首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expansion of biofuel production can lead to an array of negative environmental impacts. Therefore, the European Union (EU) has recently imposed sustainability criteria on biofuel production in the Renewable Energy Directive (RED). In this article, we analyse the effectiveness of the sustainability criteria for climate change mitigation and biodiversity conservation. We first use a global agriculture and forestry model to investigate environmental effects of the EU member states National Renewable Energy Action Plans (NREAPs) without sustainability criteria. We conclude that these targets would drive losses of 2.2 Mha of highly biodiverse areas and generate 95 Mt CO 2 eq of additional greenhouse gas (GHG) emissions. However, in a second step, we demonstrate that the EU biofuel demand could be satisfied ‘sustainably’ according to RED despite its negative environmental effects. This is because the majority of global crop production is produced ‘sustainably’ in the sense of RED and can provide more than 10 times the total European biofuel demand in 2020 if reallocated from sectors without sustainability criteria. This finding points to a potential policy failure of applying sustainability regulation to a single sector in a single region. To be effective this policy needs to be more complete in targeting a wider scope of agricultural commodities and more comprehensive in its membership of countries.  相似文献   

2.
This article presents an assessment of energy inputs of the European Union (the 15 countries before the 2004 enlargement, abbreviated EU‐15) for the period 1970–2001 and the United States for 1980–2000. The data are based on an energy flow analysis (EFA) that evaluates socioeconomic energy flows in a way that is conceptually consistent with current materials flow analysis (MFA) methods. EFA allows assessment of the total amount of energy required by a national economy; it yields measures of the size of economic systems in biophysical units. In contrast to conventional energy balances, which only include technically used energy, EFA also accounts for socioeconomic inputs of biomass; that is, it also considers food, feed, wood and other materials of biological origin. The energy flow accounts presented in this article do not include embodied energy. Energy flow analyses are relevant for comparisons across modes of subsistence (e.g., agrarian and industrial society) and also to detect interrelations between energy utilization and land use. In the EU‐15, domestic energy consumption (DEC = apparent consumption = domestic extraction plus import minus export) grew from 60 exajoules per year (1 EJ = 1018 J) in 1970 to 79 EJ/yr in 2001, thus exceeding its territory's net primary production (NPP, a measure of the energy throughput of ecosystems). In the United States, DEC increased from 102 EJ/yr in 1980 to 125 EJ/yr in 2000 and was thus slightly smaller than its NPP. Taken together, the EU‐15 and the United States accounted for about 38% of global technical energy use, 31% of humanity's energetic metabolism, but only 10% of global terrestrial NPP and 11% of world population in the early 1990s. Per capita DEC of the United States is more than twice that of the EU‐15. Calculated according to EFA methods, energy input in the EU and the United States was between one‐fifth and one‐third above the corresponding value reported in conventional energy balances. The article discusses implications of these results for sustainability, as well as future research needs.  相似文献   

3.
The expected use of solid biomass for large-scale heat and power production across North–West Europe (NW EU) has led to discussions about its sustainability, especially due to the increasing import dependence of the sector. While individual Member States and companies have put forward sustainability criteria, it remains unclear how different requirements will influence the availability and cost of solid biomass and thus how specific regions will satisfy their demand in a competitive global market. We combined a geospatially explicit least-cost biomass supply model with a linear optimization solver to assess global solid biomass trade streams by 2020 with a particular focus on NW EU. We apply different demand and supply scenarios representing varying policy developments and sustainability requirements. We find that the projected EU solid biomass demand by 2020 can be met across all scenarios, almost exclusively via domestic biomass. The exploitation of domestic agricultural residue and energy crop potentials, however, will need to increase sharply. Given sustainability requirements for solid biomass as for liquid biofuels, extra-EU imports may reach 236 PJ by 2020, i.e., 400% of their 2010 levels. Intra-EU trade is expected to grow with stricter sustainability requirements up to 548 PJ, i.e., 280% of its 2010 levels by 2020. Increasing sustainability requirements can have different effects on trade portfolios across NW EU. Excluding pulpwood pellets may drive the supply costs of import dependent countries, foremost the Netherlands and the UK, whereas excluding additional forest biomass may entail higher costs for Germany and Denmark which rely on regional biomass. Excluding solid biomass fractions may create short-term price hikes. Our modeling results are strongly influenced by parameterization choices, foremost assumed EU biomass supply volumes and costs and assumed relations between criteria and supply. The model framework is suited for the inclusion of dynamic supply–demand interactions and other world regions.  相似文献   

4.
Short rotation coppice (SRC) is considered an important biomass supply option for meeting the European renewable energy targets. This paper presents an overview of existing and prospective sustainability requirements, Member State reporting obligations and parts of the methodology for calculating GHG emissions savings within the EU Renewable Energy Directive (RED), and shows how these RED-associated sustainability criteria may affect different stakeholders along SRC bioenergy supply chains. Existing and prospective tools are assessed on their usefulness in ensuring that SRC bioenergy is produced with sufficient consideration given to the RED-associated criteria. A sustainability framework is outlined that aims at (1) facilitating the development of SRC production systems that are attractive from the perspectives of all stakeholders, and (2) ensuring that the SRC production is RED eligible. Producer manuals, EIAs, and voluntary certification schemes can all be useful for ensuring RED eligibility. However, they are currently not sufficiently comprehensive, neither individually nor combined, and suggestions for how they can be more complementary are given. Geographical information systems offer opportunities for administrative authorities to provide stakeholders with maps or databases over areas/fields suitable for RED-eligible SRC cultivation. However, proper consideration of all relevant aspects requires that all stakeholders in the SRC supply chain become engaged in the development of SRC production systems and that a landscape perspective is used.  相似文献   

5.
Biofuel provides a globally significant opportunity to reduce fossil fuel dependence; however, its sustainability can only be meaningfully explored for individual cases. It depends on multiple considerations including: life cycle greenhouse gas emissions, air quality impacts, food versus fuel trade‐offs, biodiversity impacts of land use change and socio‐economic impacts of energy transitions. One solution that may address many of these issues is local production of biofuel on non‐agricultural land. Urban areas drive global change, for example, they are responsible for 70% of global energy use, but are largely ignored in their resource production potential; however, underused urban greenspaces could be utilized for biofuel production near the point of consumption. This could avoid food versus fuel land conflicts in agricultural land and long‐distance transport costs, provide ecosystem service benefits to urban dwellers and increase the sustainability and resilience of cities and towns. Here, we use a Geographic Information System to identify urban greenspaces suitable for biofuel production, using exclusion criteria, in 10 UK cities. We then model production potential of three different biofuels: Miscanthus grass, short rotation coppice (SRC) willow and SRC poplar, within the greenspaces identified and extrapolate up to a UK‐scale. We demonstrate that approximately 10% of urban greenspace (3% of built‐up land) is potentially suitable for biofuel production. We estimate the potential of this to meet energy demand through heat generation, electricity and combined heat and power (CHP) operations. Our findings show that, if fully utilized, urban biofuel production could meet nearly a fifth of demand for biomass in CHP systems in the United Kingdom's climate compatible energy scenarios by 2030, with potentially similar implications for other comparable countries and regions.  相似文献   

6.
Woody biomass from the southeast United States is expected to play an important role in meeting European Union renewable energy targets. In crafting policies to guide bioenergy development and in guiding investment decisions to meet established policy goals, a firm understanding of the interaction between policy targets and forest biomass markets is necessary, as is the effect that this interaction will have on environmental and economic objectives. This analysis increases our understanding of these interactions by modeling the response of southern US forest markets to new pellet demand in the presence of sustainability sourcing or harvest criteria. We first assess the influence of EU recommended sustainability guidelines on the forest inventory available to supply EU markets, and then model changes in forest composition and extent in response to expected increases in pellet demand. Next, we assess how sustainability guidelines can influence the evolution of forest markets in the region, paying particular attention to changes in land use and forest carbon. Regardless of whether sustainability guidelines are applied, we find increased removals, an increase in forest area, and little change in forest inventory. We also find annual gains in forest carbon in most years of the analysis. The incremental effect of sustainability guideline application on forest carbon and pellet greenhouse gas (GHG) balance is difficult to discern, but results suggest that guidelines could be steering production away from sensitive forest types inherently less responsive to changing market conditions. Pellet GHG balance shows significant annual change and is attributable to the complexity of the underlying forest landscape. The manner by which GHG balance is tracked is thus a critical policy decision, reinforcing the importance and relevance of current efforts to develop approaches to accurately account for the GHG implications of biomass use both in the United States and European Union.  相似文献   

7.
The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)‐based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially‐explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade‐offs between biofuel energy production and unintended ecosystem‐service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine‐county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem‐service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal‐land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.  相似文献   

8.
Sustainable feedstock supply is a critical issue for the bioenergy sector. One concern is that feedstock production will impact biodiversity. We analyze how this concern is addressed in assessments of biomass supply potentials and in selected governance systems in the EU and Brazil, including the EU Renewable Energy Directive (RED), the EU Common Agricultural Policy (CAP), and the Brazilian Forest Act. The analysis focuses on grasslands and includes estimates of the amount of grassland area (and corresponding biomass production volume) that would be excluded from cultivation in specific biodiversity protection scenarios. The reviewed assessments used a variety of approaches to identify and exclude biodiverse grasslands as unavailable for bioenergy. Because exclusion was integrated with other nature protection considerations, quantification of excluded grassland areas was often not possible. The RED complements and strengthens the CAP in terms of biodiversity protection. Following the RED, an estimated 39%–48% (about 9–11 Mha) and 15%–54% (about 10–38 Mha) of natural and non‐natural grassland, respectively, may be considered highly biodiverse in EU‐28. The estimated biomass production potential on these areas corresponds to some 1–3 and 1.5–10 EJ/year for natural and non‐natural grassland, respectively (depending on area availability and management intensity). However, the RED lacks clear definitions and guidance, creating uncertainty about its influence on grassland availability for bioenergy feedstock production. For Brazil, an estimated 16%–77% (about 16–76 Mha) and 1%–32% (about 7–24 Mha) of natural and non‐natural grassland, respectively, may be considered highly biodiverse. In Brazil, ecological–economic zoning was found potentially important for grassland protection. Further clarification of grassland definitions and delineation in regulations will facilitate a better understanding of the prospects for bioenergy feedstock production on grasslands, and the impacts of bioenergy deployment on biodiversity.  相似文献   

9.
Across the energy sector, alternatives to fossil fuels are being developed, in response to the dual drivers of climate change and energy security. For transport, biofuels have the greatest potential to replace fossil fuels in the short‐to medium term. However, the ecological benefits of biofuels and the role that their deployment can play in mitigating climate change are being called into question. Life Cycle Assessment (LCA) is a widely used approach that enables the energy and greenhouse gas (GHG) balance of biofuel production to be calculated. Concerns have nevertheless been raised that published data show widely varying and sometimes contradictory results. This review describes a systematic review of GHG emissions and energy balance data from 44 LCA studies of first‐ and second‐generation biofuels. The information collated was used to identify the dominant sources of GHG emissions and energy requirements in biofuel production and the key sources of variability in published LCA data. Our analysis revealed three distinct sources of variation: (1) ‘real’ variability in parameters e.g. cultivation; (2) ‘methodological’ variability due to the implementation of the LCA method; and (3) ‘uncertainty’ due to parameters rarely included and poorly quantified. There is global interest in developing a sustainability assessment protocol for biofuels. Confidence in the results of such an assessment can only be assured if these areas of uncertainty and variability are addressed. A more defined methodology is necessary in order to allow effective and accurate comparison of results. It is also essential that areas of uncertainty such as impacts on soil carbon stocks and fluxes are included in LCA assessments, and that further research is conducted to enable a robust calculation of impacts under different land‐use change scenarios. Without the inclusion of these parameters, we cannot be certain that biofuels are really delivering GHG savings compared with fossil fuels.  相似文献   

10.
Methods for carbon footprinting typically combine all emissions into a single result, representing the emissions of greenhouse gases (GHGs) over the life cycle. The timing of GHG impacts, however, has become a matter of significant interest. In this study, two approaches are used to characterize the timing of GHG emission impacts associated with the production of energy from various biomass residues produced by the forest products industry. The first approach accounts for the timing of emissions and characterizes the impact using Intergovernmental Panel on Climate Change (IPCC) 100‐year global warming potentials (GWPs). The second is a dynamic carbon footprint approach that considers the timing of the GHG emissions, their fate in the atmosphere, and the associated radiative forcing as a function of time. The two approaches generally yield estimates of cumulative impacts over 100 years that differ by less than 5%. The timing of impacts, however, can be significantly affected by the approach used to characterize radiative forcing. For instance, the time required to see net benefits from a system using woody mill residues (e.g., bark and sawdust) is estimated to be 1.2 years when using a fully dynamic approach, compared to 7.5 years when using 100‐year GWPs, with the differences being primarily attributable to methane (CH4). The results obtained for a number of different biomass residue types from forest products manufacturing highlight the importance of using a fully dynamic approach when studying the timing of emissions impacts in cases where emissions are distributed over time or where CH4 is a significant contributor to the emissions.  相似文献   

11.
Scrutiny of food packaging environmental impacts has led to a variety of sustainability directives, but has largely focused on the direct impacts of materials. A growing awareness of the impacts of food waste warrants a recalibration of packaging environmental assessment to include the indirect effects due to influences on food waste. In this study, we model 13 food products and their typical packaging formats through a consistent life cycle assessment framework in order to demonstrate the effect of food waste on overall system greenhouse gas (GHG) emissions and cumulative energy demand (CED). Starting with food waste rate estimates from the U.S. Department of Agriculture, we calculate the effect on GHG emissions and CED of a hypothetical 10% decrease in food waste rate. This defines a limit for increases in packaging impacts from innovative packaging solutions that will still lead to net system environmental benefits. The ratio of food production to packaging production environmental impact provides a guide to predicting food waste effects on system performance. Based on a survey of the food LCA literature, this ratio for GHG emissions ranges from 0.06 (wine example) to 780 (beef example). High ratios with foods such as cereals, dairy, seafood, and meats suggest greater opportunity for net impact reductions through packaging‐based food waste reduction innovations. While this study is not intended to provide definitive LCAs for the product/package systems modeled, it does illustrate both the importance of considering food waste when comparing packaging alternatives, and the potential for using packaging to reduce overall system impacts by reducing food waste.  相似文献   

12.
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, and Miscanthus, were assumed to be grown on the abandoned land and mixed crop‐vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that, cellulosic crops, especially Miscanthus could produce a considerable amount of biomass, and the effective ethanol yield is high on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.0–2.3 kl and 2.9–6.9 kl ethanol, respectively, depending on nitrogen fertilization rate and biofuel conversion efficiency. Nationally, both crop systems act as net GHG sources. Switchgrass has high global warming intensity (100–390 g CO2eq l?1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21–36 g CO2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target in the United States, growing Miscanthus on the marginal lands could potentially save land and reduce GHG emissions in comparison to growing switchgrass. However, the ecosystem modeling is still limited by data availability and model deficiencies, further efforts should be made to classify crop‐specific marginal land availability, improve model structure, and better integrate ecosystem modeling into life cycle assessment.  相似文献   

13.
This first article of a two‐article series describes a framework and life cycle–based model for typical almond orchard production systems for California, where more than 80% of commercial almonds on the world market are produced. The comprehensive, multiyear, life cycle–based model includes orchard establishment and removal; field operations and inputs; emissions from orchard soils; and transport and utilization of co‐products. These processes are analyzed to yield a life cycle inventory of energy use, greenhouse gas (GHG) emissions, criteria air pollutants, and direct water use from field to factory gate. Results show that 1 kilogram (kg) of raw almonds and associated co‐products of hulls, shells, and woody biomass require 35 megajoules (MJ) of energy and result in 1.6 kg carbon dioxide equivalent (CO2‐eq) of GHG emissions. Nitrogen fertilizer and irrigation water are the dominant causes of both energy use and GHG emissions. Co‐product credits play an important role in estimating the life cycle environmental impacts attributable to almonds alone; using displacement methods results in net energy and emissions of 29 MJ and 0.9 kg CO2‐eq/kg. The largest sources of credits are from orchard biomass and shells used in electricity generation, which are modeled as displacing average California electricity. Using economic allocation methods produces significantly different results; 1 kg of almonds is responsible for 33 MJ of energy and 1.5 kg CO2‐eq emissions. Uncertainty analysis of important parameters and assumptions, as well as temporary carbon storage in orchard trees and soils, are explored in the second article of this two‐part article series.  相似文献   

14.
Switchgrass‐derived ethanol has been proposed as an alternative to fossil fuels to improve sustainability of the US energy sector. In this study, life cycle analysis (LCA) was used to estimate the environmental benefits of this fuel. To better define the LCA environmental impacts associated with fertilization rates and farm‐landscape topography, results from a controlled experiment were analyzed. Data from switchgrass plots planted in 2008, consistently managed with three nitrogen rates (0, 56, and 112 kg N ha?1), two landscape positions (shoulder and footslope), and harvested annually (starting in 2009, the year after planting) through 2014 were used as input into the Greenhouse gases, Regulated Emissions and Energy use in transportation (GREET) model. Simulations determined nitrogen (N) rate and landscape impacts on the life cycle energy and emissions from switchgrass ethanol used in a passenger car as ethanol–gasoline blends (10% ethanol:E10, 85% ethanol:E85s). Results indicated that E85s may lead to lower fossil fuels use (58 to 77%), greenhouse gas (GHG) emissions (33 to 82%), and particulate matter (PM2.5) emissions (15 to 54%) in comparison with gasoline. However, volatile organic compounds (VOCs) and other criteria pollutants such as nitrogen oxides (NOx), particulate matter (PM10), and sulfur dioxides (SOx) were higher for E85s than those from gasoline. Nitrogen rate above 56 kg N ha?1 yielded no increased biomass production benefits; but did increase (up to twofold) GHG, VOCs, and criteria pollutants. Lower blend (E10) results were closely similar to those from gasoline. The landscape topography also influenced life cycle impacts. Biomass grown at the footslope of fertilized plots led to higher switchgrass biomass yield, lower GHG, VOCs, and criteria pollutants in comparison with those at the shoulder position. Results also showed that replacing switchgrass before maximum stand life (10–20 years.) can further reduce the energy and emissions reduction benefits.  相似文献   

15.
The implementation of measures to increase productivity and resource efficiency in food and bioenergy chains as well as to more sustainably manage land use can significantly increase the biofuel production potential while limiting the risk of causing indirect land use change (ILUC). However, the application of these measures may influence the greenhouse gas (GHG) balance and other environmental impacts of agricultural and biofuel production. This study applies a novel, integrated approach to assess the environmental impacts of agricultural and biofuel production for three ILUC mitigation scenarios, representing a low, medium and high miscanthus‐based ethanol production potential, and for three agricultural intensification pathways in terms of sustainability in Lublin province in 2020. Generally, the ILUC mitigation scenarios attain lower net annual emissions compared to a baseline scenario that excludes ILUC mitigation and bioethanol production. However, the reduction potential significantly depends on the intensification pathway considered. For example, in the moderate ILUC mitigation scenario, the net annual GHG emissions in the case study are 2.3 MtCO2‐eq yr?1 (1.8 tCO2‐eq ha?1 yr?1) for conventional intensification and ?0.8 MtCO2‐eq yr?1 (?0.6 tCO2‐eq ha?1 yr?1) for sustainable intensification, compared to 3.0 MtCO2‐eq yr?1 (2.3 tCO2‐eq ha?1 yr?1) in the baseline scenario. In addition, the intensification pathway is found to be more influential for the GHG balance than the ILUC mitigation scenario, indicating the importance of how agricultural intensification is implemented in practice. Furthermore, when the net emissions are included in the assessment of GHG emissions from bioenergy, the ILUC mitigation scenarios often abate GHG emissions compared to gasoline. But sustainable intensification is required to attain GHG abatement potentials of 90% or higher. A qualitative assessment of the impacts on biodiversity, water quantity and quality, soil quality and air quality also emphasizes the importance of sustainable intensification.  相似文献   

16.
The European Commission has a mandate from the EU's Renewable Energy and Fuel Quality Directives to propose a methodology, consistent with the best available science, to address indirect land use change (iLUC). One proposed solution to the iLUC problem is the application of iLUC factors in European fuels policy – it is widely expected that should the EU adopt such iLUC factors, they would be based on iLUC modelling using the International Food Policy Research Institute's (IFPRI) MIRAGE model. Taking the iLUC factors from IFPRI MIRAGE as our central estimate, we use Monte Carlo analysis on a simple model of potential biofuel pathways for Europe to assess the likely average carbon saving from three possible European biofuel policy scenarios: no action on iLUC; raised GHG thresholds for direct emissions savings; and the introduction of iLUC factors. We find that without iLUC factors (or some other effective iLUC minimization approach) European biofuel mandates are unlikely to deliver significant GHG emissions benefits in 2020, and have a substantial probability of increasing net GHG emissions. In contrast, the implementation of iLUC factors is likely to significantly increase the carbon savings from EU biofuel policy. With iLUC factors, it is likely that most permitted pathways would conform to the Renewable Energy Directive requirement for a minimum 50% GHG reduction compared to fossil fuels.  相似文献   

17.
Perennial biomass crops (PBC) are considered a crucial feedstock for sustainable biomass supply to the bioeconomy that compete less with food production compared to traditional crops. However, large‐scale development of PBC as a means to reach greenhouse gas (GHG) mitigation targets would require not only the production on land previously not used for agriculture, but also the use of land that is currently used for agricultural production. This study aims to evaluate agricultural market impacts with biomass demand for food, feed, and PBC in four bioeconomy scenarios (“Business as usual,” “Improved relevance of bioeconomy,” “Extensive transformation to a bioeconomy,” “Extensive transformation to a bioeconomy with diet change”) to achieve a 75% GHG reduction target in the emission trading sector of the EU until 2050. We simulated bioeconomy scenarios in the energy system model TIMES‐PanEU and the agricultural sector model ESIM and conducted a sensitivity analysis considering crop yields, PBC yields, and land use options of PBC. Our results show that all bioeconomy scenarios except the one with diet change lead to increasing food prices (the average food price index increases by about 11% in the EU and 2.5%–3.0% in world markets). A combination of the transformation to a bioeconomy combined with diet change toward less animal protein in the EU is the only scenario that results in only moderately increasing food prices within the EU (+3.0%) and even falling global food prices (–6.4%). In addition, crop yield improvement and cultivation of PBC on marginal land help to reduce increases in food prices, but higher land prices are inevitable because those measures have only small effects on sparing agricultural land for PBC. For a transition to a bioeconomy that acknowledges climate mitigation targets, counter‐measures for those substantial direct and indirect impacts on agricultural markets should be taken into account.  相似文献   

18.
Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4 °C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2 °C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.  相似文献   

19.
This study presents supply scenarios of nonfood renewable jet fuel (RJF) in the European Union (EU) toward 2030, based on the anticipated regulatory context, availability of biomass and conversion technologies, and competing biomass demand from other sectors (i.e., transport, heat, power, and chemicals). A cost optimization model was used to identify preconditions for increased RJF production and the associated emission reductions, costs, and impact on competing sectors. Model scenarios show nonfood RJF supply could increase from 1 PJ in 2021 to 165–261 PJ/year (3.8–6.1 million tonne (Mt)/year) by 2030, provided advanced biofuel technologies are developed and adequate (policy) incentives are present. This supply corresponds to 6%–9% of jet fuel consumption and 28%–41% of total nonfood biofuel consumption in the EU. These results are driven by proposed policy incentives and a relatively high fossil jet fuel price compared to other fossil fuels. RJF reduces aviation‐related combustion emission by 12–19 Mt/year CO2‐eq by 2030, offsetting 53%–84% of projected emission growth of the sector in the EU relative to 2020. Increased RJF supply mainly affects nonfood biofuel use in road transport, which remained relatively constant during 2021–2030. The cost differential of RJF relative to fossil jet fuel declines from 40 €/GJ (1,740 €/t) in 2021 to 7–13 €/GJ (280–540 €/t) in 2030, because of the introduction of advanced biofuel technologies, technological learning, increased fossil jet fuel prices, and reduced feedstock costs. The cumulative additional costs of RJF equal €7.7–11 billion over 2021–2030 or €1.0–1.4 per departing passenger (intra‐EU) when allocated to the aviation sector. By 2030, 109–213 PJ/year (2.5–4.9 Mt/year) RJF is produced from lignocellulosic biomass using technologies which are currently not yet commercialized. Hence, (policy) mechanisms that expedite technology development are cardinal to the feasibility and affordability of increasing RJF production.  相似文献   

20.
California has large and diverse biomass resources and provides a pertinent example of how biomass use is changing and needs to change, in the face of climate mitigation policies. As in other areas of the world, California needs to optimize its use of biomass and waste to meet environmental and socioeconomic objectives. We used a systematic review to assess biomass use pathways in California and the associated impacts on climate and air quality. Biomass uses included the production of renewable fuels, electricity, biochar, compost, and other marketable products. For those biomass use pathways recently developed, information is available on the effects—usually beneficial—on greenhouse gas (GHG) emissions, and there is some, but less, published information on the effects on criteria pollutants. Our review identifies 34 biomass use pathways with beneficial impacts on either GHG or pollutant emissions, or both—the “good.” These included combustion of forest biomass for power and conversion of livestock-associated biomass to biogas by anaerobic digestion. The review identified 13 biomass use pathways with adverse impacts on GHG emissions, criteria pollutant emissions, or both—the “bad.” Wildfires are an example of one out of eight pathways which were found to be bad for both climate and air quality, while only two biomass use pathways reduced GHG emissions relative to an identified counterfactual but had adverse air quality impacts. Issues of high interest for the “future” included land management to reduce fire risk, future policies for the dairy industries, and full life-cycle analysis of biomass production and use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号