首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different strains of the thermophilic ascomycetous fungus Thermoascus aurantiacus have been reported in the literature to produce high levels of a variety of industrial interest enzymes (i.e. amylases, cellulases, pectinases and xylanases), which have been shown to be remarkably stable over a wide range of temperatures and appear to have tremendous commercial potential. Most studies on enzyme production by T. aurantiacus are carried out in chemically defined liquid medium, under conditions suitable for induction of a particular enzyme. A few studies have investigated the production of some enzymes by T. aurantiacus by solid-state fermentation, using lignocellulosic materials. The present review focuses on the enzymes produced by T. aurantiacus, their main kinetic parameters, and the effect of different culture conditions on production and enzyme activity. It also provides a view of the possible applications of T. aurantiacus enzymes, considering that this thermophilic fungus could comprise a potential source of thermostable enzymes.  相似文献   

2.
Comparison of the Arrhenius plots of three enzymes, formyltetrahydrofolate synthetase, glutathione reductase (GSSGR) and chorismate mutase (CM) from a thermophilic (Penicillium duponti) and a mesophilic (Penicillium chrysogenum) fungus reveals a fairly consistent pattern. In general, those enzymes extracted from mesophiles had lower activation energies than similar enzymes extracted from thermophiles. One enzyme studied, mesophilic glutathione reductase, exhibited a break in its Arrhenius plot. The allosteric enzyme studied showed slightly different sensitivities in the thermophilic versus the mesophilic extracts.  相似文献   

3.
Thermophilic organisms produce thermostable enzymes, which have a number of applications, justifying the interest in the isolation of new thermophilic strains and study of their enzymes. Thirty-four thermophilic and thermotolerant fungal strains were isolated from soil, organic compost, and an industrial waste pile based on their ability to grow at 45°C and in a liquid medium containing pectin as the only carbon source. Among these fungi, 50% were identified at the genus level as Thermomyces, Aspergillus, Monascus, Chaetomium, Neosartoria, Scopulariopsis, and Thermomucor. All isolated strains produced pectinase during solid-state fermentation (SSF). The highest polygalacturonase (PG) activity was obtained in the culture medium of thermophilic strain N31 identified as Thermomucor indicae-seudaticae. Under SSF conditions on media containing a mixture of wheat bran and orange bagasse (1 : 1) at 70% of initial moisture, this fungus produced the maximum of 120 U/ml of exo-PG, while in submerged fermentation (SmF) it produced 13.6 U/ml. The crude PG from SmF was more thermostable than that from SSF and exhibited higher stability in acidic pH.  相似文献   

4.
In view point of the basic research for the enzyme properties and the development of utilization of lipase, a thermophilic fungus which could produce a remarkable amount of thermostable, alkalistable and extracellular lipase has been isolated from the compost soil. The taxonomical characteristics of this thermophilic fungus were examined and it was identified as Humicola lanuginosa S-38.  相似文献   

5.
Thermomyces lanuginosus is a thermophilic fungus known for its ability to produce industrially important enzymes including large amounts of xylanase, the key enzyme in hemicellulose hydrolysis. The secretome of T. lanuginosus SSBP was profiled by shotgun proteomics to elucidate important enzymes involved in hemicellulose saccharification and to characterise the presence of other industrially interesting enzymes. This study reproducibly identified a total of 74 proteins in the supernatant following growth on corn cobs. An analysis of proteins revealed nine glycoside hydrolase (GH) enzymes including xylanase GH11, β-xylosidase GH43, β-glucosidase GH3, α-galactosidase GH36 and trehalose hydrolase GH65. Two commercially produced Thermomyces enzymes, lipase and amylase, were also identified. In addition, other industrially relevant enzymes not currently explored in Thermomyces were identified including glutaminase, fructose-bisphosphate aldolase and cyanate hydratase. Overall, these data provide insight into the novel ability of a cellulase-free fungus to utilise lignocellulosic material, ultimately producing a number of enzymes important to various industrial processes.  相似文献   

6.
A novel acidophilic fungus was isolated by an acidic enrichment culture of microbial mats and biofilms collected at an extremely acidic and high temperature hot spring. In culture studies, this fungus was revealed to produce ascomycetous teleomorph structures. Molecular phylogenetic study and morphological observation showed this fungus is a new species of the genus Teratosphaeria (Capnodiales, Dothideomycetes) and is phylogenetically close to Acidomyces acidophilus and Bispora sp., which were previously reported as acidophilic anamorphic fungi. This new fungus is described here as a new species of Teratosphaeria, and its physiological properties adapting to its habitat are demonstrated. This is the first report of a teleomorphic fungus having highly acidophilic and thermophilic properties.  相似文献   

7.
The purified trehalases of the mesophilic fungus, Neurospora crassa, and the thermophilic fungus, Thermomyces lanuginosus, had similar temperature and pH optima for activity, but differed in molecular weight, electrophoretic mobility and Michaelis constant. At lower concentration, trehalases from both fungi were inactivated to similar extent at 60°C. While purified trehalase of T. lanuginosus was afforded protection against heat-inactivation by proteinaceous protective factor(s) present in mycelial extracts, by bovine serum albumin and by casein, these did not afford protection to N. crassa trehalase against heat inactivation. Both trehalases exhibited discontinuous Arrhenius plots with temperature of discontinuity at 40°C. The activation energy calculated from the slope of the Arrhenius plot was higher for the T. lanuginosus enzyme. The plots of apparent K m versus 1/T for trehalases of N. crassa and T. lanuginosus were linear from 30° to 60°C.The results show that purified trehalases of the mesophilic and the thermophilic fungus are distinct. Although, these exhibit similar thermostability of their catalytic function at low concentration, distinctive thermal stability characteristics of thermophilic enzyme become apparent at high protein concentration. This could be brought about in the cell by the enzyme itself, or by other proteins.  相似文献   

8.
The thermophilic fungus Malbranchea pulchella var. sulfurea produced good amounts of extracellular trehalase activity when grown for long periods on starch, maltose or glucose as the main carbon source. Studies with young cultures suggested that the main role of the extracellular acid trehalase is utilizing trehalose as a carbon source. The specific activity of the purified enzyme in the presence of manganese (680 U/mg protein) was comparable to that of other thermophilic fungi enzymes, but many times higher than the values reported for trehalases from other microbial sources. The apparent molecular mass of the native enzyme was estimated to be 104 kDa by gel filtration and 52 kDa by SDS-PAGE, suggesting that the enzyme was composed by two subunits. The carbohydrate content of the purified enzyme was estimated to be 19 % and the pi was 3.5. The optimum pH and temperature were 5.0–5.5 and 55° C, respectively. The purified enzyme was stimulated by manganese and inhibited by calcium ions, and insensitive to ATP and ADP, and 1 mM silver ions. The apparent KM values for trehalose hydrolysis by the purified enzyme in the absence and presence of manganese chloride were 2.70±0.29 and 2.58±0.13 mM, respectively. Manganese ions affected only the apparent Vmax, increasing the catalytic efficiency value by 9.2-fold. The results reported herein indicate that Malbranchea pulchella produces a trehalase with mixed biochemical properties, different from the conventional acid and neutral enzymes and also from trehalases from other thermophilic fungi.  相似文献   

9.
An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but β-glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70–75°C for both activities. The enzymes were fully stable up to 1 h at 60°C. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications. Journal of Industrial Microbiology & Biotechnology (2001) 27, 265–270. Received 10 January 2001/ Accepted in revised form 10 July 2001  相似文献   

10.
The thermophilic fungus Malbranchea sulfurea produces extracellular -amylase whereas -glucosidase is mainly cell bound. Extraction of the cell bound enzyme was maximum with one molar NaCl, followed by Triton ×100 and Urea-Na2SO3 extractants. Supplementation of Triton ×100 in growth medium significantly affected the presence of enzymes at various locations. A role for cell bound -amylase and -glucosidase has been suggested in rapid starch utilization by the fungus during early growth phase.  相似文献   

11.
A Conidiobolus isolate growing optimally at 40°C was isolated from decomposing leaf litter and has been designated as a new species, Conidiobolus thermophilus. Colony growth, conidial discharge and smooth zygospore formation was rapid at 40°C, while comparative growth at 35 and 45°C was slower. On the basis of its thermophilic character and morphological distinctness from all other species, the isolate is considered as a species new to science. There have been no published reports of any thermophilic or thermotolerant strains of Conidiobolus. The present fungus was isolated as part of an ongoing programme of selective isolation of unusual/rare thermophilic fungi from compost and decomposed terrestrial plant materials.  相似文献   

12.
Summary The production of amylolytic enzymes by a thermophilic cellulolytic fungus,Myceliophthora thermophila D14 was investigated by batch cultivation in Czapek-Dox medium at 45° C. Among various nitrogenous compounds used, NaNO3 and KNO3 were found to be the best for amylase production. Starch, cellobiose and maltose induced the synthesis of amylase while glucose, fructose, galactose, lactose, arabinose, xylose, sorbitol, mesoinositol and sucrose did not. Calcium ions had the most stimulating effect on enzyme formation amongst many ions investigated. The synthesis of amylolytic enzymes was dependent on growth and occurred predominantly in the mid-stationary phase. The enzyme was active in a broad temperature range (50° C–60° C) and displayed activity optima at 60° C and pH 5.6.  相似文献   

13.
The production of extracellular enzymes by the thermophilic fungus Thermomyces lanuginosus was studied in chemostat cultures at a dilution rate of 0.08 h–1 in relation to variation in the ammonium concentration in the feed medium. Under steady state conditions, three growth regimes were recognised and the production of several extracellular enzymes from T. lanuginosus was recorded under different nutrient limitations ranging from nitrogen limitation to carbon/energy limitation. The range and the production of carbohydrate hydrolysing enzymes and lipase increased from Regime I (NH4Cl 600 mg l–1) to Regime III (NH4CI 1200 mg l–1), whereas production of protease was highest in Regime II (600 mg l–1 < NH4Cl <1200 mg l–1).  相似文献   

14.
Xylose reductase is involved in the first step of the fungal pentose catabolic pathway. The gene encoding xylose reductase (Texr) was isolated from the thermophilic fungus Talaromyces emersonii, expressed in Escherichia coli and purified to homogeneity. Texr encodes a 320 amino acid protein with a molecular weight of 36 kDa, which exhibited high sequence identity with other xylose reductase sequences and was shown to be a member of the aldoketoreductase (AKR) superfamily with a preference for reduced nicotinamide adenine dinucleotide phosphate (NADPH) as coenzyme. Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed mutagenesis. The TeXRK271R+N273D double mutant displayed an altered coenzyme preference with a 16-fold improvement in NADH utilization relative to the wild type and therefore has the potential to reduce redox imbalance of xylose fermentation in recombinant S. cerevisiae strains. Expression of Texr was shown to be inducible by the same carbon sources responsible for the induction of genes encoding enzymes relevant to lignocellulose hydrolysis, suggesting a coordinated expression of intracellular and extracellular enzymes relevant to hydrolysis and metabolism of pentose sugars in T. emersonii in adaptation to its natural habitat. This indicates a potential advantage in survival and response to a nutrient-poor environment.  相似文献   

15.
The most frequently used sources of more stable enzymes are thermophilic bacteria, e.g. Bacillus, Closrridium, and Therrnus strains, occurring in natural as well as man-made habitats. They grow from 55 to 88°C with a specific growth rate of up to 2.6 h? and a yield coefficient of up to 0.4 gram of dry cell weight per gram of carbohydrate consumed. Several thermophilic strains, e.g. Bacillus sp. TP32, rapidly and effectively produce enzymes having a higher thermal stability and resistance to chemical denaturants in comparison to their mesophilic counterparts. Therefore, thermostable enzymes are of importance for bioorganic syntheses. For the further optimization of enzyme production, genetic engineering is applied.  相似文献   

16.
The autotrophic carbon fixation pathway was studied in the thermophilic hydrogen oxidizing eubacterium Aquifex pyrophilus and in the thermophilic sulfur reducing archaebacterium Thermoproteus neutrophilus. Neither organism contained ribulose-1,5-bisphosphate carboxylase activity suggesting that the Calvin cycle is not operating. Rather, all enzymes of the reductive citric acid cycle were found in A. pyrophilus. In T. neutrophilus ATP citrate lyase activity was detected which has not been achieved so far; this finding corroborates earlier work suggesting the presence of the reductive citric acid cycle in this archaebacterium. The reductive citric acid cycle for autotrophic CO2 fixation now has been documented in the eubacterial branches of the proteobacteria, in green sulfur bacteria, and in the thermophilic Knallgas bacteria as well as in the branch of the sulfur dependent archaebacteria.  相似文献   

17.
Summary Six mutant xylanases were obtained by in vitro mutagenesis of a xylanase gene from the extremely thermophilic bacterium Caldocellum saccharolyticum. The temperature stability of all enzymes was affected by mutation to various degrees and one of the xylanases had an altered temperature optimum. The mutations had no effect on the pH optimum. The C. saccharolyticum xylanase showed strong homology to several thermophilic and mesophilic xylanases, and comparison of primary sequences allowed the localization of probable active sites and residues involved in thermostability. Offprint requests to: P. L. Bergquist  相似文献   

18.
Aims: To investigate the effect of medium compositions and culture conditions on keratinase production by a novel thermophilic fungus Myceliophthora thermophila (Apinis) Oorschot strain GZUIFR‐H49‐1. Methods and Results: The thermophilic strain GZUIFR‐H49‐1 with keratinolytic ability was characterized and identified as a strain of M. thermophila on the basis of its morphological characters and molecular analysis of ITS1‐5.8S‐ITS2 rDNA sequence. Among the medium compositions tested, the soluble starch (SS), urea, sodium thiosulfate and CaCl2 were the most effective C‐source, N‐source, S‐source and mineral ion, respectively, by employing the single‐factor experiment. The urea and pH value were the significant factors (P < 0·05) for the keratinase production in this experiment condition using Plackett–Burman factorial design. The conditions of keratinase production were further optimized by Box–Behnken design. Consequently, there was a 6·4‐fold increase (5100 U l?1) in the keratinase activity than the initial value (800 U l?1) by this optimal process. Conclusions: This study indicated that the optimization design proved a useful and powerful tool for the development of optimal medium compositions and culture conditions. Myceliophthora thermophila strain GZUIFR‐H49‐1 was a promising fungus strain for keratinase production. Significance and Impact of the Study: This study characterized a novel thermophilic M. thermophila strain GZUIFR‐H49‐1 with potential applications for keratinase production. These conditions of keratinase production obtained by means of optimization design will be accumulated as potential information for exploration and utilization to the new fungus isolate.  相似文献   

19.
Abstract

The objective of the present study was to optimize parameters for the cultivation of Lichtheimia corymbifera (mesophilic) and Byssochlamys spectabilis (thermophilic) for the production of β-glucosidases and to compare the catalytic and thermodynamic properties of the partially purified enzymes. The maximum amount of β-glucosidase produced by L. corymbifera was 39?U/g dry substrate (or 3.9?U/mL), and that by B. spectabilis was 77?U/g (or 7.7?U/mL). The optimum pH and temperature were 4.5 and 55?°C and 4.0 and 50?°C for the enzyme from L. corymbifera and B. spectabilis, respectively. β-Glucosidase produced by L. corymbifera was stable at pH 4.0–7.5, whereas the enzyme from B. spectabilis was stable at pH 4.0–6.0. Regarding the thermostability, β-glucosidase produced by B. spectabilis remained stable for 1?h at 50?°C, and that from L. corymbifera was active for 1?h at 45?°C. Determination of thermodynamic parameters confirmed the greater thermostability of the enzyme produced by the thermophilic fungus B. spectabilis, which showed higher values of ΔH, activation energy for denaturation (Ea), and half-life t(1/2). The enzymes were stable in the presence of ethanol and were competitively inhibited by glucose. These characteristics contribute to their use in the simultaneous saccharification and fermentation of vegetable biomass.  相似文献   

20.

Background  

Thermostable enzymes from thermophilic microorganisms are playing more and more important roles in molecular biology R&D and industrial applications. However, over-production of recombinant soluble proteins from thermophilic microorganisms in mesophilic hosts (e.g. E. coli) remains challenging sometimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号