首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motor control of pointing and reaching-to-grasp movements was investigated using two different approaches (kinematic and modelling) in order to establish whether the type of control varies according to modifications of arm kinematics. Kinematic analysis of arm movements was performed on subjects' hand trajectories directed to large and small stimuli located at two different distances. The subjects were required either to grasp and to point to each stimulus. The kinematics of the subsequent movement, during which subject's hand came back to the starting position, were also studied. For both movements, kinematic analysis was performed on hand linear trajectories as well as on joint angular trajectories of shoulder and elbow. The second approach consisted in the parametric identification of the black box (ARMAX) model of the controller driving the arm movement. Such controller is hypothesized to work for the correct execution of the motor act. The order of the controller ARMAX model was analyzed with respect to the different experimental conditions (distal task, stimulus size and distance). Results from kinematic analysis showed that target distance and size influenced kinematic parameters both of angular and linear displacements. Nevertheless, the structure of the motor program was found to remain constant with distane and distal task, while it varied with precision requirements due to stimulus size. The estimated model order of the controller confirmed the invariance of the control law with regard to movement amplitude, whereas it was sensitive to target size.  相似文献   

2.
During each phase of the pigeon's eating sequence, jaw opening amplitude (gape) is adjusted to the size of the food object; first prior to contact (Grasping), again in positioning the food (Stationing), and finally, during its movement through the oral cavity (Intraoral Transport). Part I of this study examined jaw movement kinematics during ingestion of different size food pellets to determine the relative contribution of velocity and rise time variables. Part II specified the muscle activity patterns mediating each phase of the eating sequence, and determined how these patterns are modulated to produce adjustments of gape size.The relative contribution of velocity and rise time variables to the control of gape differs in each phase of the eating sequence. However, for any pellet size, variations in opening rise time may function in a compensatory manner to minimize gape undershooting. Each phase of the eating sequence is mediated by a characteristic muscle activity pattern. The adjustment of gape size to pellet size involves systematic modulation of this pattern, and the parameters modulated differ in the different phases in a manner which may reflect the functional requirements of each phase.Abbreviations AMEM adductor mandibulae externus muscle - DM depressor mandibulae muscle - EMG electromyographic - PDC/PDR pterygoideus muscle, pars dorsalis caudalis and rostralis - PQP protractor quadrati et pterygoidei muscle - PTP pseudotemporalis profundus muscle - PVL/PVM pterygoideus ventralis muscle, pars lateralis and medialis  相似文献   

3.
The above effect was studied in 65 subjects with normal vision (mean age 20 years) in investigations in which the following factors were successively changed: distance of optokinetic stimuli from the eyes; this distance and angular velocity of stimuli; distance and frequency of stimuli or finally distance and accommodation level. The angular velocity of the pursuit nystagmus phase was found to be by far the highest and simultaneously the closest to the angular velocity of optokinetic stimuli when the latter are 1.5m from the eyes. With shorter distances, the velocity of the pursuit movements lags steadily behind that of stimulus velocity. This change is conditioned by changes in OKN amplitude since its frequency as a whole does not change. Even though the accommodation level significantly affects the velocity of the pursuit nystagmus phase, the dependence on the distance of optokinetic stimuli from the eyes persists even after atropinization. The interpretation of these findings must take into account sepcifically the demands on accommodation, convergence, and on visual attention which are increased with shorter distances.  相似文献   

4.
Spatio-temporal interactions within complex receptive fields in the cat visual cortex were investigated by sequential presentation of two stationary stimuli. When two stimuli were presented in phase (on-on or off-off) in the order corresponding to preferred direction of movement, facilitation or weak inhibition of the response to the second stimulus was observed, whereas if it corresponded to zero direction of movement, the response was strongly inhibited. In the case of stimulation out of phase (on-off or off-on), in the order corresponding to the preferred direction of movement, considerable inhibition of the response to the second stimulus was observed, whereas in the opposite order, facilitation or weak inhibition was observed. The strength of interaction between different parts of the field depended on the distance between them and the duration of the interval between stimuli. Directional selectivity of "complex" neurons is thus ensured by asymmetry of spatio-temporal interactions between receptive field inputs of the same type. Interactions between inputs of different types, arising when a multiedge stimulus (bar, grating) can be used by the visual system to distinguish an object from the background and to assess changes in size of objects and the relative velocity of their movement.V. Kapsukas State University, Vilnius. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 505–512, July–August, 1984.  相似文献   

5.
Two series of experiments were performed to assess the effects of stimulus velocity on human subjects' perception of the distance traversed by a moving tactile stimulus. In all experiments, constant-velocity stimuli were applied to the dorsal surface of the left forearm; velocities ranging between 1.0 and 256 cm/sec were used. In some experiments the stimuli moved from distal to proximal over the skin, and in others they moved from proximal to distal. The length of skin contacted by the moving stimulus was defined by a plate having an aperture of 4.0 × 0.5 cm.

In the first series of experiments, subjects were required to compare the distance traversed by a test stimulus delivered 2 sec after a standard stimulus, and also to report the on-locus and the off-locus of the brushing stimulus. In the second series of experiments, the subjects rated the perceived distance on the skin using a free-magnitude-estimation procedure. The data from both series of experiments defined the same relationship between stimulus velocity and perceived stimulus distance. More specifically, although the length of skin contacted by the stimulus was the same at all velocities, subjects' estimates of stimulus distance decreased with increasing stimulus velocity. In addition, the function relating estimates of stimulus distance to velocity was flat for velocities between 5 and 20 cm/sec, but possessed an appreciable negative slope at lower and higher velocities.

It is interesting that the plateau of the relationship between perceived stimulus distance and velocity occurred within the range of velocities that human subjects employ to scan textured surfaces; it also corresponded precisely with the range of stimulus velocities at which the directional sensitivity of somatosensory cortical neurons and human subjects is optimal.  相似文献   

6.
The local properties of the dispersed gas phase (gasholdup, bubble diamater, and bubble velocity) were measured and evaluated at different positions in the riser and downcomer of a pilot plant reactor and, for comparison, in a laboratory reactor. These were described in Parts I and II of this series of articles during yeast cultivation and with model media. In the riser of the pilot plant reactor, the local gas holdup and bubble velocities varied only slightly in axial direction. The gas holdup increased considerably, while the bubble velocity increased only slightly with aeration rate. The bubble size diminished with increasing distance from the aerator in the riser, since the primary bubble size was larger than the equilibrium bubble size. In the downcomer, the mean bubble size was smaller than in the riser. The mean bubble size varied only slightly, the bubble velocity was accelerated, and the gas holdup decreased from top to bottom in the downcomer. In pilot plant at constant aeration rate, the properties of the dispersed phase were nearly constant during the batch cultivation, i.e., they depended only slightly on the cell concentration. In the laboratory reactor, the mean bubble sizes were much larger than in the pilot plant reactor. In the laboratory reactor, the bubble velocities in the riser and downcomer increased, and the mean gas holdup and bubble diameter in the downcomer remained constant as the aeration rate was increased.  相似文献   

7.
Flight initiation distance describes the distance at which an animal flees during the approach of a predator. This distance presumably reflects the tradeoff between the benefits of fleeing versus the benefits of remaining stationary. Throughout ontogeny, the costs and benefits of flight may change substantially due to growth-related changes in sprint speed; thus ontogenetic variation in flight initiation distance may be substantial. If escape velocity is essential for surviving predator encounters, then juveniles should either tolerate short flight initiation distances and rely on crypsis, or should have high flight initiation distances to remain far away from their predators. We examined this hypothesis in a small, short-lived lizard (Sceloporus woodi). Flight initiation distance and escape velocity were recorded on an ontogenetic series of lizards in the field. Maximal running velocity was also quantified in a laboratory raceway to establish if escape velocities in the field compared with maximal velocities as measured in the lab. Finally a subset of individuals was used to quantify how muscle and limb size scale with body size throughout ontogeny. Flight initiation distance increased with body size; larger animals had higher flight initiation distances. Small lizards had short flight initiation distances and remained immobile longer, thus relying on crypsis for concealment. Escape velocity in the field did not vary with body size, yet maximum velocity in the lab did increase with size. Hind limb morphology scaled isometrically with body size. Isometric scaling of the hind limb elements and its musculature, coupled with similarities in sprint and escape velocity across ontogeny, demonstrate that smaller S. woodi must rely on crypsis to avoid predator encounters, whereas adults alter their behavior via larger flight initiation distance and lower (presumably less expensive) escape velocities.  相似文献   

8.
Training experiments were performed to investigate the ability of goldfish to discriminate objects differing in spatial depth. Tests on size constancy should give insight into the mechanisms of distance estimation. Goldfish were successfully trained to discriminate between two black disk stimuli of equal size but different distance from the tank wall. Each stimulus was presented in a white tube so that the fish could see only one stimulus at a time. For each of eight training stimulus distances, the just noticeable difference in distance was determined at a threshold criterion of 70% choice frequency. The ratio of the retinal image sizes between training stimulus and comparison stimulus at threshold was about constant. However, in contrast to Douglas et al. (Behav Brain Res 30:37–42, 1988), goldfish did not show size constancy in tests with stimuli of the same visual angle. This indicates that they did not estimate distance, but simply compared the retinal images under our experimental conditions. We did not find any indication for the use of accommodation as a depth cue. A patterned background at the rear end of the tubes did not have any effect, which, however, does not exclude the possibility that motion parallax is used as a depth cue under natural conditions.  相似文献   

9.
Motoneuron responses were elicited by global visual motion and stepwise displacements of an illuminated stripe. Stimulus protocols were identical to those used in previous behavioral studies of compensatory eyestalk reflexes. The firing rates and directional selectivity of the motoneuron responses were measured with respect to four stimulus dimensions (spatial frequency, contrast, angular displacement and velocity). The directional selectivity of the motoneuron response was correlated to the previously measured gain of the reflex for each stimulus dimension. The information theoretical analysis is based upon Kullback-Leibler (K-L) distances which measure the dissimilarity of responses to different stimuli. K-L distances for single neurons are strongly influenced by the mean rate difference of the responses to any pair of stimuli. Because of redundancy, the joint K-L distances of pairs of neurons were less than the sum of the K-L distances of the individual neurons. Furthermore, the joint K-L distances were only weakly influenced by correlations among coactivated neurons. For most of the stimulus dimensions, the K-L distances of single motoneurons were not sufficient to account for the stimulus discriminations exhibited by the eyestalk reflex which typically required the summed output of 2 to 5 motoneurons. Thus the behaviorally relevant information is encoded in the motoneuron ensemble. The minimum time required to discriminate the direction of motion (the encoding window) for a single motoneuron is about 380 to 480 ms (including a 175 ms response latency) for stepwise displacements and up to 1.0 s for global motion. During this period a motoneuron fires 2 to 3 impulses.  相似文献   

10.

Experiments showed that phototactic downward swimming in Daphnia galeata x hyalina as caused by a relative increase in light intensity (stimulus) is influenced by predator kairomone and food availability. The swimming responses at four different combinations of food availability and fish kairomone were analysed. Addition of both food and kairomone led to a significant increase in percentage of animals that responded to the light stimulus, but there was no significant interaction effect.We also found that kairomone and food had significant impact on displacement velocity and on the time between start of the stimulus and onset of the response.  相似文献   

11.
We have characterized a decrease in photic responsiveness of the mammalian circadian entrainment pathway caused by light stimulation. Phase delays of the running-wheel activity rhythm were used to quantify the photic responsiveness of the circadian system in mice (C57BL/6J). In an initial experiment, the authors measured the responsiveness to single "saturating" light pulses ("white" fluorescent light; approximately 1876 [microW; 15 min). In two additional experiments, the authors measured responses to this stimulus at several time points following a saturating pulse at CT 14 or CT 16. Data from these experiments were analyzed in two manners. Experiment 2 was analyzed assuming that the phase of the circadian pacemaker was unchanged by an initial pulse, and Experiment 3 was analyzed assuming that the initial pulse induced an instantaneous phase delay. Results reveal a significant reduction in responsivity to light that persists for at least 2 h and possibly up to 4 h after the initial stimulus. Immediately after the stimulus, the responsiveness of the photic entrainment pathway was reduced to levels < or = 12% of normal. After 2 h, the responsiveness was < or = 42% of normal, and by 4 h, responsiveness had recovered to levels that were < or = 60% of normal (levels not statistically different from controls). By the following circadian cycle, responsiveness was more completely recovered, although the magnitude of some phase delays remained < or = 85% of normal. These major reductions in the magnitude of phase delays (and phase response curve amplitude) caused by saturating light pulses confound interpretations of two-pulse experiments designed to measure the rate of circadian phase delays. In addition, the time course for this reduced responsiveness may reflect the time course of cellular and molecular events that underlie light-induced resetting of the mammalian circadian pacemaker.  相似文献   

12.
Early gamma band responses of the human electroencephalogram have been identified as an early interface linking top-down and bottom-up processing. This was based on findings that observed strong sensitivity of this signal to stimulus size and at the same time, to processes of attention and memory. Here, we simulate these findings in a simple random network of biologically plausible spiking neurons. During a learning phase, different stimuli were presented to the network and the synaptic connections were modified according to a spike-timing-dependent plasticity learning rule. In a subsequent test phase, we stimulated the network with (i) patterns of different sizes to simulate bottom-up effects and (ii) with patterns that were or were not presented during the learning phase. The network displayed qualitatively similar behavior as early gamma band responses measured from the scalp of human subjects: there was a general increase in response strength with increasing stimulus size and stronger responses for learned stimuli. We demonstrated that within one neural architecture early gamma band responses can be modulated both by bottom-up factors and by basal learning mechanisms mediated via spike-timing-dependent plasticity.  相似文献   

13.
Psychophysical experiments were performed with the participation of 297 subjects (adults and 6- to 17-year-old children and adolescents). Perception of the size of a central stimulus surrounded by other stimuli was studied. Subjects had to estimate the size of a circle with a diameter of 22 angular min, which was surrounded by four similar figures with a diameter of either 11 or 44 angular min at a distance of either 11 or 33 angular min. The misperception of the stimulus size was dependent on the subject's age, the distance between the circles, and the size of the flanking circles. The smaller flanking circles located at any distance produced size underestimation in younger children; these circles led to size overestimation in case of their location at a short distance in most adults and adolescents. The larger flanking circles produced underestimation in all age groups, but, in adults, unlike children, this illusion decreased with increasing distance. The illusion mechanism and its possible connection with selective attention are discussed.  相似文献   

14.
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking.  相似文献   

15.
Males of the dimorphic jumping spider (Maevia inclemens) differ in both their morphologies and courtship displays (i.e. phase I).The tufted morph stilts and waves from an average distance of 9 cm from a female, whereas the grey morph crouches and sidles from an average distance of 3 cm from a female. The objective of this study was to determine the significance of the different courtship displays using computeranimated versions of males performing phase I courtship in a Y-maze where first male movement and then the distance of the stimulus was controlled. Females selected the first male that they orientated to at the close distance of 4 cm and at the far distance of 16cm. However, there was no preference for the first male at the intermediate distance of 8 cm or the furthest distance of 24 cm. In addition, males have morph-specific advantages regarding the time it takes to attract female attention. Grey males attracted female attention in less time than tufted males at 4 and 8 cm. However, tufted males attracted female attention in less time than grey males at 16 cm. These results suggest a mechanism for the evolution of two different courtship displays whereby each morph has an advantage at different distances from the female.  相似文献   

16.
The dynamic ranges and stimulus-response properties of a large sample of cereal filiform receptors in Acheta domesticus were investigated electrophysiologically. The relation between receptor response and stimulus velocity was a sigmoid function, the log-linear portion of which spanned 1–1.5 log units of peak air-current velocity. Different receptors responded over different but overlapping velocity ranges, such that the system velocity sensitivity range spanned at least 2.5 log units. Plots of receptor response amplitude vs. stimulus direction were sinusoidal, with a period of 360°. Long-hair receptors responded in phase with air-current velocity, and intermediate-hair receptors responded in phase with air-current acceleration. These results extend those of Shimozawa and Kanou (1984a) and Kämper and Kleindienst (1990), in which the dynamics of receptor responses were shown to depend on hair length. When individual hairs were directly mechanically deflected, their receptors responded in phase with the first derivative of hair deflection. The signal transform between the air-current stimulus and the receptor response is comprised of two processes, one biomechanical/aerodynamic and one membrane biophysical. The results of this study suggest that the parametric sensitivities of receptors are primarily determined by hair biomechanical/aerodynamic properties.Abbreviation IR infrared  相似文献   

17.
Piezoelectric transducers were implanted into the parietal bones of intact (n = 4) and hypophysectomized (n = 8) fetal sheep of approximately 110-120 days gestational age (term 145-150 days). Intertransducer distance was determined by measuring the time taken for an ultrasonic pulse, generated by one transducer, to elicit a piezoelectric response in an opposing transducer. The limit of sensitivity of the timer was +/- 0.033 microsec. The ultrasonic velocity through fetal sheep brain tissue was 1549.6 +/- 2.2 m.s-1 (SEM; n = 33). This velocity remained constant throughout the entire period studied in both intact and hypophysectomized fetuses. At this velocity, the sensitivity of the measuring device was +/- 0.05mm. The ultrasonic transit time was measured daily between 0900 and 1100h until term in all fetuses. Three hypophysectomized fetuses were allowed to remain in utero until day 163 of gestation. The mean biparietal distance growth rate prior to day 135 for the intact and hypophysectomized fetuses was 0.25 +/- 0.03 and 0.27 +/- 0.025 mm/day respectively. These values were not significantly different (P greater than 0.05). A significant decrease (P less than 0.05) in growth rate was detected in both experimental groups between days 135 and 147 and was more pronounced in the sham (0.05 +/- 0.04 mm/day) than in the hypophysectomized (0.14 +/- 0.03 mm/day) group. However, the growth rate of the sham animals after day 135 was not significantly different from that of the hypophysectomized animals. In the three hypophysectomized fetuses killed at day 163 the biparietal distance growth was maintained at 0.12 +/- 0.005 mm/day. We conclude that fetal biparietal distance growth is pituitary independent from day 110 of gestation and that this technique for measuring distance is a valid and extremely accurate method for the continuous measurement of this parameter of fetal growth and may have further applications in other areas of growth research.  相似文献   

18.
The extracellular matrix of cartilage is a charged porous fibrous material. Transport phenomena in such a medium are very complex. In this study, solute diffusive flux and convective flux in porous fibrous media were investigated using a continuum mixture theory approach. The intrinsic diffusion coefficient of solute in the mixture was defined and its relation to drag coefficients was presented. The effect of mechanical loading on solute diffusion in cartilage under unconfined compression with a frictionless boundary condition was analyzed numerically using the model developed. Both strain-dependent hydraulic permeability and diffusivity were considered. Analyses and results show that (1) In porous media, the convective velocity for each solute phase is different. (2) The solute convection in tissue is governed by the relative convective velocity (i.e., relative to solid velocity). (3) Under the assumption that all the frictional interactions among solutes are negligible, the relative convective velocity for α-solute phase is equal to the relative solvent velocity multiplied by its convective coefficient (H α) which is also known as the hindrance factor in the literature. The relationship between the convective coefficient and the relative diffusivity of solute is presented. (4) Solute concentration profile within the cartilage sample depends on the phase of dynamic compression.  相似文献   

19.
In the autumn of 2004, a typhoon caused a catastrophic flood of the Miyagawa River in Japan. Based upon snorkeling surveys conducted every autumn from 2005 to 2009, we monitored the post flood fluctuation of the local fish assemblages at nine sites of both the main stream and subsidiary streams of the river. Results revealed that species richness significantly increased from 2005 to 2009. In addition, the fish densities of eight species significantly increased over the same period, whereas the density of one species decreased, and that of eight others remained unchanged. Categorization based on Euclidean distance revealed five main clusters from the nine sites. Among these sites, fish assemblages within subsidiary streams were stable as they remained within the same clusters while those in the main stream were dynamically variable through time as they changed cluster membership. In addition, the Euclidean distance between two arbitrary fish assemblages was positively correlated with environmental distance (the Euclidean distance calculated based on river width, depth, velocity and pebble size), time distance, and spatial distance along the river. In conclusion, the fish assemblages were dynamically and regularly altered and varied in the five years after the flood, except for those in the subsidiary streams, and such variation was related to environmental, temporal and spatial variation.  相似文献   

20.
A winter population of house sparrows at a farm fed on barley seed in two distinct types of habitat: cattlesheds and open fields. The risk of predation was apparently higher in the fields where birds scanned more frequently than in the cattlesheds and where scanning was negatively influenced by flock size but positively influenced by distance from cover. Individual time budgets were more influenced by flock size than by seed density in the fields but more influenced by seed density than by flock size in the cattlesheds. Higher rates of scanning resulted in greater flock vigilance and longer flight distances in the fields but flight distance was negatively influenced by the density of seeds on which birds were feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号