首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bacteria, phospholipids are synthesized on the inner leaflet of the cytoplasmic membrane and must translocate to the outer leaflet to propagate a bilayer. Transbilayer movement of phospholipids has been shown to be fast and independent of metabolic energy, and it is predicted to be facilitated by membrane proteins (flippases) since transport across protein-free membranes is negligible. However, it remains unclear as to whether proteins are required at all and, if so, whether specific proteins are needed. To determine whether bacteria contain specific proteins capable of translocating phospholipids across the cytoplasmic membrane, we reconstituted a detergent extract of Bacillus subtilis into proteoliposomes and measured import of a water-soluble phospholipid analog. We found that the proteoliposomes were capable of transporting the analog and that transport was inhibited by protease treatment. Active proteoliposome populations were also able to translocate a long-chain phospholipid, as judged by a phospholipase A(2)-based assay. Protein-free liposomes were inactive. We show that manipulation of the reconstitution mixture by prior chromatographic fractionation of the detergent extract, or by varying the protein/phospholipid ratio, results in populations of vesicles with different specific activities. Glycerol gradient analysis showed that the majority of the transport activity sedimented at approximately 4S, correlating with the presence of specific proteins. Recovery of activity in other gradient fractions was low despite the presence of a complex mixture of proteins. We conclude that bacteria contain specific proteins capable of facilitating transbilayer translocation of phospholipids. The reconstitution methodology that we describe provides the basis for purifying a facilitator of transbilayer phospholipid translocation in bacteria.  相似文献   

2.
The mechanism by which phospholipids translocate (flop) across the E. coli inner membrane remains to be elucidated. We tested the hypothesis that the membrane-spanning domains of proteins catalyze phospholipid flop by their mere presence in the membrane. As a model, peptides mimicking the transmembrane stretches of proteins, with the amino acid sequence GXXL(AL)(n)XXA (with X = K, H, or W and n = 8 or 12), were incorporated in large unilamellar vesicles composed of E. coli phospholipids. Phospholipid flop was measured by assaying the increase in accessibility to dithionite of a 2,6-(7-nitro-2,1,3-benzoxadiazol-4-yl)aminocaproyl (C(6)NBD)-labeled phospholipid analogue, initially exclusively present in the inner leaflet of the vesicle membrane. Fast flop of C(6)NBD-phosphatidylglycerol (C(6)NBD-PG) was observed in vesicles in which GKKL(AL)(12)KKA was incorporated, with the apparent first-order flop rate constant (K(flop)) linearly increasing with peptide:phospholipid molar ratios, reaching a translocation half-time of approximately 10 min at a 1:250 peptide:phospholipid molar ratio at 25 degrees C. The peptides of the series GXXL(AL)(8)XXA also induced flop of C(6)NBD-PG, supporting the hypothesis that transmembrane parts of proteins mediate phospholipid translocation. In this series, K(flop) decreased in the order X = K > H > W, indicating that peptide-lipid interactions in the interfacial region of the membrane modulate the efficiency of a peptide to cause flop. For the peptides tested, flop of C(6)NBD-phosphatidylethanolamine (C(6)NBD-PE) was substantially slower than that of C(6)NBD-PG. In vesicles without peptide, flop was negligible both for C(6)NBD-PG and for C(6)NBD-PE. A model for peptide-induced flop is proposed, which takes into account the observed peptide and lipid specificity.  相似文献   

3.
V Haucke  G Schatz 《The EMBO journal》1997,16(15):4560-4567
We have reconstituted the protein insertion machinery of the yeast mitochondrial inner membrane into proteoliposomes. The reconstituted proteoliposomes have a distinct morphology and protein composition and correctly insert the ADP/ATP carrier (AAC) and Tim23p, two multi-spanning integral proteins of the mitochondrial inner membrane. The reconstituted system requires a membrane potential, but not Tim44p or mhsp70, both of which are required for the ATP-driven translocation of proteins into the matrix. The protein insertion machinery can thus operate independently of the energy-transducing Tim44p-mhsp70 complex.  相似文献   

4.
The inner membrane TET (TetA) protein, which is involved in Tn10-mediated microbial tetracycline resistance, consists of two domains, alpha and beta, both of which are needed for tetracycline resistance and efflux (M.S. Curiale, L.M. McMurry, and S.B. Levy, J. Bacteriol. 157:211-217, 1984). Since tetracycline-sensitive mutants in one domain can partially complement sensitive mutants in the other domain and since some sensitive mutants show dominance over the wild type, a multimeric structure for TET in the membrane had been suggested. We have studied this possibility by using tetA-phoA gene fusions. We fused all but the last 40 base pairs of the tetA gene with the carboxy terminus of the phoA gene for alkaline phosphatase (PhoA), whose activity requires its dimerization in the periplasm. The tetA-phoA fusion protein was under control of the tetracycline-inducible regulatory system for the tetA gene. Induction led to the synthesis of a 78,000-dalton inner membrane protein. Tetracycline resistance was expressed at reduced levels, consistent with the terminal beta domain deletion. Alkaline phosphatase activity was also present, but at low levels, suggesting that some, but not all, of the fusion proteins had their carboxy-terminal ends in the periplasm. When wild-type or mutant TET proteins were present in the same cell with the fusion protein, the tetracycline resistance level was affected (raised or lowered); however, phosphatase activity was reduced only when TET proteins with intact or near-intact beta domains were present. These findings suggest that TET functions as a multimer and that intact beta domains, on TET molecules in the heterologous multimer, either allow fewer PhoA moieties to project into the periplasm or sterically hinder PhoA moieties from dimerizing.  相似文献   

5.
The chloroplast envelope plays critical roles in the synthesis and regulated transport of key metabolites, including intermediates in photosynthesis and lipid metabolism. Despite this importance, the biogenesis of the envelope membranes has not been investigated in detail. To identify the determinants of protein targeting to the inner envelope membrane (IM), we investigated the targeting of the nucleus-encoded integral IM protein, atTic40. We found that pre-atTic40 is imported into chloroplasts and processed to an intermediate size (int-atTic40) before insertion into the IM. Int-atTic40 is soluble and inserts into the IM from the internal stromal compartment. We also show that atTic40 and a second IM protein, atTic110, can target and insert into isolated IM vesicles in vitro. Collectively, our experiments are consistent with a "postimport" mechanism in which the IM proteins are first imported from the cytoplasm and subsequently inserted into the IM from the stroma.  相似文献   

6.
The ProW protein, located in the inner membrane of Escherichia coli, has a very unusual topology with a 100-residue-long N-terminal tail protruding into the periplasmic space. We have studied the mechanism of membrane translocation of the periplasmic tail by analysing ProW-PhoA and ProW-Lep fusion proteins, both in wild-type cells and in cells with an impaired sec machinery. Our results show that the translocation efficiency is not affected by treatments that compromise the SecA and SecY functions, but that translocation is completely blocked by dissipation of the proton motive force or by the introduction of extra positively charged residues into the N-terminal tail. This suggests that the sec machinery can act properly only on domains located on the C-terminal side of a translocation signal, and that the N-terminal tail is driven through the membrane by a mechanism that involves the proton motive force.  相似文献   

7.
The mechanism of action of microcin E492 (MccE492) was investigated for the first time in live bacteria. MccE492 was expressed and purified to homogeneity through an optimized large-scale procedure. Highly purified MccE492 showed potent antibacterial activity at minimal inhibitory concentrations in the range of 0.02-1.2 microM. The microcin bactericidal spectrum of activity was found to be restricted to Enterobacteriaceae and specifically directed against Escherichia and Salmonella species. Isogenic bacteria that possessed mutations in membrane proteins, particularly of the TonB-ExbB-ExbD complex, were assayed. The microcin bactericidal activity was shown to be TonB- and energy-dependent, supporting the hypothesis that the mechanism of action is receptor mediated. In addition, MccE492 depolarized and permeabilized the E. coli cytoplasmic membrane. The membrane depolarization was TonB dependent. From this study, we propose that MccE492 is recognized by iron-siderophore receptors, including FepA, which promote its import across the outer membrane via a TonB- and energy-dependent pathway. MccE492 then inserts into the inner membrane, whereupon the potential becomes destabilized by pore formation. Because cytoplasmic membrane permeabilization of MccE492 occurs beneath the threshold of the bactericidal concentration and does not result in cell lysis, the cytoplasmic membrane is not hypothesized to be the sole target of MccE492.  相似文献   

8.
ATP11C is a member of the P4-ATPase flippase family that mediates translocation of phosphatidylserine (PtdSer) across the lipid bilayer. In order to characterize the structure and function of ATP11C in a model natural lipid environment, we revisited and optimized a quick procedure for reconstituting ATP11C into Nanodiscs using methyl-β-cyclodextrin as a reagent for the detergent removal. ATP11C was efficiently reconstituted with the endogenous lipid, or the mixture of endogenous lipid and synthetic dioleoylphosphatidylcholine (DOPC)/dioleoylphosphatidylserine (DOPS), all of which retained the ATPase activity. We obtained 3.4 Å and 3.9 Å structures using single-particle cryo-electron microscopy (cryo-EM) of AlF- and BeF-stabilized ATP11C transport intermediates, respectively, in a bilayer containing DOPS. We show that the latter exhibited a distended inner membrane around ATP11C transmembrane helix 2, possibly reflecting the perturbation needed for phospholipid release to the lipid bilayer. Our structures of ATP11C in the lipid membrane indicate that the membrane boundary varies upon conformational changes of the enzyme and is no longer flat around the protein, a change that likely contributes to phospholipid translocation across the membrane leaflets.  相似文献   

9.
H A Gold  S Altman 《Cell》1986,44(2):243-249
HeLa cell RNAase P activity found in the flow-through of anti-Sm affinity columns can be separated into inactive RNA and protein components. These components can be used to reconstitute active hybrid enzyme complexes with purified subunits from E. coli RNAase P. The RNA in the HeLa cell fractions employed is enriched for species between 85 and 115 nucleotides long. This reconstitution assay is a convenient means of purifying the functional RNA and protein of HeLa cell RNAase P. Probes derived from the genes for the subunits of E. coli RNAase P hybridize to genomic DNA of gram-negative prokaryotic organisms, but no positive signals are seen with genomic DNA from a variety of eukaryotic organisms.  相似文献   

10.
Membrane protein topology predictions can be markedly improved by the inclusion of even very limited experimental information. We have recently introduced an approach for the production of reliable topology models based on a combination of experimental determination of the location (cytoplasmic or periplasmic) of a protein's C terminus and topology prediction. Here, we show that determination of the location of a protein's C terminus, rather than some internal loop, is the best strategy for large-scale topology mapping studies. We further report experimentally based topology models for 31 Escherichia coli inner membrane proteins, using methodology suitable for genome-scale studies.  相似文献   

11.
Penicillin-binding protein 5 (PBP5) has been previously identified as a component of the inner membrane of Escherichia coli and we present here further evidence that PBP5 is tightly bound to the membrane. To investigate the regions of PBP5 involved in membrane binding we have constructed a series of C-terminal deletions and shown that the removal of as few as 10 amino acids results in the release of the truncated protein into the periplasm. The C terminus, therefore, appears to be important for interaction with the membrane; however, inspection of the amino acid sequence does not reveal extended runs of hydrophobicity typical of a membrane anchor. Thus we conclude that PBP5 is anchored to the inner membrane by a mechanism not previously described.  相似文献   

12.
E. coli alkaline phosphatase was denatured by physical/chemical means. In vitro reconstitution of this denatured enzyme was assisted by 70S E. coli ribosome, as shown by the recovery of its catalytic competence. Almost total recovery of activity of the totally inactivated enzyme was obtained in presence of equimolar concentration of 70S ribosome at 50 degrees C.  相似文献   

13.
Periplasmic membrane fusion proteins (MFPs) are essential components of the type I protein secretion systems and drug efflux pumps in Gram-negative bacteria. Previous studies suggested that MFPs connect the inner and outer membrane components of the transport systems and by this means co-ordinate the transfer of substrates across the two membranes. In this study, we purified and reconstituted the macrolide transporter MacAB from Escherichia coli. Here, MacA is a periplasmic MFP and MacB is an ABC-type transporter. Similar to other MFP-dependent transporters from E. coli, the in vivo function of MacAB requires the outer membrane channel TolC. The purified MacB displayed a basal ATPase activity in detergent micelles. This activity conformed to Michaelis-Menten kinetics but was unresponsive to substrates or accessory proteins. Upon reconstitution into proteoliposomes, the ATPase activity of MacB was strictly dependent on MacA. The catalytic efficiency of MacAB ATPase was more than 45-fold higher than the activity of MacB alone. Both the N- and C-terminal regions of MacA were essential for this activity. MacA stimulated MacB ATPase only in phospholipid bilayers and did not need the presence of macrolides. Our results suggest that MacA is a functional subunit of the MacB transporter.  相似文献   

14.
Teng YS  Su YS  Chen LJ  Lee YJ  Hwang I  Li HM 《The Plant cell》2006,18(9):2247-2257
An Arabidopsis thaliana mutant defective in chloroplast protein import was isolated and the mutant locus, cia5, identified by map-based cloning. CIA5 is a 21-kD integral membrane protein in the chloroplast inner envelope membrane with four predicted transmembrane domains, similar to another potential chloroplast inner membrane protein-conducting channel, At Tic20, and the mitochondrial inner membrane counterparts Tim17, Tim22, and Tim23. cia5 null mutants were albino and accumulated unprocessed precursor proteins. cia5 mutant chloroplasts were normal in targeting and binding of precursors to the chloroplast surface but were defective in protein translocation across the inner envelope membrane. Expression levels of CIA5 were comparable to those of major translocon components, such as At Tic110 and At Toc75, except during germination, at which stage At Tic20 was expressed at its highest level. A double mutant of cia5 At tic20-I had the same phenotype as the At tic20-I single mutant, suggesting that CIA5 and At Tic20 function similarly in chloroplast biogenesis, with At Tic20 functioning earlier in development. We renamed CIA5 as Arabidopsis Tic21 (At Tic21) and propose that it functions as part of the inner membrane protein-conducting channel and may be more important for later stages of leaf development.  相似文献   

15.
Escherichia coli MsbA, the proposed inner membrane lipid flippase, is an essential ATP-binding cassette transporter protein with homology to mammalian multidrug resistance proteins. Depletion or loss of function of MsbA results in the accumulation of lipopolysaccharide and phospholipids in the inner membrane of E. coli. MsbA modified with an N-terminal hexahistidine tag was overexpressed, solubilized with a nonionic detergent, and purified by nickel affinity chromatography to approximately 95% purity. The ATPase activity of the purified protein was stimulated by phospholipids. When reconstituted into liposomes prepared from E. coli phospholipids, MsbA displayed an apparent K(m) of 878 microm and a V(max) of 37 nmol/min/mg for ATP hydrolysis in the presence of 10 mm Mg(2+). Preincubation of MsbA-containing liposomes with 3-deoxy-d-mannooctulosonic acid (Kdo)(2)-lipid A increased the ATPase activity 4-5-fold, with half-maximal stimulation seen at 21 microm Kdo(2)-lipid A. Addition of Kdo(2)-lipid A increased the V(max) to 154 nmol/min/mg and decreased the K(m) to 379 microm. Stimulation was only seen with hexaacylated lipid A species and not with precursors, such as diacylated lipid X or tetraacylated lipid IV(A). MsbA containing the A270T substitution, which renders cells temperature-sensitive for growth and lipid export, displayed ATPase activity similar to that of the wild type protein at 30 degrees C but was significantly reduced at 42 degrees C. These results provide the first in vitro evidence that MsbA is a lipid-activated ATPase and that hexaacylated lipid A is an especially potent activator.  相似文献   

16.
K Goldman  J L Suit  C Kayalar 《FEBS letters》1985,190(2):319-323
A set of plasmids containing portions of the Col El plasmid were transformed into recA cells. These cells, after UV irradiation, only incorporate labelled amino acids into plasmid-encoded proteins. UV-irradiated cells label a 14.5 kDa band if they are phenotypically immune to colicin E1, and do not contain this band if they are sensitive to colicin E1. We conclude that the 14.5 kDa protein is the colicin E1 immunity protein. When the inner and outer membranes of these cells are fractionated, the labelled band appears in the inner membrane. The immunity protein must be an intrinsic inner membrane protein, confirming the predictions made by hydrophobicity calculations from primary sequence data.

Maxicell Col El plasmid Immunity protein Hydrophobicity calculation  相似文献   


17.
Green fluorescent protein (GFP) has become a valuable tool for the detection of gene expression in prokaryotes and eukaryotes. To evaluate its potential for quantitation of relative promoter activity in E. coli, we have compared GFP with the commonly used reporter gene lacZ, encoding beta-galactosidase. We cloned a series of previously characterized synthetic E. coli promoters into GFP and beta-galactosidase reporter vectors. Qualitative and quantitative assessments of these constructs show that (a) both reporters display similar sensitivities in cells grown on solid or liquid media and (b) GFP is especially well suited for quantitation of promoter activity in cells grown on agar. Thus, GFP provides a simple, rapid and sensitive tool for measuring relative promoter activity in intact E. coli cells.  相似文献   

18.
Several hundred copies of a highly conserved extragenic palindromic sequence, 20-40 nucleotides long, exist along the chromosome of E. coli and S. typhimurium. These have been defined as palindromic units (PU) or repetitive extragenic palindromes (REP). No general function for PUs has been identified. In the present work, we provide data showing that a protein associated with a chromoid extract of E. coli protects PU DNA against exonuclease III digestion. This provides the first experimental evidence that PU constitutes binding sites for a chromoid-associated protein. This result supports the hypothesis that PUs could play a role in the structure of the bacterial chromoid.  相似文献   

19.
To further our understanding of inner membrane protein (IMP) biogenesis in Escherichia coli, we have accomplished the widest in vivo IMP assembly screen so far. The biogenesis of a set of model IMPs covering most IMP structures possible has been studied in a variety of signal recognition particle (SRP), Sec and YidC mutant strains. We show that the assembly of the complete set of model IMPs is assisted (i.e. requires the aid of proteinaceous factors), and that the requirements for assembly of the model IMPs into the inner membrane differ significantly from each other. This indicates that IMP assembly is much more versatile than previously thought.  相似文献   

20.
The high versatility and open nature of cell‐free expression systems offers unique options to modify expression environments. In particular for membrane proteins, the choice of co‐translational versus post‐translational solubilization approaches could significantly modulate expression efficiencies and even sample qualities. The production of a selection of 134 α‐helical integral membrane proteins of the Escherichia coli inner membrane proteome focussing on larger transporters has therefore been evaluated by a set of individual cell‐free expression reactions. The production profiles of the targets in different cell‐free expression modes were analyzed independently by three screening strategies. Translational green fluorescent protein fusions were analyzed as monitor for the formation of proteomicelles after cell‐free expression of membrane proteins in the presence of detergents. In addition, two different reaction configurations were implemented and performed either by robotic semi‐throughput approaches or by individually designed strategies. The expression profiles were specified for the particular cell‐free modes and overall, the production of 87% of the target list could be verified and approximately 50% could already be synthesized in preparative scales. The expression of several selected targets was up‐scaled to milliliter volumes and milligram amounts of production. As an example, the flavocytochrome YedZ was purified and its sample quality was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号