首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We develop an approach for estimating net ecosystem exchange (NEE) using inventory‐based information over North America (NA) for a recent 7‐year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non‐fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a ?327 ± 252 TgC yr?1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (?248 TgC yr?1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (?297 TgC yr?1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr?1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr?1) due to land use change between 1993 and 2002. We compare these inventory‐based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental‐scale NEE estimate for each ensemble is ?511 TgC yr?1 and ?931 TgC yr?1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional ?239 TgC yr?1 to the inventory‐based NA sink estimate, thus suggesting some convergence with the modeling approaches.  相似文献   

2.
Biogenic volatile organic compounds (BVOCs) are major precursors of both ozone and secondary organic aerosols (SOA) in the troposphere and represent a non‐negligible portion of the carbon fixed by primary producers, but long‐term ecosystem‐scale measurements of their exchanges with the atmosphere are lacking. In this study, the fluxes of 46 ions corresponding to 36 BVOCs were continuously monitored along with the exchanges of mass (carbon dioxide and water vapor) and energy (sensible and latent heat) for an entire year in a poplar (Populus) short‐rotation crop (SRC), using the eddy covariance methodology. BVOC emissions mainly consisted of isoprene, acetic acid, and methanol. Total net BVOC emissions were 19.20 kg C ha?1 yr?1, which represented 0.63% of the net ecosystem exchange (NEE), resulting from ?23.59 Mg C ha?1 yr?1 fixed as CO2 and 20.55 Mg C ha?1 yr?1 respired as CO2 from the ecosystem. Isoprene emissions represented 0.293% of NEE, being emitted at a ratio of 1 : 1709 mol isoprene per mol of CO2 fixed. Based on annual ecosystem‐scale measurements, this study quantified for the first time that BVOC carbon emissions were lower than previously estimated in other studies (0.5–2% of NEE) on poplar trees. Furthermore, the seasonal and diurnal emission patterns of isoprene, methanol, and other BVOCs provided a better interpretation of the relationships with ecosystem CO2 and water vapor fluxes, with air temperature, vapor pressure deficit, and photosynthetic photon flux density.  相似文献   

3.
Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr?1 (352 g C m?2 yr?1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr?1 (31 g C m?2 yr?1). Harvesting transferred 45 ± 4 Tg C yr?1 out of the ecosystem and 45 ± 4 Tg C yr?1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr?1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr?1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr?1 (1 g C m?2 yr?1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr?1 [net ecosystem exchange (NEE) of CO2=?22 g C m?2 yr?1].  相似文献   

4.
Cultivation of bioenergy crops has been suggested as a promising option for reduction of greenhouse gas (GHG) emissions from arable organic soils (Histosols). Here, we report the annual net ecosystem exchange (NEE) fluxes of CO2 as measured with a dynamic closed chamber method at a drained fen peatland grown with reed canary grass (RCG) and spring barley (SB) in a plot experiment (= 3 for each cropping system). The CO2 flux was partitioned into gross photosynthesis (GP) and ecosystem respiration (RE). For the data analysis, simple yet useful GP and RE models were developed which introduce plot‐scale ratio vegetation index as an active vegetation proxy. The GP model captures the effect of temperature and vegetation status, and the RE model estimates the proportion of foliar biomass dependent respiration (Rfb) in the total RE. Annual RE was 1887 ± 7 (mean ± standard error, = 3) and 1288 ± 19 g CO2‐C m?2 in RCG and SB plots, respectively, with Rfb accounting for 32 and 22% respectively. Total estimated annual GP was ?1818 ± 42 and ?1329 ± 66 g CO2‐C m?2 in RCG and SB plots leading to a NEE of 69 ± 36 g CO2‐C m?2 yr?1 in RCG plots (i.e., a weak net source) and ?41 ± 47 g CO2‐C m?2 yr?1 in SB plots (i.e., a weak net sink). Standard errors related to spatial variation were small (as shown above), but more significant uncertainties were related to the modelling approach for establishment of annual budgets. In conclusion, the bioenergy cropping system was not more favourable than the food cropping system when looking at the atmospheric CO2 emissions during cultivation. However, in a broader GHG life‐cycle perspective, the lower fertilizer N input and the higher biomass yield in bioenergy cropping systems could be beneficial.  相似文献   

5.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

6.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

7.
At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus (‘forest’) lead to expansion of permafrost‐free wetlands (‘wetland’). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH4) emissions. Here, we quantify the thaw‐induced increase in CH4 emissions for a boreal forest‐wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long‐term net carbon dioxide (CO2) exchange. Using nested wetland and landscape eddy covariance net CH4 flux measurements in combination with flux footprint modeling, we find that landscape CH4 emissions increase with increasing wetland‐to‐forest ratio. Landscape CH4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May–October) wetland CH4 emission of ~13 g CH4 m?2 is the dominating contribution to the landscape CH4 emission of ~7 g CH4 m?2. In contrast, forest contributions to landscape CH4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr?1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH4 m?2 yr?1 in landscape CH4 emissions. A long‐term net CO2 uptake of >200 g CO2 m?2 yr?1 is required to offset the positive radiative forcing of increasing CH4 emissions until the end of the 21st century as indicated by an atmospheric CH4 and CO2 concentration model. However, long‐term apparent carbon accumulation rates in similar boreal forest‐wetland landscapes and eddy covariance landscape net CO2 flux measurements suggest a long‐term net CO2 uptake between 49 and 157 g CO2 m?2 yr?1. Thus, thaw‐induced CH4 emission increases likely exert a positive net radiative greenhouse gas forcing through the 21st century.  相似文献   

8.
Energy derived from second generation perennial energy crops is projected to play an increasingly important role in the decarbonization of the energy sector. Such energy crops are expected to deliver net greenhouse gas emissions reductions through fossil fuel displacement and have potential for increasing soil carbon (C) storage. Despite this, few empirical studies have quantified the ecosystem‐level C balance of energy crops and the evidence base to inform energy policy remains limited. Here, the temporal dynamics and magnitude of net ecosystem carbon dioxide (CO2) exchange (NEE) were quantified at a mature short rotation coppice (SRC) willow plantation in Lincolnshire, United Kingdom, under commercial growing conditions. Eddy covariance flux observations of NEE were performed over a four‐year production cycle and combined with biomass yield data to estimate the net ecosystem carbon balance (NECB) of the SRC. The magnitude of annual NEE ranged from ?147 ± 70 to ?502 ± 84 g CO2‐C m?2 year?1 with the magnitude of annual CO2 capture increasing over the production cycle. Defoliation during an unexpected outbreak of willow leaf beetle impacted gross ecosystem production, ecosystem respiration, and net ecosystem exchange during the second growth season. The NECB was ?87 ± 303 g CO2‐C m?2 for the complete production cycle after accounting for C export at harvest (1,183 g C m?2), and was approximately CO2‐C neutral (?21 g CO2‐C m?2 year?1) when annualized. The results of this study are consistent with studies of soil organic C which have shown limited changes following conversion to SRC willow. In the context of global decarbonization, the study indicates that the primary benefit of SRC willow production at the site is through displacement of fossil fuel emissions.  相似文献   

9.
We calculated carbon budgets for a chronosequence of harvested jack pine (Pinus banksiana Lamb.) stands (0‐, 5‐, 10‐, and~29‐year‐old) and a~79‐year‐old stand that originated after wildfire. We measured total ecosystem C content (TEC), above‐, and belowground net primary productivity (NPP) for each stand. All values are reported in order for the 0‐, 5‐, 10‐, 29‐, and 79‐year‐old stands, respectively, for May 1999 through April 2000. Total annual NPP (NPPT) for the stands (Mg C ha?1 yr?1±1 SD) was 0.9±0.3, 1.3±0.1, 2.7±0.6, 3.5±0.3, and 1.7±0.4. We correlated periodic soil surface CO2 fluxes (RS) with soil temperature to model annual RS for the stands (Mg C ha?1 yr?1±1 SD) as 4.4±0.1, 2.4±0.0, 3.3±0.1, 5.7±0.3, and 3.2±0.2. We estimated net ecosystem productivity (NEP) as NPPT minus RH (where RH was calculated using a Monte Carlo approach as coarse woody debris respiration plus 30–70% of total annual RS). Excluding C losses during wood processing, NEP (Mg C ha?1 yr?1±1 SD) for the stands was estimated to be ?1.9±0.7, ?0.4±0.6, 0.4±0.9, 0.4±1.0, and ?0.2±0.7 (negative values indicate net sources to the atmosphere.) We also calculated NEP values from the changes in TEC among stands. Only the 0‐year‐old stand showed significantly different NEP between the two methods, suggesting a possible mismatch for the chronosequence. The spatial and methodological uncertainties allow us to say little for certain except that the stand becomes a source of C to the atmosphere following logging.  相似文献   

10.
Invasive insects impact forest carbon dynamics   总被引:3,自引:0,他引:3  
Invasive insects can impact ecosystem functioning by altering carbon, nutrient, and hydrologic cycles. In this study, we used eddy covariance to measure net CO2 exchange with the atmosphere (NEE), and biometric measurements to characterize net ecosystem productivity (NEP) in oak‐ and pine‐dominated forests that were defoliated by Gypsy moth (Lymantria dispar L.) in the New Jersey Pine Barrens. Three years of data were used to compare C dynamics; 2005 with minimal defoliation, 2006 with partial defoliation of the canopy and understory in a mixed stand, and 2007 with complete defoliation of an oak‐dominated stand, and partial defoliation of the mixed and pine‐dominated stands. Previous to defoliation in 2005, annual net CO2 exchange (NEEyr) was estimated at ?187, ?137 and ?204 g C m?2 yr?1 at the oak‐, mixed‐, and pine‐dominated stands, respectively. Annual NEP estimated from biometric measurements was 108%, 100%, and 98% of NEEyr in 2005 for the oak‐, mixed‐, and pine‐dominated stands, respectively. Gypsy moth defoliation strongly reduced fluxes in 2006 and 2007 compared with 2005; NEEyr was ?122, +103, and ?161 g C m?2 yr?1 in 2006, and +293, +129, and ?17 g C m?2 yr?1 in 2007 at the oak‐, mixed‐, and pine‐dominated stands, respectively. At the landscape scale, Gypsy moths defoliated 20.2% of upland forests in 2007. We calculated that defoliation in these upland forests reduced NEEyr by 41%, with a 55% reduction in the heavily impacted oak‐dominated stands. ‘Transient’ disturbances such as insect defoliation, nonstand replacing wildfires, and prescribed burns are major factors controlling NEE across this landscape, and when integrated over time, may explain much of the patterning of aboveground biomass and forest floor mass in these upland forests.  相似文献   

11.
Southwestern North America faces an imminent transition to a warmer, more arid climate, and it is critical to understand how these changes will affect the carbon balance of southwest ecosystems. In order to test our hypothesis that differential responses of production and respiration to temperature and moisture shape the carbon balance across a range of spatio‐temporal scales, we quantified net ecosystem exchange (NEE) of CO2 and carbon storage across the New Mexico Elevational Gradient, which consists of six eddy‐covariance sites representing biomes ranging from desert to subalpine conifer forest. Within sites, hotter and drier conditions were associated with an increasing advantage of respiration relative to production such that daily carbon uptake peaked at intermediate temperatures – with carbon release often occurring on the hottest days – and increased with soil moisture. Across sites, biotic adaptations modified but did not override the dominant effects of climate. Carbon uptake increased with decreasing temperature and increasing precipitation across the elevational gradient; NEE ranged from a source of ~30 g C m?2 yr?1 in the desert grassland to a sink of ~350 g C m?2 yr?1 in the subalpine conifer forest. Total aboveground carbon storage increased dramatically with elevation, ranging from 186 g C m?2 in the desert grassland to 26 600 g C m?2 in the subalpine conifer forest. These results make sense in the context of global patterns in NEE and biomass storage, and support that increasing temperature and decreasing moisture shift the carbon balance of ecosystems in favor of respiration, such that the potential for ecosystems to sequester and store carbon is reduced under hot and/or dry conditions. This implies that projected climate change will trigger a substantial net release of carbon in these New Mexico ecosystems (~3 Gt CO2 statewide by the end of the century), thereby acting as a positive feedback to climate change.  相似文献   

12.
Carbon balance of different aged Scots pine forests in Southern Finland   总被引:4,自引:0,他引:4  
We estimated annual net ecosystem exchange (NEE) of a chronosequence of four Scots pine stands in southern Finland during years 2000–2002 using eddy covariance (EC). Net ecosystem productivity (NEP) was estimated using growth measurements and modelled mass losses of woody debris. The stands were 4, 12, 40 and 75 years old. The 4‐year‐old clearcut was a source of carbon throughout the year combining a low gross primary productivity (GPP) with a total ecosystem respiration (TER) similar to the forest stands. The annual NEE of the clearcut, measured by EC, was 386 g C m?2. Tree growth was negligible and the estimated NEP was ?262 g C m?2 a?1. The annual GPPs at the other sites were close to each other (928?1072 g C m?2 a?1), but TER differed markedly, being greatest at the 12‐year‐old site (905 g C m?2 a?1) and smallest in the 75‐year‐old stand (616 g C m?2 a?1). Measurements of soil CO2 efflux showed that different rates of soil respiration largely explained the differences in TER. The NEE and NEP of the 12‐year‐old stand were close to zero. The forested stands were sinks of carbon. They had similar annual patterns of carbon exchange and half‐hourly eddy fluxes were highly correlated, indicating similar responses to the environment. The NEE in the 40‐year‐old stand varied between ?179 and –192 g C m?2 a?1, while NEP was between 214 and 242 g C m?2 a?1. The annual NEE of the 75‐year‐old stand was 323 g C m?2 and NEP was 252 g C m?2. This indicates that there was no reduction in carbon sink strength with stand age.  相似文献   

13.
Northern peatlands contain up to 25% of the world's soil carbon (C) and have an estimated annual exchange of CO2‐C with the atmosphere of 0.1–0.5 Pg yr−1 and of CH4‐C of 10–25 Tg yr−1. Despite this overall importance to the global C cycle, there have been few, if any, complete multiyear annual C balances for these ecosystems. We report a 6‐year balance computed from continuous net ecosystem CO2 exchange (NEE), regular instantaneous measurements of methane (CH4) emissions, and export of dissolved organic C (DOC) from a northern ombrotrophic bog. From these observations, we have constructed complete seasonal and annual C balances, examined their seasonal and interannual variability, and compared the mean 6‐year contemporary C exchange with the apparent C accumulation for the last 3000 years obtained from C density and age‐depth profiles from two peat cores. The 6‐year mean NEE‐C and CH4‐C exchange, and net DOC loss are −40.2±40.5 (±1 SD), 3.7±0.5, and 14.9±3.1 g m−2 yr−1, giving a 6‐year mean balance of −21.5±39.0 g m−2 yr−1 (where positive exchange is a loss of C from the ecosystem). NEE had the largest magnitude and variability of the components of the C balance, but DOC and CH4 had similar proportional variabilities and their inclusion is essential to resolve the C balance. There are large interseasonal and interannual ranges to the exchanges due to variations in climatic conditions. We estimate from the largest and smallest seasonal exchanges, quasi‐maximum limits of the annual C balance between 50 and −105 g m−2 yr−1. The net C accumulation rate obtained from the two peatland cores for the interval 400–3000 bp (samples from the anoxic layer only) were 21.9±2.8 and 14.0±37.6 g m−2 yr−1, which are not significantly different from the 6‐year mean contemporary exchange.  相似文献   

14.
Understanding carbon dynamics of switchgrass ecosystems is crucial as switchgrass (Panicum virgatum L.) acreage is expanding for cellulosic biofuels. We used eddy covariance system and examined seasonal changes in net ecosystem CO2 exchange (NEE) and its components – gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) – in response to controlling factors during the second (2011) and third (2012) years of stand establishment in the southern Great Plains of the United States (Chickasha, OK). Larger vapor pressure deficit (VPD > 3 kPa) limited photosynthesis and caused asymmetrical diurnal NEE cycles (substantially higher NEE in the morning hours than in the afternoon at equal light levels). Consequently, rectangular hyperbolic light–response curve (NEE partitioning algorithm) consistently failed to provide good fits at high VPD. Modified rectangular hyperbolic light–VPD response model accounted for the limitation of VPD on photosynthesis and improved the model performance significantly. The maximum monthly average NEE reached up to ?33.02 ± 1.96 μmol CO2 m?2 s?1 and the highest daily integrated NEE was ?35.89 g CO2 m?2 during peak growth. Although large differences in cumulative seasonal GEP and ER were observed between two seasons, total seasonal ER accounted for about 75% of GEP regardless of the growing season lengths and differences in aboveground biomass production. It suggests that net ecosystem carbon uptake increases with increasing GEP. The ecosystem was a net sink of CO2 during 5–6 months and total seasonal uptakes were ?1128 ± 130 and ?1796 ± 217 g CO2 m?2 in 2011 and 2012, respectively. In conclusion, our findings suggest that the annual carbon status of a switchgrass ecosystem can be a small sink to small source in this region if carbon loss from biomass harvesting is considered. However, year‐round measurements over several years are required to assess a long‐term source‐sink status of the ecosystem.  相似文献   

15.
Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site‐years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 – 1000 mm in annual precipitation and records of 4–9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site‐level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis–ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site‐level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long‐term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100‐mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm?2 yr?1. Most of the unexplained NEP variability was related to persistent, site‐specific function, suggesting prioritization of research on slow‐changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site‐level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.  相似文献   

16.
Intra‐ and interannual variability of precipitation can lead to major modifications of grassland production and carbon storage capacity. Greater understanding of how climatic variability affects net CO2 exchange [i.e. net ecosystem exchange (NEE)] of grazed grasslands is important to adapt grassland management and reduce risks of carbon losses. Since 2002, we continuously measured NEE (i.e. eddy covariance technique) on an upland grassland site (7 ha), divided in two paddocks grazed by heifers (intensive: 1 LSU ha?1 yr?1, 213 kg N ha?1 yr?1 and extensive: 0.5 LSU ha?1 yr?1, no fertilization). For years with dry and warm growing seasons (i.e. 2003, 2005 and 2008), absolute annual NEE was higher in the intensive paddock compared with the extensive paddock. The opposite was observed during years of ample seasonal rainfall and soil moisture (i.e. 2004, 2006 and 2007). Contrasted management led to two distinct plant communities being different in leaf area index (LAI), soil bulk density and soil water holding capacity. Differences in annual NEEs could thus be assigned to interactions between in carbon and water fluxes during dry and wet growth periods. Dry growth periods led to a reduction in weekly gross primary productivity (GPP) in the extensively managed paddock, whereas the GPP was maintained in the intensive paddock. In turn, during wet growth periods, GPP was similar in both paddocks, whereas N amendment and frequent defoliation significantly increased ecosystem respiration in the intensive paddock, presumably through a higher heterotrophic respiration following on a better C substrate quality and availability (rhizodeposition and senescent fine roots). In the extensive paddock, where plant cover was denser (reducing soil temperature) and less decomposable, C losses through heterotrophic respiration were comparatively smaller under wet conditions. Our results demonstrate that grassland subjected to a moderately intensive management could be more resilient in terms of carbon storage during drought and heat waves, presumably because of a trade‐off between heterotrophic and autotrophic respiration.  相似文献   

17.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

18.
We used eddy covariance and biomass measurements to quantify the carbon (C) dynamics of a naturally regenerated longleaf pine/slash pine flatwoods ecosystem in north Florida for 4 years, July 2000 to June 2002 and 2004 to 2005, to quantify how forest type, silvicultural intensity and environment influence stand‐level C balance. Precipitation over the study periods ranged from extreme drought (July 2000–June 2002) to above‐average precipitation (2004 and 2005). After photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD) >1.5 kPa and air temperature <10 °C were important constraints on daytime half‐hourly net CO2 exchange (NEEday) and reduced the magnitude of midday CO2 exchange by >5 μmol CO2 m?2 s?1. Analysis of water use efficiency indicated that stomatal closure at VPD>1.5 kPa moderated transpiration similarly in both drought and wet years. Night‐time exchange (NEEnight) was an exponential function of air temperature, with rates further modulated by soil moisture. Estimated annual net ecosystem production (NEP) was remarkably consistent among the four measurement years (range: 158–192 g C m?2 yr?1). In comparison, annual ecosystem C assimilation estimates from biomass measurements between 2000 and 2002 ranged from 77 to 136 g C m?2 yr?1. Understory fluxes accounted for approximately 25–35% of above‐canopy NEE over 24‐h periods, and 85% and 27% of whole‐ecosystem fluxes during night and midday (11:00–15:00 hours) periods, respectively. Concurrent measurements of a nearby intensively managed slash pine plantation showed that annual NEP was three to four times greater than that of the Austin Cary Memorial Forest, highlighting the importance of silviculture and management in regulating stand‐level C budgets.  相似文献   

19.
High Arctic landscapes are expansive and changing rapidly. However, our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near‐zero sink of atmospheric CO2 (NEE: ?0.3 ± 13.5 g C m?2). A nearby meadow wetland accumulated over 300 times more carbon (NEE: ?79.3 ± 20.0 g C m?2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on‐site was low (mean: 0.120–0.157) and similar to satellite measurements (mean: 0.155–0.163). However, weak plant growth resulted in poor satellite NDVI–NEE relationships and created challenges for remotely detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote sensing; however, high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases enough to offset poor soil moisture retention, climate‐related changes to productivity on polar semideserts may be restricted.  相似文献   

20.
European forests are an important carbon sink; however, the relative contributions to this sink of climate, atmospheric CO2 concentration ([CO2]), nitrogen deposition and forest management are under debate. We attributed the European carbon sink in forests using ORCHIDEE‐FM, a process‐based vegetation model that differs from earlier versions of ORCHIDEE by its explicit representation of stand growth and idealized forest management. The model was applied on a grid across Europe to simulate changes in the net ecosystem productivity (NEP) of forests with and without changes in climate, [CO2] and age structure, the three drivers represented in ORCHIDEE‐FM. The model simulates carbon stocks and volume increment that are comparable – root mean square error of 2 m3 ha?1 yr?1 and 1.7 kg C m?2 respectively – with inventory‐derived estimates at country level for 20 European countries. Our simulations estimate a mean European forest NEP of 175 ± 52 g C m?2 yr?1 in the 1990s. The model simulation that is most consistent with inventory records provides an upwards trend of forest NEP of 1 ± 0.5 g C m?2 yr?2 between 1950 and 2000 across the EU 25. Furthermore, the method used for reconstructing past age structure was found to dominate its contribution to temporal trends in NEP. The potentially large fertilizing effect of nitrogen deposition cannot be told apart, as the model does not explicitly simulate the nitrogen cycle. Among the three drivers that were considered in this study, the fertilizing effect of increasing [CO2] explains about 61% of the simulated trend, against 26% to changes in climate and 13% only to changes in forest age structure. The major role of [CO2] at the continental scale is due to its homogeneous impact on net primary productivity (NPP). At the local scale, however, changes in climate and forest age structure often dominate trends in NEP by affecting NPP and heterotrophic respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号