetic composition and community turnover at species and phylogenetic levels. We find a strong signature of vertical structuring in soil fauna that shows high local community differentiation between deep soil and superficial horizons at phylogenetic levels. Within the two vertical layers, turnover among regions was primarily at the tip (species) level and was stronger in the deep soil than leaf litter communities, pointing to layer‐mediated drivers determining species diversification, spatial structure and evolutionary assembly of soil communities. This integrated phylogenetic framework opens the application of phylogenetic community ecology to the mesofauna of the soil, among the most diverse and least well‐understood ecosystems, and will propel both theoretical and applied soil science.  相似文献   

2.
Assessing the functional implications of soil biodiversity in ecosystems   总被引:1,自引:0,他引:1  
Soil communities are among the most species-rich components of terrestrial ecosystems. A major challenge for soil ecologists is to formulate feasible research strategies that will preserve and capitalize on the biodiversity resources of the soil. This article considers the role of soil organism diversity by concentrating on: (i) the relationship between soil biodiversity and ecosystem function; (ii) what issues need to be explored; (iii) studies carried out in the Ecotron controlled environment facility; and (iv) how stable isotope techniques can improve our understanding of the relationship between soil biodiversity and ecosystem function. It is advocated that: (i) the objective of any soil biodiversity study should always be the generation of general concepts, rather than local, system-specific observations; and (ii) any empirical study can be properly interpreted only within a quantitative ecological framework.  相似文献   

3.
It is now well recognized that considering species evolutionary history is crucial for understanding the processes driving community assembly (Cavender‐Bares et al. 2009 ). Considerable efforts have been made to integrate phylogenetics and community ecology into a single theoretical framework. Yet, assessing phylogenetic structure at the community scale remains a great challenge, in particular for poorly known organisms. While DNA metabarcoding is increasingly used for assessing taxonomic composition of complex communities from environmental samples, biases and limitations of this technique can preclude the retrieval of information on phylogenetic community structure. In this issue of Molecular Ecology, Andújar et al. (2015) demonstrate that shotgun sequencing of bulk samples of soil beetles and subsequent reconstruction of mitochondrial genomes can provide a solid phylogenetic framework to estimate species diversity and gain insights into the mechanisms underlying the spatial turnover of soil mesofaunal assemblages. This work highlights the enormous potential of ‘metagenome skimming’ not only for improving the current standards of DNA‐based biodiversity assessment but also for opening up the application of phylogenetic community ecology to hyperdiverse and poorly known biota, which was heretofore inconceivable.  相似文献   

4.
Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long‐established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ~90 years; (3) the soil is largely undisturbed; and (4) the soil's age can be reliably determined radiometrically at different depths. Amplified fragment length polymorphic markers (AFLPs) were used to assess differences in the genetic structure of 75 individuals sampled from both the standing population and from four soil layers, which spanned 18 cm (estimated at ~90 years based on 210Pb and 137Cs dating). While there are difficulties in interpreting such data, including accounting for the effects of selection, seed loss, and seed migration, a clear pattern of lower total allele counts, percentage polymorphic loci, and genetic diversity was observed in deeper soils. The greatest percentage increase in the measured genetic variables occurred prior to the shift from the lag to the exponential range expansion phases and may be of adaptive significance. These findings highlight that seed banks in areas with long‐established invasive populations can contain valuable genetic information relating to invasion processes and as such, should not be overlooked.  相似文献   

5.
Forest bioenergy opportunities may be hindered by a long greenhouse gas (GHG) payback time. Estimating this payback time requires the quantification of forest‐atmosphere carbon exchanges, usually through process‐based simulation models. Such models are prone to large uncertainties, especially over long‐term carbon fluxes from dead organic matter pools. We propose the use of whole ecosystem field‐measured CO2 exchanges obtained from eddy covariance flux towers to assess the GHG mitigation potential of forest biomass projects as a way to implicitly integrate all field‐level CO2 fluxes and the inter‐annual variability in these fluxes. As an example, we perform the evaluation of a theoretical bioenergy project that uses tree stems as bioenergy feedstock and include multi‐year measurements of net ecosystem exchange (NEE) from forest harvest chronosequences in the boreal forest of Canada to estimate the time dynamics of ecosystem CO2 exchanges following harvesting. Results from this approach are consistent with previous results using process‐based models and suggest a multi‐decadal payback time for our project. The time for atmospheric carbon debt repayment of bioenergy projects is highly dependent on ecosystem‐level CO2 exchanges. The use of empirical NEE measurements may provide a direct evaluation of, or at least constraints on, the GHG mitigation potential of forest bioenergy projects.  相似文献   

6.
This study tested the hypothesis that nonlinear transects, such as the L‐, V‐ and W‐shaped transect, which are widely used in soil sampling but rarely in ecology, may perform better in capturing habitat heterogeneity potentially resulting in more accurate small game species estimates, than straight‐line transects. To test this, we computed and compared the Normalized Difference Vegetation Index (NDVI) captured by the straight‐line, L‐shaped, V‐shaped and W‐shaped transects for Kyle Game Reserve (Zimbabwe), inside the home ranges of two small game species, namely species A and species B. These transects differed in geometry but had the same length. We also performed simulations in a geographic information system environment to compare the detection ability of the different transect geometry. One‐way analysis of variance followed by Tukey's honest significant difference test was used to test for significant differences in the mean number of detections and NDVI variance captured by each transect geometry. Simulations results indicate that for both home ranges, the V‐shaped transect resulted in significantly higher detections than the widely used straight‐line transect. Nonlinear transects also yielded higher NDVI variances than the straight‐line transect in both home ranges.  相似文献   

7.
Preserving biodiversity is a global challenge requiring data on species’ distribution and abundance over large geographic and temporal scales. However, traditional methods to survey mobile species’ distribution and abundance in marine environments are often inefficient, environmentally destructive, or resource‐intensive. Metabarcoding of environmental DNA (eDNA) offers a new means to assess biodiversity and on much larger scales, but adoption of this approach for surveying whole animal communities in large, dynamic aquatic systems has been slowed by significant unknowns surrounding error rates of detection and relevant spatial resolution of eDNA surveys. Here, we report the results of a 2.5 km eDNA transect surveying the vertebrate fauna present along a gradation of diverse marine habitats associated with a kelp forest ecosystem. Using PCR primers that target the mitochondrial 12S rRNA gene of marine fishes and mammals, we generated eDNA sequence data and compared it to simultaneous visual dive surveys. We find spatial concordance between individual species’ eDNA and visual survey trends, and that eDNA is able to distinguish vertebrate community assemblages from habitats separated by as little as ~60 m. eDNA reliably detected vertebrates with low false‐negative error rates (1/12 taxa) when compared to the surveys, and revealed cryptic species known to occupy the habitats but overlooked by visual methods. This study also presents an explicit accounting of false negatives and positives in metabarcoding data, which illustrate the influence of gene marker selection, replication, contamination, biases impacting eDNA count data and ecology of target species on eDNA detection rates in an open ecosystem.  相似文献   

8.
Modelling the effects of loss of soil biodiversity on ecosystem function   总被引:1,自引:0,他引:1  
There are concerns about whether accelerating worldwide loss of biodiversity will adversely affect ecosystem functioning and services such as forage production. Theoretically, the loss of some species or functional groups might be compensated for by changes in abundance of other species or functional groups such that ecosystem processes are unaffected. A simulation model was constructed for carbon and nitrogen transfers among plants and functional groups of microbes and soil fauna. The model was based on extensive information from shortgrass prairie, and employed stabilizing features such as prey refuges and predator switching in the trophic equations. Model parameters were derived either from the literature or were estimated to achieve a good fit between model predictions and data. The model correctly represented (i) the major effects of elevated atmospheric CO2 and plant species on root and shoot biomass, residue pools, microbial biomass and soil inorganic nitrogen, and (ii) the effects on plant growth of manipulating the composition of the microbial and faunal community. The model was evaluated by comparing predictions to data not used in model development. The 15 functional groups of microbes and soil fauna were deleted one at a time and the model was run to steady state. Only six of the 15 deletions led to as much as a 15% change in abundance of a remaining group, and only two deletions (bacteria and saprophytic fungi) led to extinctions of other groups. Functional groups with greater effect on abundance of other groups were those with greater biomass or greater number of consumers, regardless of trophic position. Of the six deletions affecting the abundance of other groups, only three (bacteria, saprophytic fungi, and root‐feeding nematodes) caused as much as 10% changes in indices of ecosystem function (nitrogen mineralization and primary production). While the soil fauna as a whole were important for maintenance of plant production, no single faunal group had a significant effect. These results suggest that ecosystems could sustain the loss of some functional groups with little decline in ecosystem services, because of compensatory changes in the abundance of surviving groups. However, this prediction probably depends on the nature of stabilizing mechanisms in the system, and these mechanisms are not fully understood.  相似文献   

9.
Effects of soil and wood depletion on biodiversity   总被引:1,自引:0,他引:1  
Human depletion of soil and wood resources is dramatically altering the biodiversity of both terrestrial and aquatic ecosystems. This paper provides an overview of the numerous linkages between the depletion of soil and wood resources and the loss of biodiversity. While some of these linkages are well documented, others remain speculative or unexplored. In order to understand the full ramifications of resource depletion on biodiversity, additional research is required.  相似文献   

10.
Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost‐effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire , compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23–39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost‐effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study‐specific warranting pilot studies in most circumstances.  相似文献   

11.
12.
An invasive wetland grass primes deep soil carbon pools   总被引:1,自引:0,他引:1       下载免费PDF全文
Understanding the processes that control deep soil carbon (C) dynamics and accumulation is of key importance, given the relevance of soil organic matter (SOM) as a vast C pool and climate change buffer. Methodological constraints of measuring SOM decomposition in the field prevent the addressing of real‐time rhizosphere effects that regulate nutrient cycling and SOM decomposition. An invasive lineage of Phragmites australis roots deeper than native vegetation (Schoenoplectus americanus and Spartina patens) in coastal marshes of North America and has potential to dramatically alter C cycling and accumulation in these ecosystems. To evaluate the effect of deep rooting on SOM decomposition we designed a mesocosm experiment that differentiates between plant‐derived, surface SOM‐derived (0–40 cm, active root zone of native marsh vegetation), and deep SOM‐derived mineralization (40–80 cm, below active root zone of native vegetation). We found invasive P. australis allocated the highest proportion of roots in deeper soils, differing significantly from the native vegetation in root : shoot ratio and belowground biomass allocation. About half of the CO2 produced came from plant tissue mineralization in invasive and native communities; the rest of the CO2 was produced from SOM mineralization (priming). Under P. australis, 35% of the CO2 was produced from deep SOM priming and 9% from surface SOM. In the native community, 9% was produced from deep SOM priming and 44% from surface SOM. SOM priming in the native community was proportional to belowground biomass, while P. australis showed much higher priming with less belowground biomass. If P. australis deep rooting favors the decomposition of deep‐buried SOM accumulated under native vegetation, P. australis invasion into a wetland could fundamentally change SOM dynamics and lead to the loss of the C pool that was previously sequestered at depth under the native vegetation, thereby altering the function of a wetland as a long‐term C sink.  相似文献   

13.
Studying relationships of plant traits to ecosystem properties is an emerging approach aiming to understand plant's potential effect on ecosystem functioning. In the current study, we explored links between morphological and nutritional leaf traits of two Mediterranean perennial grass species Stipa tenacissima and Lygeum spartum, widely used to prevent desertification process by stabilizing sand dunes. We evaluated also relationships in terms of nitrogen (N) and phosphorus (P) availability between leaves of the investigated species and the corresponding soil. Our results showed that leaf P was very low in comparison with leaf N for the two investigated species. In fact, chlorophyll content, photosynthesis capacity and water conservation during photosynthesis are mainly linked to leaf nitrogen content. Our findings support previous studies showing that at the species levels, morphological and nutritional leaf traits were not related. On the other hand, significant relationships were obtained between soil N and leaf N for S. tenacissima (= 0.011) and L. spartum (= 0.033). However, leaf P was not significantly related to soil P availability for both species. We suggest that any decrease in soil N with the predicted increasing aridity may result in reduction in leaf N and thus in worst dysfunction of some biological processes levels.  相似文献   

14.
To elucidate potential ecological and evolutionary processes associated with the assembly of plant communities, there is now widespread use of estimates of phylogenetic diversity that are based on a variety of DNA barcode regions and phylogenetic construction methods. However, relatively few studies consider how estimates of phylogenetic diversity may be influenced by single DNA barcodes incorporated into a sequence matrix (conservative regions vs. hypervariable regions) and the use of a backbone family‐level phylogeny. Here, we use general linear mixed‐effects models to examine the influence of different combinations of core DNA barcodes (rbcL, matK, ITS, and ITS2) and phylogeny construction methods on a series of estimates of community phylogenetic diversity for two subtropical forest plots in Guangdong, southern China. We ask: (a) What are the relative influences of single DNA barcodes on estimates phylogenetic diversity metrics? and (b) What is the effect of using a backbone family‐level phylogeny to estimate topology‐based phylogenetic diversity metrics? The combination of more than one barcode (i.e., rbcL + matK + ITS) and the use of a backbone family‐level phylogeny provided the most parsimonious explanation of variation in estimates of phylogenetic diversity. The use of a backbone family‐level phylogeny showed a stronger effect on phylogenetic diversity metrics that are based on tree topology compared to those that are based on branch lengths. In addition, the variation in the estimates of phylogenetic diversity that was explained by the top‐rank models ranged from 0.1% to 31% and was dependent on the type of phylogenetic community structure metric. Our study underscores the importance of incorporating a multilocus DNA barcode and the use of a backbone family‐level phylogeny to infer phylogenetic diversity, where the type of DNA barcode employed and the phylogenetic construction method used can serve as a significant source of variation in estimates of phylogenetic community structure.  相似文献   

15.
16.
Anthropogenic hybridization is an increasing conservation threat worldwide. In South Africa, recent hybridization is threatening numerous ungulate taxa. For example, the genetic integrity of the near‐threatened bontebok (Damaliscus pygargus pygargus) is threatened by hybridization with the more common blesbok (D. p. phillipsi). Identifying nonadmixed parental and admixed individuals is challenging based on the morphological traits alone; however, molecular analyses may allow for accurate detection. Once hybrids are identified, population simulation software may assist in determining the optimal conservation management strategy, although quantitative evaluation of hybrid management is rarely performed. In this study, our objectives were to describe species‐wide and localized rates of hybridization in nearly 3,000 individuals based on 12 microsatellite loci, quantify the accuracy of hybrid assignment software (STRUCTURE and NEWHYBRIDS), and determine an optimal threshold of bontebok ancestry for management purposes. According to multiple methods, we identified 2,051 bontebok, 657 hybrids, and 29 blesbok. More than two‐thirds of locations contained at least some hybrid individuals, with populations varying in the degree of introgression. HYBRIDLAB was used to simulate four generations of coexistence between bontebok and blesbok, and to optimize a threshold of ancestry, where most hybrids will be detected and removed, and the fewest nonadmixed bontebok individuals misclassified as hybrids. Overall, a threshold Q‐value (admixture coefficient) of 0.90 would remove 94% of hybrid animals, while a threshold of 0.95 would remove 98% of hybrid animals but also 8% of nonadmixed bontebok. To this end, a threshold of 0.90 was identified as optimal and has since been implemented in formal policy by a provincial nature conservation agency. Due to widespread hybridization, effective conservation plans should be established and enforced to conserve native populations that are genetically unique.  相似文献   

17.
Studying the drivers of host specificity can contribute to our understanding of the origin and evolution of obligate pollination mutualisms. The preference–performance hypothesis predicts that host plant choice of female insects is related mainly to the performance of their offspring. Soil moisture is thought to be particularly important for the survival of larvae and pupae that inhabit soil. In the high Himalayas, Rheum nobile and R. alexandrae differ in their distribution in terms of soil moisture; that is, R. nobile typically occurs in scree with well‐drained soils, R. alexandrae in wetlands. The two plant species are pollinated by their respective mutualistic seed‐consuming flies, Bradysia sp1. and Bradysia sp2. We investigated whether soil moisture is important for regulating host specificity by comparing pupation and adult emergence of the two fly species using field and laboratory experiments. Laboratory experiments revealed soil moisture did have significant effects on larval and pupal performances in both fly species, but the two fly species had similar optimal soil moisture requirements for pupation and adult emergence. Moreover, a field reciprocal transfer experiment showed that there was no significant difference in adult emergence for both fly species between their native and non‐native habitats. Nevertheless, Bradysia sp1., associated with R. nobile, was more tolerant to drought stress, while Bradysia sp2., associated with R. alexandrae, was more tolerant to flooding stress. These results indicate that soil moisture is unlikely to play a determining role in regulating host specificity of the two fly species. However, their pupation and adult emergence in response to extremely wet or dry soils are habitat‐specific.  相似文献   

18.
Gulf War Illness (GWI) is a multi‐symptom disorder with features characteristic of persistent sickness behavior. Among conditions encountered in the Gulf War (GW) theater were physiological stressors (e.g., heat/cold/physical activity/sleep deprivation), prophylactic treatment with the reversible AChE inhibitor, pyridostigmine bromide (PB), the insect repellent, N,N‐diethyl‐meta‐toluamide (DEET), and potentially the nerve agent, sarin. Prior exposure to the anti‐inflammatory glucocorticoid, corticosterone (CORT), at levels associated with high physiological stress, can paradoxically prime the CNS to produce a robust proinflammatory response to neurotoxicants and systemic inflammation; such neuroinflammatory effects can be associated with sickness behavior. Here, we examined whether CORT primed the CNS to mount neuroinflammatory responses to GW exposures as a potential model of GWI. Male C57BL/6 mice were treated with chronic (14 days) PB/ DEET, subchronic (7–14 days) CORT, and acute exposure (day 15) to diisopropyl fluorophosphate (DFP), a sarin surrogate and irreversible AChE inhibitor. DFP alone caused marked brain‐wide neuroinflammation assessed by qPCR of tumor necrosis factor‐α, IL6, chemokine (C‐C motif) ligand 2, IL‐1β, leukemia inhibitory factor, and oncostatin M. Pre‐treatment with high physiological levels of CORT greatly augmented (up to 300‐fold) the neuroinflammatory responses to DFP. Anti‐inflammatory pre‐treatment with minocycline suppressed many proinflammatory responses to CORT+DFP. Our findings are suggestive of a possible critical, yet unrecognized interaction between the stressor/environment of the GW theater and agent exposure(s) unique to this war. Such exposures may in fact prime the CNS to amplify future neuroinflammatory responses to pathogens, injury, or toxicity. Such occurrences could potentially result in the prolonged episodes of sickness behavior observed in GWI.

  相似文献   


19.
Predation by small mammals has been reported as an important mortality factor for the cocoons of sawfly species. However, it is difficult to provide an accurate estimate of newly spun cocoons and subsequent predation rates by small mammals for several reasons. First, all larvae do not spin cocoons at the same time. Second, cocoons are exposed to small mammal predation immediately after being spun. Third, the cocoons of the current generation are indistinguishable from those of the previous generation. We developed a hierarchical Bayesian model to estimate these values from annual one‐time soil sampling datasets. To apply this model to an actual data set, field surveys were conducted in eight stands of larch plantations in central Hokkaido (Japan) from 2009 to 2012. Ten 0.04‐m2 soil samples were annually collected from each site in mid‐October. The abundance of unopened cocoons (I), cocoons emptied by small‐mammal predation (M), and empty cocoons caused by something other than small‐mammal predation (H) were determined. The abundance of newly spun cocoons, the predation rate by small mammals before and after cocoon sampling, and the annual rate of empty cocoons that remained were estimated. A posterior predictive check yielded Bayesian P‐values of 0.54, 0.48, and 0.07 for I, M, and H, respectively. Estimated predation rates showed a significant positive correlation with the number of trap captures of small mammals. Estimates of the number of newly spun cocoons had a significant positive correlation with defoliation intensity. These results indicate that our model showed an acceptable fit, with reasonable estimates. Our model is expected to be widely applicable to all hymenopteran and lepidopteran insects that spin cocoons in soil.  相似文献   

20.
Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号