首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Incubation of cells of the cyanobacterium Spirulina platensis under conditions of exposure to low-intensity (2–3 E m–2 s–1) red light, which was predominantly absorbed by photosystem I (PS I), caused atypical adaptation changes. Invariable pigment composition and stoichiometry of the photosystems was observed in the cells incubated under these conditions against the background of a decrease in the rate of photosynthetic fixation of 2 (by one-half) and a 1.5-fold increase in the rate of dark respiration relative to cells incubated under conditions of exposure to green light. Comparison of these data with a high rate of dark relaxation of P700+ in the presence of diuron suggests that deficiency of reduced equivalents on the donor side of PS I in Spirulina cells exposed to red light is compensated by electron supply from the respiratory chain NAD(P)H dehydrogenase complex.  相似文献   

2.
The steady state of photosynthetic electron transport drivenby two photosystems was studied with cells of the cyanophyteSynechocystis PCC 6714 by analyzing the flash-induced oxidation-reductionof Cyt f and P700 under continuous background illumination.We first analyzed the spectra and the kinetics of flash-inducedabsorption changes in the 400 to 440 nm wavelength region anddefined the absorption changes due to oxidation-reduction ofCyt f and P700. Results indicated that the flash-induced absorptionchanges at 420 and 435 nm are due to the oxidation-reductionof Cyt f and P700, respectively. Determination of the steadystate of Cyt f (420 nm) and P700 (435 nm) was made for the cellsgrown under a weak orange light exciting mainly PS II (PS IIlight) and having a high ratio of PS I to PS II (PS I/PS II),and those grown under a weak red light exciting preferentiallyPS I (PS I light) and having a low PS I/PS II. The steady stateof electron transport in cells of the two types were comparedunder PS I and PS II lights. The results indicated that: (1)under the light conditions used for growth (both red and orangelight), the intermediate electron pool between the two photosystemsremained in a redox state so as to keep both photosystems inthe open state. (2) When shifted to PS I light, the intermediatepool and PS I in cells of high PS I/PS II became extremely electron-poor,and so most of the PS I reaction centers were closed. (3) Theintermediate pool in cells of low PS I/PS II became extremelyelectron-rich when shifted to PS II light, and most of the PSII reaction centers were closed. The electron transport stateis released from such biased states by regulation of PS I/PSII. Results supported our previously proposed hypothesis thatthe stoichiometry between PS I and PS II is regulated so asto keep the two photosystems in the open state. The relationshipbetween the steady state of electron transport and the regulationof PS I/PS II is discussed. (Received August 2, 1990; Accepted December 10, 1990)  相似文献   

3.
4.
Previous work has shown that exposing broiler eggs to white light during incubation can improve hatchability and post-hatch animal welfare. It was hypothesized that due to how different wavelengths of light can affect avian physiology differently, and how pigmented eggshells filter light that different monochromatic wavelengths would have differential effects on hatchability and post-hatch animal welfare indicators. To determine, we incubated chicken eggs (n=6912) under either no light (dark), green light, red light or white light; the light level was 250 lux. White and red light were observed to increase hatch of fertile (P<0.05) over dark and green light incubated eggs. White, red and green light exposure during incubation improved (P<0.05) the proportion of non-defect chicks over dark incubated eggs. Post-hatch 45-day weight and feed conversion was not affected by light exposure of any wavelength (P>0.05). Fear response of during isolation and tonic immobility was reduced (P<0.05) in broilers incubated under white or red light when compared with either green or dark broilers. Broilers incubated with white or red light had lower (P<0.05) composite asymmetry scores and higher (P<0.05) humoral immunity titers than dark incubated broilers, however, green light broilers did not differ (P>0.05) from dark incubated broilers. All light incubated broilers had lower (P<0.05) plasma corticosterone and higher (P<0.05) plasma serotonin concentrations than dark incubated broilers. These results indicate that white light and red light that is a component of it are possibly the key spectrum to improving hatchability and lower fear and stress susceptibility, whereas green light is not as effective. Incubating broiler eggs under these spectrums could be used to improve hatchery efficiency and post-hatch animal welfare at the same time.  相似文献   

5.
In white light of 33.2 μmol . m?2 . s?1 oxygen evolution of Chlorella kessleri is about 30 % higher after growth in blue light than after growth in red light of the same quantum fluence rate. When determined by the light-induced absorbance change at γ 820 nm, blue light-adapted cells possess about 60% more reaction centres per total chlorophyll in photosystem II. Correspondingly, the cells exhibit about 30% more Hill activity of PS II. Conversely, red light-adapted cells contain relatively more reaction centres and higher electron flow capacities of photosystem I. The distribution of total chlorophyll among the pigment-protein complexes, CPI, CPIa, CPa, and LHC II, corresponds to these data. There is more chlorophyll associated with the light-harvesting complex of PS II, LHC II, in cells under blue light conditions, but more chlorophyll bound to both complexes of PS I, CPI and CPIa, in cells under red light conditions. The respective ratios of chlorophyll a/chlorophyll b of all complexes are identical for blue and red light-adapted cells. This results in a higher relative amount of chlorophyll b in blue light-adapted cells. Total carotenoids per total chlorophyll are increased by 20% in red light-adapted cells. Their distribution among the pigment-protein complexes is unknown, however the ratios of lutein, neoxanthin and violaxanthin extractable from LHC II are different in blue (32.1:35.9:32.0) and in red (51.4:26.7:21.9) light-adaptod cells.  相似文献   

6.
Kazuhiko Satoh  David C. Fork 《BBA》1983,722(1):190-196
Time courses of chlorophyll fluorescence and fluorescence spectra at 77 K after various light treatments were measured in the red alga, Porphyra perforata. Photosystem (PS) I or II light (light 1 or 2) induced differences in the fluorescence spectra at 77 K. Light 2 decreased the two PS II fluorescence bands (F-685 and F-695) in parallel, while light 1 preferentially increased F-695. Light 1 and 2 also produced different effects on the activities of PS I and II. Preillumination with light 1 increased PS II activity and decreased PS I activity. However, preillumination with light 2 decreased PS II activity with no effect on PS I activity. These results show that there are at least two mechanisms that can alter the transfer of light energy in P. perforata. The dark state in this alga was found to be State 2 and light 1 induced a State 2-State 1 transition which retarded the transfer of light energy from PS II to PS I. Light 2 induced another change (which we have called a State 2-State 3 transition) that was accompanied by a change only in PS II activity.  相似文献   

7.
By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and birch (Betula pendula Roth.) leaves. PS I donor side carriers were first oxidized under FRL, electrons were then allowed to accumulate on the PS I donor side during dark intervals of increasing length. After each dark interval the electrons were removed (titrated) by FRL. The kinetics of the 820 nm signal during the oxidation of the PS I donor side was modeled assuming redox equilibrium among the PS I donor pigment (P700), plastocyanin (PC), and cytochrome f plus Rieske FeS (Cyt f + FeS) pools, considering that the 820 nm signal originates from P700+ and PC+. The analysis yielded the pool sizes of P700, PC and (Cyt f + FeS) and associated redox equilibrium constants. PS I density varied between 0.6 and 1.4 μmol m−2. PS II density (measured as O2 evolution from a saturating single-turnover flash) ranged from 0.64 to 2.14 μmol m−2. The average electron storage capacity was 1.96 (range 1.25 to 2.4) and 1.16 (range 0.6 to 1.7) for PC and (Cyt f + FeS), respectively, per P700. The best-fit electrochemical midpoint potential differences were 80 mV for the P700/PC and 25 mV for the PC/Cyt f equilibria at 22 °C. An algorithm relating the measured 820 nm signal to the redox states of individual PS I donor side electron carriers in leaves is presented. Applying this algorithm to the analysis of steady-state light response curves of net CO2 fixation rate and 820 nm signal shows that the quantum yield of PS I decreases by about half due to acceptor side reduction at limiting light intensities before the donor side becomes oxidized at saturating intensities. Footnote: This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Abstract: Neural retina from most species contains 3,4-dihydroxyphenylethylamine (dopamine) receptors coupled to stimulation of adenylate cyclase activity. It has been demonstrated that release of dopamine from its neurons and subsequent occupation of dopamine receptors is increased by light. In this study, we have shown that adenylate cyclase activity in bovine retina is highly responsive to the endogenous Ca2+-binding protein, cal-modulin, and that calmodulin can increase dopamine-sen-sitive adenylate cyclase activity in bovine retina. We further demonstrate that both dopamine- and calmodulin-stimulated adenylate cyclase activities can be regulated by alterations in light. Bovine retinas were dissected from the eye under a low-intensity red safety light, defined as dark conditions, and incubated for 20 min in an oxygenated Krebs Henseleit buffer under either dark or light conditions. The retinas were then homogenized and adenylate cyclase activity measured in a paniculate fraction washed to deplete it of endogenous Ca2+ and calmodulin. Activation of adenylate cyclase activity by calmodulin, dopamine, and the nonhydrolyzable GTP analog, gua-nosine-5′-(β,γ-imido)triphosphate (GppNHp), was significantly (60%) greater in paniculate fractions from retinas that had been incubated under dark conditions as compared to those incubated under light conditions. Basal, Mn2+-, and GTP-stimulated adenylate cyclase activities were not altered by changes in lighting conditions. Calmodulin could increase the maximum stimulation of adenylate cyclase by dopamine in retinas incubated under either dark or light conditions, but the degree of its effect was greater in retinas incubated under light conditions. Activation of adenylate cyclase by calmodulin, dopamine, and GppNHp in paniculate fractions from retinas incubated under light conditions was indistinguishable from the activation obtained when retinas were incubated in the dark in the presence of exogenous dopamine. These results suggest that an increased release of dopamine occurs in light. The decreased response of adenylate cyclase to exogenous dopamine can then be explained by a subsequent down-regulation of dopamine receptor activity. The down-regulation of dopamine receptor activity can also regulate activation of adenylate cyclase by GppNHp and calmodulin. The results suggest that dopamine, calmodulin, and GppNHp are modulators of a common component of adenylate cyclase activity, and this component is regulated by light.  相似文献   

9.
Studies were carried out on the growth of Chromatium sp. on seafood wastewater (SFWW), which under facultative conditions and light exposure produced red pigment. The strain grew and utilized organic matter in both dark and light exposure conditions, but it produced red pigment when exposed to light. The growth was repressed by aerobic condition. The red color intensity was reduced by about 32.5+/-1.5 and 70.8+/-2.8% when kept under dark and static conditions, or aerobic and light exposure conditions, respectively. The COD of SFWW and the number of cells of Chromatium sp. were also rapidly reduced by about 78.6+/-2.7 and 92.0+/-1.0%, respectively, under aerobic and light exposure condition. KNO3 and FeCl3 also reduced red color intensity and maximum removal of organic matter and red color were 30 and 4 mg/l, respectively. Aerobic conditions increased the color removal efficiency with 30 mg/l KNO3 and 4 mg/l FeCl3 treatments up to 96.5+/-1 and 98.9+/-1%, respectively.  相似文献   

10.
The effect of light quality on protocorm-like bodies (PLBs) of Dendrobium officinale was investigated. PLBs of D. officinale were incubated under a number of different light conditions in vitro, namely: dark conditions; fluorescent white light (Fw); red light-emitting diodes (LEDs); blue LEDs; half red plus half blue [RB (1:1)] LEDs; 67% red plus 33% blue [RB (2:1)] LEDs; and 33% red plus 67% blue [RB (1:2)] LEDs. Growth parameters, number of shoots produced per PLB, chlorophyll concentration and carotenoid concentration were measured after 90 days culture. The percentage of PLBs producing shoots was 85% under blue LEDs. In contrast, the percentage of PLBs producing shoots was less than 60% under dark conditions, fluorescent white light and red LEDs. The number of shoots produced per PLB was more than 1.5 times greater under blue LEDs, RB (1:1) LEDs and RB (1:2) LEDs than those cultured under other light treatments [dark, Fw, red LEDs and RB (2:1)]. Chlorophyll and carotenoid concentrations were significantly higher under blue LEDs and different red plus blue LED ratios, compared to other light treatments (dark, Fw and red LEDs). Blue LEDs, Fw, and RB (1:2) LEDs produced higher dry matter accumulations of PLBs and shoots. This study suggests that blue LEDs or RB (1:2) LEDs could significantly promote the production of shoots by protocorm-like bodies of D. officinale and increase the dry matter of PLBs and the accumulation of shoot dry matter in vitro.  相似文献   

11.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (Q(A)) of photosystem (PS) II. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 micros to 5 s). The about 20% lowering of the maximum fluorescence yield F(M), observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH(2) by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH(2) starts getting reoxidized by PS I activity. NAD(P)H-dependent restoration of F(M) was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl(2) that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of F(M). Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F(0) allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F(0) level (Q(0)) and to compare it with the fractional quenching at the F(M) level (Q(M)). The experimentally determined Q(0)/Q(M) ratios were found to be equal to the corresponding F(0)/F(M) ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

12.
In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat (Avena sativa, var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown under low intensity, which indicates that PS II is photoinhibited by such conditions. PS I was more stable than PS II in plants exposed to strong light for a moderate time (five photoperiods) since the oxidised plastoquinone pool size under far-red (FR) light was similar in plants grown under high light intensity to plants grown under low intensity, probably as a result of the cyclic electron flow around PS I being stimulated in response to high light intensity. However, over longer times (10 photoperiods) the PS I was photoinhibited, since the oxidised plastoquinone pool size under FR light increased as a consequence of the decrease in PS I activity caused by high light intensity. This practical is intended for advanced students of plant biochemistry and plant physiology.  相似文献   

13.
The photochemical apparatus organization in the thylakoid membraneof the diatom Cylindrotheca fusiformis was investigated in cellsgrown under high and low irradiance. High light (HL, 200µE.m–2.s–1)grown cells displayed a relatively low fucoxanthin to chlorophyll(Chl) ratio, a low photosystem (PS) stoichiometry (PSII/PS I=1.3/1.0)and a smaller photosynthetic unit size in both PS I and PS II.Low light (LL, 30µE.m–2.s–1) grown cells displayeda 30% elevated fucoxanthin content, elevated PS II/PS I=3.9/1.0and larger photosynthetic unit size for PS II (a change of about100%) and for PS I (by about 30%). In agreement, SDS polyacrylamidegel electrophoresis of thylakoid membrane polypeptides showedgreater abundance of PS I, RuBP carboxylase and ATP synthasepolypeptides in HL cells. In contrast, LL grown cells exhibitedgreater abundance of light-harvesting complex polypeptides.Assuming an efficiency of red (670 nm) light utilization of1.0, the measured efficiency of blue (481 nm) light utilizationwas 0.64 (HL cells) and 0.72 (LL cells). The lower efficiencyof blue versus red light utilization is attributed to the quenchingof absorbed energy by non-fucoxanthin carotenoids. Differencesin the efficiency of blue light utilization between HL and LLgrown cells are attributed to the variable content of fucoxanthin.The results support the hypothesis of a variable Chl a-Chl c-fucoxanthinlight-harvesting antenna associated with PS II and PS I in Cylindrotheca. (Received February 10, 1988; Accepted April 6, 1988)  相似文献   

14.
Preillumination, followed by a dark period prior to exposure of dark-grown nondividing cells of Euglena gracilis var. bacillaris to normal lighting conditions for chloroplast development, results in potentiation, or abolishment of the usual lag in chlorophyll accumulation. The degree of potentiation is a function of the length of the preillumination period, the intensity of preilluminating light, and the length of the dark period interposed before re-exposure to continuous light for development. The optimal conditions are found to be: 90 minutes of preillumination with white light at an intensity greater than 30 microwatts per square centimeter (14 foot candles) followed by a dark period of at least 12 hours. Reciprocity is not found between duration and intensity of preilluminating light. Preillumination with blue light and red light was found to be the most effective in promoting potentiation, and the ratio of effectiveness of blue to green to red is consistent with protochlorophyll-(ide) being the photoreceptor. Although red light is effective, there is no reversal by far red light, and these facts, taken together with the effectiveness of blue light, suggest that the phytochrome system is not involved. The amount of chlorophyll formed at the end of preillumination is proportional to the resulting potentiation, suggesting that the amount of protochlorophyll(ide) removed or chlorophyll(ide) formed regulates this phenomenon. Potentiated and nonpotentiated cells show comparable rates of protochlorophyll(ide) resynthesis, suggesting that this is not the limiting factor in nonpotentiated cells. Although light is required for protochlorophyll(ide) conversion in chlorophyll synthesis, a brief preillumination seems also to initiate the production of components in the subsequent dark period which, in nonpotentiated cells, are ordinarily synthesized during the lag period under continuous illumination. These components are necessary to sustain maximal rates of subsequent chlorophyll accumulation.  相似文献   

15.
In addition to the linear electron transport, several alternative Photosystem I-driven (PS I) electron pathways recycle the electrons to the intersystem electron carriers mediated by either ferredoxin:NADPH reductase, NAD(P)H dehydrogenase, or putative ferredoxin:plastoquinone reductase. The following functions have been proposed for these pathways: adjustment of ATP/NADPH ratio required for CO(2) fixation, generation of the proton gradient for the down-regulation of Photosystem II (PS II), and ATP supply the active transport of inorganic carbon in algal cells. Unlike ferredoxin-dependent cyclic electron transport, the pathways supported by NAD(P)H can function in the dark and are likely involved in chlororespiratory-dependent energization of the thylakoid membrane. This energization may support carotenoid biosynthesis and/or maintain thylakoid ATPase in active state. Active operation of ferredoxin-dependent cyclic electron transport requires moderate reduction of both the intersystem electron carriers and the acceptor side of PS I, whereas the rate of NAD(P)H-dependent pathways under light depends largely on NAD(P)H accumulation in the stroma. Environmental stresses such as photoinhibition, high temperatures, drought, or high salinity stimulated the activity of alternative PS I-driven electron transport pathways. Thus, the energetic and regulatory functions of PS I-driven pathways must be an integral part of photosynthetic organisms and provides additional flexibility to environmental stress.  相似文献   

16.
A chromatic adaptation in the photosynthetic quantum yield forthe light mainly absorbed by chlorophyll a (Chl a light) firstfound by Yocum (1951) was studied with one red and three blue-greenalgal strains. When the cells were grown under a weak Chl alight, the quantum yield in all the strains increased. Comparisonof photosystem (PS) compositions, including phycobilin (PBP)and Chl a antennae, reaction centers I and II, in the cellsgrown under the light mainly absorbed by PBP and Chl a revealedthat changes in quantum yield could be attributed to changesin the ratio of PS I/II; PS I/II becomes larger than 1 underPBP light but decreases to 1 in most cases under Chl a light.The change in the PS I/II ratio is due solely to the changesin the PS I population in the cell; PS II remains constant.These results are similar to the intensity-dependent responsein PS composition. A common hypothesis for both the chromatic and intensity-inducedregulation of PS composition was proposed based on the ideaof balance between the electron flow from H2O to NADP drivenby PS I and II and the cyclic one driven by PS I. (Received May 16, 1985; Accepted September 4, 1985)  相似文献   

17.
Effect of quality, quantity and minimum duration of light on the process of recovery was investigated in the photoinhibited cells of the green alga Chlamydomonas reinhardtii. Complete and rapid reactivation of photosynthesis took place in diffuse white light of 25 mol m–2 s–1. The recovery was partial (< 10%) in the dark. Far red (725 nm), red (660 nm) and blue light (480 nm) in the range of 10 to 75 mol m–2 s–1 did not enhance the process of reactivation. Photoinhibited cells incubated in dark for 15 min when exposed for 5 min to diffuse light (25 mol m–2 s–1) showed complete reactivation. Even exposure of 15 min dark incubated photoinhibited cells to photoinhibitory light (2500 mol m–2 s–1) for 5 s fully regained the photosynthesis. The study indicated a very precise and triggering effect of light in the process of reactivation. The dark respiratory inhibitor KCN and uncouplers FCCP and CCCP increased the susceptibility of C. reinhardtii to photoinhibition and also prevented photoinhibited cells to reactivate fully even after longer period of incubation under suitable reactivating conditions. Of the various possibilities envisaged to assign the role of dark respiration in recovery process, supply of ATP by mitochondrial respiration appeared sound and pertinent.Abbreviations CCCP- carbonyl cyanide m-chlorophenylhydrazone - D1- 32 kDa protein of PS II reaction center - FCCP- carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone - KCN- potassium cyanide - PBQ- phenyl-p-benzoquinone - PFD- photon flux density - SHAM- salicylhydroxamic acid NBRI Research Publication No. 431.  相似文献   

18.
Photoinhibition of photosynthesis was studied in Vitis berlandieri and Vitis rupestris leaves under controlled conditions (irradiation of detached leaves to about 1900 micromol m(-2) s(-1)). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of PS2, Fv/Fm declined, Fo increased significantly in leaves of V. berlandieri, while Fo decreased in V. rupestris. In isolated thylakoids, the rate of whole chain and PS2 activity markedly decreased in high light irradiated more in leaves of V. berlandieri than in leaves of V. rupestris. A smaller inhibition of PS1 activity was also observed in both leaves. In the subsequent dark incubation, fast recovery was observed in both leaves and reached maximum PS2 efficiencies similar to those observed in non-photoinhibited leaves. The artificial exogenous electron donors DPC, NH2OH and Mn2+ failed to restore the high light induced loss of PS2 activity in V. berlandieri leaves, while DPC and NH2OH significantly restored in V. rupestris leaves. It is concluded that high light inactivates on the donor side of PS2 and acceptor side of PS2 in V. rupestris and V. berlandieri leaves, respectively. Quantification of the PS2 reaction center protein D1 and 33 kDa protein of water splitting complex following high light exposure of leaves showed pronounced differences between V. berlandieri and V. rupestris leaves. The marked loss of PS2 activity in high light irradiated leaves was due to the marked loss of D1 protein and 33 kDa protein in V. berlandieri and V. rupestris leaves, respectively.  相似文献   

19.
Symploca PCC 8002 Kützing is a filamentous cyanobacterium that lacks the specialized cells, known as heterocysts, that protect nitrogenase from O2 in most aerobic N2-fixing cyanobacteria. Nevertheless, Symploca is able to carry out N2 fixation in the light under aerobic conditions. When cultures were grown under light/dark cycles, nitrogenase activity commenced and increased in the light phase and declined towards zero in the dark. Immunolocalization of dinitrogenase reductase in sectioned Symploca trichomes showed that the enzyme was present only in 9% of the cells. These cells lacked any obvious mechanical protection against atmospheric O2 and their ultrastructural characteristics were similar to those of cells that did not contain any dinitrogenase reductase. The nitrogenase-containing cells possessed carboxysomes that were rich in ribulose-1,5-bisphosphate carboxylase/oxygenase and phycoerythrin, a light harvesting pigment of PS II. This indicates that these cells had a capacity for both N2 fixation and photosynthesis. The significance of the localization pattern for dinitrogenase reductase is discussed in the context of N2 fixation in Symploca PCC 8002.  相似文献   

20.
The 5 K absorption spectrum of Photosystem I (PS I) trimers from Arthrospira platensis (old name: Spirulina platensis) exhibits long-wavelength antenna (exciton) states absorbing at 707 nm (called C707) and at 740 nm (called C740). The lowest energy state (C740) fluoresces around 760 nm (F760) at low temperature. The analysis of the spectral properties (peak position and line width) of the lowest energy transition (C740) as a function of temperature within the linear electron-phonon approximation indicates a large optical reorganization energy of approximately 110 cm(-1) and a broad inhomogeneous site distribution characterized by a line width of approximately 115 cm(-1). Linear dichroism (LD) measurements indicate that the transition dipole moment of the red-most state is virtually parallel to the membrane plane. The relative fluorescence yield at 760 nm of PS I with P700 oxidized increases only slightly when the temperature is lowered to 77 K, whereas in the presence of reduced P700 the fluorescence yield increases nearly 40-fold at 77 K as compared to that at room temperature (RT). A fluorescence induction effect could not be resolved at RT. At 77 K the fluorescence yield of PS I trimers frozen in the dark in the presence of sodium ascorbate decreases during illumination by about a factor of 5 due to the irreversible formation of (P700+)F(A/B-) in about 60% of the centers and the reversible accumulation of the longer-lived state (P700+)FX-. The quenching efficiency of different functionally relevant intermediate states of the photochemistry in PS I has been studied. The redox state of the acceptors beyond A(0) does not affect F760. Direct kinetic evidence is presented that the fluorescence at 760 nm is strongly quenched not only by P700+ but also by 3P700. Similar kinetics were observed for flash-induced absorbance changes attributed to the decay of 3P700 or P700+, respectively, and flash-induced fluorescence changes at 760 nm measured under identical conditions. A nonlinear relationship between the variable fluorescence around 760 nm and the [P700red]/[P700total] ratio was derived from titration curves of the absorbance change at 826 nm and the variable fluorescence at 760 nm as a function of the redox potential imposed on the sample solution at room temperature before freezing. The result indicates that the energy exchange between the antennae of different monomers within a PS I trimer stimulates quenching of F760 by P700+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号