首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years it has become increasingly clear that alpha, omega-dinucleotides act as extracellular modulators of various biological processes. P1,P4-diadenosine 5'-tetraphosphate (Ap4A) is the best characterized alpha,omega-dinucleotides and acts as an extracellular signal molecule by inducing the release of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) (R. H. Hilderman, and E. F. Christensen (1998) FEBS Lett. 407, 320-324). However, the characteristics of Ap4A binding to endothelial cells have not been determined. In this report we demonstrate that Ap4A binds to a heterogeneous population of receptors on BAEC. Competition ligand-binding studies using various adenosine dinucleotides, guanosine dinucleotides, adenosine/guanosine dinucleotides, and synthetic P2 purinoceptor agonists and antagonists demonstrate that Ap4A binds to a receptor on BAEC that has a high affinity for some of the adenosine dinucleotides. The apparent IC50 values for Ap4A, Ap2A, and Ap3A are between 12 and 15 microM, while the apparent IC50 values for Ap5A and Ap6A are greater than 500 microM. Evidence is also presented which suggests that this receptor can be classified as a putative P4 purinoceptor. Competition studies also demonstrate that Ap4A binds at a lower affinity to a second class of binding sites.  相似文献   

2.
p1,p4-Diadenosine 5'-tetraphosphate (Ap4A) has been implicated as a modulator of blood vessel tone. We have recently demonstrated that the infusion of Ap4A into swine induces vasodilation (Hilderman et al., Am. J. Hypertension 10 (1997) 94A) and that Ap4A induces the release of nitric oxide (NO) from bovine aortic endothelial cells (BAEC) (Hilderman and Christensen, FEBS Lett. 427 (1998) 320-324). However, the interaction of Ap4A with endothelial cells is incompletely understood. Therefore, we determined the characteristics of [3H]-Ap4A binding to BAEC in normal and ATP-depleted cells. These binding studies demonstrate that the interaction of Ap4A with BAEC involves two distinct steps: an ATP independent step and a second ATP dependent step leading to internalization of Ap4A. The initial interaction of Ap4A with BAEC is not affected by either EGTA or iodoacetate; however, both agents block the second step. These data suggest that calcium ions and sulfhydryl groups are required for Ap4A internalization but not for an initial binding event.  相似文献   

3.
Adenosine(5')tetraphospho(5')adenosine-binding protein of calf thymus   总被引:5,自引:0,他引:5  
An adenosine(5')tetraphospho(5')adenosine (Ap4A) binding protein has been purified from calf thymus. The protein is comprised of a single polypeptide of Mr 54000 and is capable of high-affinity (Kd = 13 microM) binding of Ap4A with great substrate specificity. The Ap4A binding protein has been isolated in two forms: a 'free', or non-polymerase-bound, form which predominates, and a similar form which copurifies with DNA polymerase alpha, but which can be resolved from it. The free form of Ap4A binding protein contains associated adenosine(5')tetraphospho(5')adenosine phosphohydrolase (Ap4Aase) activity, while the form resolved from DNA polymerase alpha contains no such activity. The Ap4Aase activity, which catalyzes the phosphohydrolysis of Ap4A to ATP and AMP, is strongly inhibited by low levels (50-100 microM) of Zn2+ without any effect on the Ap4A binding protein activity. This difference in associated Ap4Aase activity between free and polymerase-bound forms of the protein, plus the copurification mentioned above, indicate a specific association between Ap4A binding protein and DNA polymerase alpha.  相似文献   

4.
Diadenosine 5',5'-P(1),P(4)-tetraphosphate (Ap(4)A) is a dinucleoside polyphosphate found ubiquitously in eukaryotic and prokaryotic cells. Despite Ap(4)A being universal, its functions have proved to be difficult to define, although they appear to have a strong presence during cellular stress. Here we report on our investigations into the nature and properties of putative Ap(4)A interactions with Escherichia coli molecular chaperone GroEL and cAMP receptor protein (CRP). We confirm previous literature observations that GroEL is an Ap(4)A binding protein and go on to prove that binding of Ap(4)A to GroEL involves a set of binding sites (one per monomer) distinct from the well-known GroEL ATP/ADP sites. Binding of Ap(4)A to GroEL appears to enhance ATPase rates at higher temperatures, encourages the release of bound ADP, and may promote substrate protein release through differential destabilization of the substrate protein-GroEL complex. We suggest that such effects should result in enhanced GroEL/GroES chaperoning activities that could be a primary reason for the improved yields of the refolded substrate protein observed during GroEL/GroES-assisted folding and refolding at >or=30 degrees C in the presence of Ap(4)A. In contrast, we were unable to obtain any data to support a direct role for Ap(4)A interactions with CRP.  相似文献   

5.
The gene encoding diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts.  相似文献   

6.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
V Pandey  M J Modak 《Biochemistry》1987,26(7):2033-2038
The catalysis of DNA synthesis by calf thymus terminal deoxynucleotidyltransferase (TdT) is strongly inhibited in the presence of Ap5A, while replicative DNA polymerases from mammalian, bacterial, and oncornaviral sources are totally insensitive to Ap5A addition. The Ap5A-mediated inhibition of TdT seems to occur via its interaction at both the substrate binding and primer binding domains as judged by classical competitive inhibition plots with respect to both substrate deoxynucleoside triphosphate (dNTP) and DNA primer and inhibition of ultraviolet light mediated cross-linking of substrate dNTP and oligomeric DNA primer to their respective binding sites. Further kinetic analyses of Ap5A inhibition revealed that the dissociation constant of the Ap5A-enzyme complex, with either substrate binding or primer binding domain participating in the complex formation, is approximately 6 times higher (Ki = 1.5 microM) compared to the dissociation constant (Ki = 0.25 microM) of the Ap5A-TdT complex when both domains are available for binding. In order to study the binding stoichiometry of Ap5A to TdT, an oxidized derivative of Ap5A, which exhibited identical inhibitory properties as its parent compound, was employed. The oxidation product of Ap5A, presumably a tetraaldehyde derivative, binds irreversibly to TdT when the inhibitor-enzyme complex is subjected to borohydride reduction. The presence of aldehyde groups in the oxidized Ap5A appeared essential for inhibitory activity since its reduction to alcohol via borohydride reduction or its linkage to free amino acids prior to use as an inhibitor rendered it completely ineffective.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Asymmetrical diadenosine 5',5'-P(1)P(4) tetraphosphate (Ap(4)A) hydrolases are key enzymes controlling the in vivo concentration of Ap(4)A--an important signaling molecule involved in regulation of DNA replication and repair, signaling in stress response and apoptosis. Sequence homologies indicate that the genome of the model plant Arabidopsis thaliana contains at least three open reading frames encoding presumptive Ap(4)A hydrolases: At1g30110, At3g10620, and At5g06340. In this work we present efficient overexpression and detailed biochemical characteristics of the AtNUDX25 protein encoded by the At1g30110 gene. Aided by the determination of the binding constants of Mn(Ap(4)A) and Mg(Ap(4)A) complexes using isothermal titration calorimetry (ITC) we show that AtNUDX25 preferentially hydrolyzes Ap(4)A in the form of a Mn(2+) complex.  相似文献   

9.
The diadenosine 5',5'-P1,P4-tetraphosphate alpha,beta-phosphorylase (Ap4A phosphorylase), recently observed in yeast [Guaranowski, A., & Blanquet, S. (1985) J. Biol. Chem. 260, 3542-3547], is shown to be capable of catalyzing the synthesis of Ap4A from ATP + ADP, i.e., the reverse reaction of the phosphorolysis of Ap4A. The synthesis of Ap4A markedly depends on the presence of a divalent cation (Ca2+, Mn2+, or Mg2+). In vitro, the equilibrium constant K = ([Ap4A][Pi])/[(ATP][ADP]) is very sensitive to pH. Ap4A synthesis is favored at low pH, in agreement with the consumption of one to two protons when ATP + ADP are converted into Ap4A and phosphate. Optimal activity is found at pH 5.9. At pH 7.0 and in the presence of Ca2+, the Vm for Ap4A synthesis is 7.4 s-1 (37 degrees C). Ap4A phosphorylase is, therefore, a valuable candidate for the production of Ap4A in vivo. Ap4A phosphorylase is also capable of producing various Np4N' molecules from NTP and N'DP. The NTP site is specific for purine ribonucleotides (N = A, G), whereas the N'DP site has a broader specificity (N' = A, C, G, U, dA). This finding suggests that the Gp4N' nucleotides, as well as the Ap4N' ones, could occur in yeast cells.  相似文献   

10.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) binding protein specifically binds Ap4A. The protein has been purified from Xenopus laevis oocytes and presents an estimated molecular weight of 100,000 by gel filtration. In the first stages of the purification, the Ap4A binding activity is found associated to DNA polymerase alpha-DNA primase, forming heterogeneous high molecular weight complexes. A monoclonal antibody has been prepared against the purified Ap4A binding protein. The antibody partially neutralizes the Ap4A binding activity. Using the immunoblot technique, it has been shown that the antibody is able to recognize either native or SDS-denatured Ap4A binding protein. The monoclonal antibody immunoreacted with a polypeptide of 90,000 which coincides with the molecular weight obtained by gel chromatography and indicates that the native Ap4A binding protein from Xenopus oocytes is probably a monomeric protein.  相似文献   

11.
A simple method has been developed for the preparation of 5'-32P-labeled 8-azidoadenosine 3',5'-bisphosphate (p8N3Ap) for use in photoaffinity labeling studies. Irradiation of a complex between p8N3Ap and bovine pancreatic ribonuclease A (RNase A) with light of 300-350 nm led to the covalent attachment of the nucleotide to the enzyme. RNase A could also be labeled in the dark with prephotolyzed p8N3Ap. In either case, the nucleotide reacted with the same tryptic peptide, encompassing amino acids 67-85 of the protein. The site of labeling was determined to be either Thr-78 or Thr-82, both of which are close to or at the pyrimidine binding site of the enzyme. This result is consistent with recent nuclear magnetic resonance and X-ray studies which indicate that 8-substituted adenine nucleotides interact with the pyrimidine binding site of RNase A.  相似文献   

12.
Heat-shocked organisms are known to produce not only "heat shock proteins" but also diadenosine tetraphosphate (Ap4A) and related compounds that may act as "alarmones" that alert the cell to the onset of metabolic stress. We found that Ap4A is synthesized in chicken erythrocytes and that the Ap4A level in the whole blood of heat-stressed birds increases about 10-fold. In searching for alarmone receptors, we found that the diadenosine polyphosphates bind preferentially with high affinity to the deoxy conformation of hemoglobin in a ratio of one/tetramer. The binding affinity of this new class of effectors of hemoglobin function is directly related to the number of phosphates which bridge the nucleotide moieties, with the most dramatic in vitro effect on oxygen affinity being shown by Ap6A. Decreasing effects are brought about by diadenosine penta-, tetra-, tri-, di-, and monophosphates. The association constant for Ap4A binding to deoxygenated human hemoglobin at pH 7.25 is 26 microM-1, close to that for 2,3-diphosphoglycerate. At 100-fold excess over heme, Ap4A increases the P50 of stripped Hb A in 0.05 M HEPES buffer at pH 7.25, 20 degrees C, from 0.85 to 6.03 mm Hg. The binding, which markedly enhances the Bohr effect, involves the beta chain anion-binding site. The kinetics of both ligand binding and dissociation are affected, with a greater quantitative effect on the oxygen dissociation process. Although the low concentration of the diadenosine polyphosphates in red cells precludes a physiologically significant modulation of oxygen delivery, competition with the ATP- and NAD(P)H-binding sites on hemoglobin or regulatory enzymes may prove to be of adaptive significance.  相似文献   

13.
In order to elucidate the postulated role of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) in cell growth regulation, the Ap4A cellular content was measured in cells submitted to various treatments affecting the cell growth. Ap4A level was found to increase ten times when cells reached confluence, whereas no significant variation of the ATP pool was observed. Cell growth arrest after serum depletion did not cause any variation in the Ap4A pool. A limited increase in the Ap4A pool was observed when growth of arrested cells was reinitiated but this variation reflected only the increase of cell density. No significant variation in the Ap4A intracellular level was observed after submitting two eukaryotic cell lines to various stresses (cytotoxic drugs, ethanol and heat-shock treatments). These results suggest that, in eukaryotic cells, Ap4A is not involved in cell growth stimulation but rather is associated with cell contact growth inhibition. They also suggest that Ap4A is not an 'alarmone', contrary to what has been proposed for bacteria.  相似文献   

14.
The fission yeast Schizosaccharomyces pombe contains a gene on chromosome I that encodes a hypothetical nudix hydrolase, YA9E. The gene, designated aps1, has been cloned and the protein has been purified from Escherichia coli with a yield of 10 mg of Aps1/L of culture. Aps1, composed of 210 amino acids with a calculated molecular mass of 23 724 Da, behaves as a monomer with a sedimentation coefficient of 1.92 S as determined by analytical ultracentrifugation. The effective hydrodynamic radius is about 29 A as determined by both analytical ultracentrifugation and gel-filtration chromatography. Aps1, whose expression was detected in S. pombe by Western blotting, is an enzyme that catalyzes the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4A from Ap6A and ADP and ATP from Ap5A. Values of Km for Ap6A and Ap5A are 19 microM and 22 microM, respectively, and the corresponding values of kcat are 2.0 s-1 and 1.7 s-1, respectively. The enzyme has limited activity on Ap4A and negligible activity on Ap3A, ADP-ribose, and NADH. Aps1 catalyzes the hydrolysis of mononucleotides with decreasing activity in order from p5A to AMP. Optimal activity with Ap6A as substrate is observed at pH 7.6 and in the presence of 0.1-1 mM MnCl2. Aps1 is the first nudix hydrolase isolated from S. pombe, and it is the first enzyme identified with this specific substrate specificity and reaction products.  相似文献   

15.
Purified phenylalanyl-tRNA synthetases present in chloroplasts, mitochondria and cytoplasm of green and bleached Euglena gracilis strains, respectively, are able to synthesize diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A). Ap4A synthesis is strictly dependent on zinc ions. This is the first evidence that chloroplasts should be able to synthesize Ap4A. Synthesis of Ap4A by phenylalanyl-tRNA synthetases of the three compartments of a plant cell or by other enzymes such as Ap4A phosphorylase is discussed.  相似文献   

16.
Potential bisubstrate analogs, with adenosine and thymidine joined at their 5' positions by polyphosphoryl linkages of varying lengths (ApndT, where n = the number of phosphoryl groups), were examined as inhibitors of cytosolic thymidine kinase from blast cells of patients with acute myelocytic leukemia. Ki values were 1.2 microM for Ap3dT, 0.31 microM for Ap4dT, 0.12 microM for Ap5dT, and 0.19 microM for Ap6dT. The best inhibitor of the cytosolic enzyme, Ap5dT, was somewhat less effective as an inhibitor of the mitochondrial enzyme (Ki = 0.50 microM). In addition to their inhibitory modes of binding by the cytosolic enzyme, these compounds were bound at considerably lower concentrations (Kd = 0.029 microM for Ap4dT, 0.0025 microM for Ap5dT, and 0.0027 microM for Ap4dT), in such a way as to protect the cytosolic enzyme from thermal inactivation at 37 degrees C in the absence of substrates.  相似文献   

17.
Enzymatic activity which hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) yielding ADP has been identified in extracts of eubacteria, Escherichia coli and Acidaminococcus fermentans, and of a highly thermophilic archaebacterium, Pyrodictum occultum. Specific Ap4A (symmetric) pyrophosphohydrolase from Escherichia coli K12 has been purified almost 400-fold. The preparation was free of phosphatase, ATPase, phosphodiesterase, AMP-nucleosidase, and adenylate kinase. The Ap4A pyrophosphohydrolase molecular weight estimated by gel filtration is 27,000 +/- 1,000. Activity maximum is at pH 8.3. The Km value computed for Ap4A is 25 +/- 3 microM. The sulfhydryl group(s) is essential for enzyme activity. Metal chelators, EDTA, and o-phenanthroline, inhibit Ap4A hydrolysis; I0.5 values are 3 and 50 microM, respectively. Co2+ is a strong stimulator with an almost 100-fold increase in rate of Ap4A hydrolysis and a plateau in the range of 100-500 microM Co2+, when compared with the nonstimulated hydrolysis. Other transition metal ions, Mn2+, Cd2+, and Ni2+, stimulate by factors of 8, 3.5, and 3.5, respectively, with optimal concentrations in the range 200-500, 2-5, and 4-8 microM, respectively. Zn2+, Cu2+, and Fe2+, up to 30 microM, are without effect and they inhibit at higher concentrations. Mg2+ or Ca2+, in the absence of other divalent metal ions, are weak stimulators (1.5-fold stimulation occurs at 1-2 mM concentration), but act synergistically with Co2+ at its suboptimal concentrations. Stimulation in the presence of 10 microM Co2+ and either 1 mM MgCl2 or CaCl2 increases up to 75-fold. The same degree of synergy is found at 10 microM Co2+ and either 2-5 mM spermidine or 0.5-1.5 mM spermine. Besides Ap4A, bacterial Ap4A pyrophosphohydrolase hydrolyzes effectively Ap5A and Gp4G, and, to some extent, p4A, Ap6A, and Ap3A yielding in each case corresponding nucleoside diphosphate as one of the products.  相似文献   

18.
The synthesis of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) can be catalyzed in vitro by a tetrameric tRNA synthetase complex from rat liver containing two lysyl-tRNA synthetase and two arginyl-tRNA synthetase subunits. This reaction required ATP, AMP, 50-100 microM zinc, and inorganic pyrophosphatase. We show here that AMP can be omitted from the reaction and that the zinc levels can be markedly reduced provided catalytic amounts of tRNA(Lys) are added to the reaction mixture. Ap4A synthesis with purified tRNA(Lys) isoacceptors showed that the minor species, tRNA(4Lys), was 3-fold more active than either of the two major tRNA(Lys) species, tRNA(2Lys) and tRNA(5Lys). No activity could be demonstrated with tRNA(Lys) from Escherichia coli or with tRNA(Lys) or tRNA(Phe) from yeast. Aminoacylation of tRNA(4Lys) was strictly required as determined by the fact that Ap4A synthesis was not observed until aminoacylation was nearly complete, inhibitors of aminoacylation blocked Ap4A synthesis, and there was a strict requirement for added lysine. None of the above observations could be demonstrated, however, when lysyl-tRNA(Lys) was directly supplied to the reaction mixture. Optimum Ap4A synthesis was obtained by the addition of 1 mol of tRNA(Lys)/mol of the synthetase complex. This reaction is unique because it does not require the prior formation of an aminoacyl-AMP intermediate and because it can actively synthesize Ap4A at physiological zinc concentrations. The preferential role for tRNA(4Lys) in Ap4A synthesis is consistent with its prior implication in cell division.  相似文献   

19.
Eosinophil-derived neurotoxin (EDN) is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. To probe the importance of this enzymatic activity further, specific inhibitors will be of great aid. Derivatives of 5'-ADP are among the most potent inhibitors currently known. Here, we use X-ray crystallography to investigate the binding of four natural nucleotides containing this moiety. 5'-ATP binds in two alternative orientations, one occupying the B2 subsite in a conventional manner and one being a retro orientation with no ordered adenosine moiety. Diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) bind with one adenine positioned at the B2 subsite, the polyphosphate chain extending across the P1 subsite in an ill-defined conformation, and a disordered second adenosine moiety. Diadenosine pentaphosphate (Ap5A), the most avid inhibitor of this series, binds in a completely ordered fashion with one adenine positioned conventionally at the B2 subsite, the polyphosphate chain occupying the P1 and putative P(-1) subsites, and the other adenine bound in a retro-like manner at the edge of the B1 subsite. The binding mode of each of these inhibitors has features seen in previously determined structures of adenosine diphosphates. We examine the structure-affinity relationships of these inhibitors and discuss the implications for the design of improved inhibitors.  相似文献   

20.
Diadenosine 5',5'"-P1,P4-tetraphosphate (Ap4A) has been detected in cysts and developing embryos of the brine shrimp Artemia in amounts 10(4)-10(6) times lower than that of the guanine analogue, Gp4G. The unexpectedly high level of Ap4A in dormant cysts of 2.37 pmol/10(6) cells can be reduced to 0.03 pmol/10(6) cells by decapsulation and storage in saturated NaCl. When development is reinitiated, the Ap4A content of the decapsulated embryos undergoes a rapid 125 -fold increase, reaching a maximum of 3.79 pmol/10(6) cells at the point of emergence when DNA replication begins. If replication is delayed by hypoxia, the Ap4A level is adjusted in order to reach the same maximum value when replication finally begins. As replication proceeds, the level of Ap4A declines again. Unlike mammalian cells, Ap4A in Artemia is less metabolically labile than ATP. These results are consistent with the suggested role of Ap4A in the initiation of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号