首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The purpose of this study was develop and validate a sensitive and specific enantioselective liquid-chromatography/tandem mass spectrometry (LC-MS/MS) method, for the simultaneous quantification of eslicarbazepine acetate (ESL), eslicarbazepine (S-Lic), oxcarbazepine (OXC) and R-licarbazepine (R-Lic) in human plasma. Analytes were extracted from human plasma using solid phase extraction and the chromatographic separation was achieved using a mobile phase of 80% n-hexane and 20% ethanol/isopropyl alcohol (66.7/33.3, v/v). A Daicel CHIRALCEL OD-H column (5 μm, 50 mm × 4.6 mm) was used with a flow rate of 0.8 mL/min, and a run time of 8 min. ESL, S-Lic, R-Lic, OXC and the internal standard, 10,11-dihydrocarbamazepine, were quantified by positive ion electrospray ionization mass spectrometry. The method was fully validated, demonstrating acceptable accuracy, precision, linearity, and specificity in accordance with FDA regulations for the validation of bioanalytical methods. Linearity was proven over the range of 50.0-1000.0 ng/mL for ESL and OXC and over the range of 50.0-25,000.0 ng/mL for S-Lic and R-Lic. The intra- and inter-day coefficient of variation in plasma was less than 9.7% for ESL, 6.0% for OXC, 7.7% for S-Lic and less than 12.6% for R-Lic. The accuracy was between 98.7% and 107.2% for all the compounds quantified. The lower limit of quantification (LLOQ) was 50.0ng/mL for ESL, S-Lic, OXC and R-Lic in human plasma. The short-term stability in plasma, freeze-thaw stability in plasma, frozen long-term stability in plasma, autosampler stability and stock solution stability all met acceptance criteria. The human plasma samples, collected from 8 volunteers, showed that this method can be used for therapeutic monitoring of ESL and its metabolites in humans treated with ESL.  相似文献   

2.
A bioanalytical method for the analysis of oseltamivir (OP) and its metabolite oseltamivir carboxylate (OC) in human plasma, saliva and urine using off-line solid-phase extraction and liquid chromatography coupled to positive tandem mass spectroscopy has been developed and validated. OP and OC were analysed on a ZIC-HILIC column (50 mm x 2.1 mm) using a mobile phase gradient containing acetonitrile-ammonium acetate buffer (pH 3.5; 10mM) at a flow rate of 500 microL/min. The method was validated according to published FDA guidelines and showed excellent performance. The lower limit of quantification for OP was determined to be 1, 1 and 5 ng/mL for plasma, saliva and urine, respectively and for OC was 10, 10 and 30 ng/mL for plasma, saliva and urine, respectively. The upper limit of quantification for OP was determined to be 600, 300 and 1500 ng/mL for plasma, saliva and urine, respectively and for OC was 10,000, 10,000 and 30,000 ng/mL for plasma, saliva and urine, respectively. The within-day and between-day precisions expressed as R.S.D., were lower than 5% at all tested concentrations for all matrices and below 12% at the lower limit of quantification. Validation of over-curve samples ensured that it would be possible with dilution if samples went outside the calibration range. Matrix effects were thoroughly evaluated both graphically and quantitatively. No matrix effects were detected for OP or OC in plasma or saliva. Residues from the urine matrix (most likely salts) caused some ion suppression for both OP and its deuterated internal standard but had no effect on OC or its deuterated internal standard. The suppression did not affect the quantification of OP.  相似文献   

3.
Oxcarbazepine is a second‐generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic–clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10‐hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)‐(+)‐ and R‐(?)‐MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC‐MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert‐butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD‐H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC‐MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S‐(+)‐MHD enantiomer compared to R‐(?)‐MHD and an AUC0‐12 S‐(+)/R‐(?) ratio of 5.44. Chirality 25:897–903, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
A selective and sensitive spectrofluorimetric method was developed and validated for the determination of amoxapine in human plasma and urine. The developed method is based on labeling with 5‐dimethylaminonaphthalene‐1‐sulfonyl chloride (dansyl chloride) and monitoring at 397 nm (excitation)/514 nm (emission). The method was validated for linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, recovery and robustness. The calibration curves were linear over a concentration range of 250–2500 and 50–1250 ng/mL for plasma and urine, respectively. The LOD values were calculated to be 13.31 and 13.17 ng/mL for plasma and urine, respectively. The proposed method was applied to study of amoxapine in human plasma and urine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A LC-MS/MS method was validated for the determination of BA011FZ041, a styrylquinoline derivative. After addition of BA011FZ055 as internal standard (IS), the method involved solid phase extraction (SPE), LC separation with an ether-phenyl column and quantification by MS/MS after positive ESI. The calibration curve, ranging from 1 to 500 ng/mL was fitted to a 1/x-weighted quadratic regression model. Lower limit of quantification (LLOQ) was 1 ng/mL using 100 microL of plasma. Intra- and inter-assay precision and accuracy values were within the regulatory limits. The method was successfully applied to the determination of BA011FZ041 in rat plasma and PBMCs after i.v. dosing.  相似文献   

6.
本文建立了一种快速、高灵敏的HPLC-MS/MS法用于检测人血浆中的草乌甲素浓度。血浆样品采用沃特斯HLB小柱进行固相萃取,汉邦C18色谱柱(150 mm×4.6 mm,5μm)进行分离,流动相为甲醇∶水(85∶15,v/v),水相含10 mmol/L的醋酸铵和0.1%的甲酸。采用ESI源和多反应监测(MRM)的方式进行检测,草乌甲素及内标的反应离子对分别为644.4/584.4和237.2/194.2,草乌甲素血药浓度在0.010~1.0 ng/mL范围内线性关系良好,最低定量限为0.010 ng/mL可以满足口服0.4 mg草乌甲素后血药浓度的检测,日内日间及质控样品精密度及准确度均在允许范围内。本检测方法被成功的应用在中国健康志愿者生物等效性研究中,20名志愿者口服0.4 mg草乌甲素试验制剂和参比制剂后主要药代动力学参数分别如下:Cmax(0.325±0.110),(0.323±0.115)ng/mL;AUC0-16(1.627±0.489),(1.732±0.556)ng.h/mL;AUC0-∞(1.730±0.498),(1.831±0.562)ng.h/mL;t1/2(4.26±0.95),(3.80±0.90)h;Tmax(1.34±0.54),(1.83±0.99)h。  相似文献   

7.
A highly sensitive and ultra-fast high performance liquid chromatography- tandem mass spectrometry (LC–MS/MS) assay is developed and validated for the quantification of Lenalidomide in human plasma. Lenalidomide is extracted from human plasma by Liquid- Liquid Extraction by Ethyl Acetate and analyzed using a reversed phase isocratic elution on a XTerra RP18, (4.6 × 50 mM, 5 µm) column. A 0.1% Formic acid: Methanol (10:90% v/v), is used as mobile phase and detection was performed by Triple quadrupole mass spectrometry LC-MS/MS using electrospray ionization in positive mode. Fluconazole is used as the internal standard. The lower limit of quantification is 9.999 ng/mL for Lenalidomide. The calibration curves are consistently accurate and precise over the concentration range of 9.999 to 1010.011 ng/mL in plasma for Lenalidomide. This novel LC–MS/MS method competes with all the regulatory requirements and shows satisfactory accuracy and precision and is sufficiently sensitive for the performance of pharmacokinetic and bioequivalence studies in humans.  相似文献   

8.
We have developed and validated a method for the quantification of fentanyl, a synthetic opioid, in dog plasma by on-line SPE with a hydrophilic column coupled to tandem mass spectrometry in positive electrospray mode. A column-switching instrument with 10-port valve and two HPLC pumping systems were employed. Deuterated fentanyl served as the internal standard. A Waters Oasis HLB extraction column and a Waters Atlantis HILIC Silica analytical column in a column-switching set-up with gradient elution were utilized. Both fentanyl (analyte) and the internal standard (fentanyl-d5) were determined via multiple reaction monitoring (MRM) and the MS/MS ion transitions monitored were m/z 337.0/188.0 and 342.0/188.0, respectively. Each plasma sample was chromatographed within 5 min. The calibration curves were linear over a widely range of 0.01-50 ng/mL using weighted linear regression analysis (1/x). The low limit of quantitation was 0.01 ng/mL. The intra- and inter-day accuracy ranged from 102 to 112% and the overall precision was less than 3%. The recoveries ranged from 90 to 105% in plasma at the concentrations of 0.04, 0.4, 4 and 40 ng/mL. No influence of freeze/thaw and long-term stability were observed. This validated method has been successfully applied to analyze the dog plasma samples of a pharmacokinetics study.  相似文献   

9.
A bioanalytical method for the analysis of piperaquine in human plasma using off-line solid-phase extraction and liquid chromatography coupled to positive tandem mass spectroscopy has been developed and validated. It was found that a mobile phase with high pH (i.e. 10) led to better sensitivity than mobile phase combinations with low pH (i.e. 2.5-4.5) despite the use of positive electrospray and a basic analyte. The method was validated according to published FDA guidelines and showed excellent performance. The within-day and between-day precisions expressed as R.S.D., were lower than 7% at all tested concentrations (4.5, 20, 400 and 500ng/mL) and below 10% at the lower limit of quantification (LLOQ) (1.5ng/mL). The calibration range was 1.5-500ng/mL with a limit of detection (LOD) at 0.38ng/mL. Validation of over-curve samples ensured that it would be possible with dilution if samples went outside the calibration range. Matrix effects were thoroughly evaluated both graphically and quantitatively. Matrix effects originating from the sample clean-up (i.e. solid-phase extraction) procedure rather than the plasma background were responsible for the ion suppression seen in this study. Salts remaining from the buffers used in the solid-phase extraction suppressed the signals for both piperaquine and its deuterated internal standard. This had no effect on the quantification of piperaquine. Triethylamine residues remaining after evaporation of the solid-phase extraction eluate were found to suppress the signals for piperaquine and its deuterated internal standard differently. It was found that this could lead to an underestimation of the true concentration with 50% despite the use of a deuterated internal standard.  相似文献   

10.
8-Methoxypsoralen (8-MOP) is currently used in PUVA therapy (psoralen+UVA) to treat dermatological diseases such as psoriasis, vitiligo and atopic dermatitis. The aim of this work was to validate a method for collecting 8-MOP from patient dermis by a non invasive technique, microdialysis, and then to assess this molecule by gas chromatography-mass spectrometry (GC-MS). 5-Methoxypsoralen (5-MOP) was used as an internal standard. The calibration curve demonstrated a linear relationship between the peak areas of 8-MOP and 5-MOP over a wide range of 8-MOP concentrations (0.9-100 ng/ml). Within- and between-run precisions were measured, using four different 8-MOP concentrations, which varied from 98.0 to 102.0% and from 98.5 to 101.8%, respectively. The limits of detection and quantification were 0.29 and 0.52 ng/ml, respectively. The method was validated and then applied to determine the pharmacokinetic of 8-MOP in ten psoriatic patient dermis, after oral intake of this drug. The results demonstrated that the association of microdialysis with the GC-MS method was an efficient procedure to collect and assess 8-MOP in human dermis, in vivo.  相似文献   

11.
Glycyrrhizin (GLY) which has been widely used in traditional Chinese medicinal preparation possesses various pharmacological effects. In order to investigate the pharmacokinetic behavior of GLY in human after oral administration of GLY or licorice root, a liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous determination of GLY and its major metabolite glycyrrhetic acid (GA) in human plasma. The method involved a solid phase extraction of GLY, GA, and alpha-hederin, the internal standard (IS), from plasma with Waters Oasis MCX solid phase extraction (SPE) cartridges (30 mg) and a detection using a Micromass Quattro LC liquid chromatography/tandem mass spectrometry system with electrospray ionization source in positive ion mode. Separation of the analytes was achieved within 5min on a SepaxHP CN analytical column with a mobile phase of acetonitrile:water (50:50, v:v) containing 0.1% formic acid and 5mM ammonium acetate. Multiple reaction monitoring (MRM) was utilized for the detection monitoring 823--> 453 for GLY, 471--> 177 for GA and 752--> 456 for IS. The LC-MS/MS method was validated for specificity, sensitivity, accuracy, precision, and calibration function. The assay had a calibration range from 10 to 10,000 ng/mL and a lower limit of quantification of 10 ng/mL for both GLY and GA when 0.2 mL plasma was used for extraction. The percent coefficient of variation for accuracy and precision (inter-run and intra-run) for this method was less than 11.0% with a %Nominal ranging from 87.6 to 106.4% for GLY and 93.7 to 107.8% for GA. Stability of the analytes over sample processing (freeze/thaw, bench-top and long-term storage) and in the extracted samples was also tested and established.  相似文献   

12.
Introduction – Biflavones of Hypericum perforatum L. are bioactive compounds used in the treatment of inflammation and depression. Determination of amentoflavone and biapigenin from blood is challenging owing to their similar structures and low concentrations. Objective – To develop a rapid, sensitive and accurate method based on liquid‐phase extraction followed by high‐performance liquid chromatography and electrospray ionisation mass spectrometry (HPLC‐ESI‐MS) for quantification of biflavones in human plasma. Methodology – After extraction from blood, the analytes were subjected to HPLC with an XTerra® MS C18 column and a binary mobile phase consisting of 2% formic acid in water and acetonitrile under isocratic elution conditions, with ESI‐MS detection in the negative ion mode and multiple reaction monitoring (MRM). Results – Both calibration curves showed good linearity within the concentration range 1–500 ng/mL. Limits of detection (S/N = 3) were 0.1 ng for pure substances and the limits of quantitation (S/N = 5) were 1.0 ng/mL from analyte‐spiked serum. The grand mean recovery was 90% from several subsamples of each biflavone. The imprecision (RSD) of peak areas was between 5% (intraday) and 10% (interday) for high concentrations (250 ng/mL) and between 10% (intraday) and 15% (interday) for low concentrations (1 ng/mL). Inaccuracy of the mean was less than 20% at the lower limit of quantitation. Conclusion – The developed and validated method for determination of biflavones from human plasma was effectively applied to pharmacokinetic studies of 13 probands and preliminary results indicate biphasic concentration–time curves. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We have developed and validated a simple and sensitive stable isotope dilution liquid chromatography/tandem mass spectrometric (LC-MS/MS) method for the quantification of bumetanide in human serum. Samples were prepared with a simple acetonitrile based protein precipitation. The supernatant was then analyzed directly using LC-MS/MS. Chromatographic separation was achieved on a C18 reversed phase column using a methanol and water gradient. The detection was performed in selected reaction monitoring (SRM) mode via a positive electrospray ionization (ESI) interface. The method had a lower limit of quantification (LLOQ) of 1 ng/mL, linearity up to 1250 ng/mL, intra- and inter-day precision less than 10%, and accuracy within ±10%. This method was also demonstrated to be suitable for the analysis of bumetanide in rat serum and brain tissue. Bumetanide concentrations in rat serum and brain were determined for samples collected at several intervals following intraperitoneal (i.p.) injection of bumetanide, and were used to calculate bumetanide permeability through the blood-brain barrier.  相似文献   

14.
A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to quantify artemisinin in rat serum. The lower limit of quantification (LLOQ) was 4 ng/mL. The calibration curve was linear from 4 ng/mL to 10,000 ng/mL (R=0.998). The assay was based on the selected reaction monitoring (SRM) transitions at m/z 305.4-151.10 for artemisinin and m/z 335.2-163.10 for arteether (internal standard). The artemisinin and internal standard can be separated from endogenous interferences in rat serum. Inter- and intra-day assay variation was less than 15%. The extraction recoveries ranged from 80.0 to 107.3% at the three concentrations (5000, 2000, and 200 ng/mL). This method was successfully applied to pharmacokinetic studies of artemisinin after intravenous and oral administration to rats.  相似文献   

15.
Tacrolimus (FK506) is a potent immunosuppressant widely used for organ transplantation patients while diltiazem (DTZ), a calcium-channel inhibitor, is often used in renal transplantation patients to prevent post-transplant hypertension. However, DTZ has a significant pharmacokinetic interaction with FK506. In this study, a rapid and sensitive ammonium-adduct based liquid chromatography-tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the simultaneous determination of FK506 and DTZ in human whole blood using ascomycin as the internal standard (IS). After extraction of the whole blood samples by ethyl acetate, FK506, DTZ and the IS were subjected to LC/MS/MS analysis using electro-spray positive-ion mode ionization (ESI(+)). Chromatographic separation was performed on a Hypersil BDS C18 column (50 mm x 2.1 mm, i.d., 3 microm). The MS/MS detection was conducted by monitoring the fragmentation of 821.7-->768.9 (m/z) for FK506, 415.5-->310.3 (m/z) for DTZ and 809.8-->757.0 (m/z) for IS. The method had a chromatographic running time of approximately 2 min and linear calibration curves over the concentrations of 0.5-200 ng/mL for FK506 and 2-250 ng/mL for DTZ. The recoveries of liquid-liquid extraction method were 58.3-62.6% for FK506 and 50.4-58.8% for DTZ. The lower limit of quantification (LLOQ) of the analytical method was 0.5 ng/mL for FK506 and 2 ng/mL for DTZ. The intra- and inter-day precision was less than 15% for all quality control samples at concentrations of 2, 10, and 50 ng/mL for FK506 and 5, 25, and 100 ng/mL for DTZ. The validated LC/MS/MS method has been successfully used to analyze the concentrations of FK506 and DTZ in whole blood samples from pharmacokinetic studies in renal transplanted patients.  相似文献   

16.
A sensitive, rapid LC-MS/MS assay has been developed and validated for the simultaneous quantification of CPT-11 and its two principal metabolites, 7-ethyl-10-hydroxycamptothecin (SN-38), and 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxy-camptothecin (APC) in human liver microsomal fractions and plasma. The method was linear over the ranges of 1.56-100 ng/mL, 3.13-150 ng/mL, and 0.78-100 ng/mL for CPT-11, SN-38, and APC, respectively. The total run time was 7.0 min. This assay offers advantages in terms of expediency, recovery of analytes, and suitability for the analysis of CPT-11 and its metabolites in various biological fluids.  相似文献   

17.
A validated gas chromatography-mass spectrometry (GC-MS) detection method for the quantitative analysis of sterol oxidation products (SOPs) in serum is described. After a lipid extraction procedure with chloroform-methanol, a cold saponification and purification by solid phase extraction, oxysterols were derivatized to form trimethyl-sylil-ethers which were subjected to GC-MS analysis. Calibration curves for cholesterol oxidation products showed determination coefficient (R(2)) of 1.0, with low values for the coefficient of variation of the response factors (< 1%). Detection and quantification limits were below 5 ng/mL and 10 ng/mL, respectively. Recovery data were between 77.65% and 110.29% (CV < 10% for all compounds). Good results were obtained for within- and between-day repeatability, with values below 10%. In conclusion, the method performed is suitable for the determination and quantification of SOPs in serum.  相似文献   

18.
A liquid chromatography-mass spectrometry (LC/MS) assay method was developed for the quantification of PSC 833 in rat plasma, using amiodarone as internal standard (IS). Separation was achieved using a C(8) 3.5 microm (2.1 mm x 50 mm) column heated to 60 degrees C with a mobile phase consisting of acetonitrile-ammonium hydroxide 0.2% (90:10 v/v) pumped at a rate of 0.2 mL/min. Detection was accomplished by mass spectrometer using selected ion monitoring (SIM) in positive mode. An excellent linear relationship was present between peak height ratios and rat plasma concentrations of PSC 833 ranging from 10 to 5000 ng/mL (R(2)>0.99). Intra-day and inter-day coefficients of variation (CV%) were less than 15%, and mean error was less than 10% for the concentrations above the limit of quantification. The validated limit of quantification of the assay was 10 ng/mL based on 0.1 mL rat plasma. The method limit of detection, based on an average signal-to-noise (S/N) ratio of 3, was found to be 2.5 ng/mL. The assay was capable of measuring the plasma concentrations of PSC 833 in rats injected with a single dose of 5 mg/kg of the drug. PSC 833 and IS eluted within 4 min, free of interfering peaks. The method was found to be fast, sensitive, and specific for the quantification of PSC 833 in rat plasma.  相似文献   

19.
Viramidine is a prodrug of ribavirin. To facilitate pharmacokinetics studies of viramidine in man, a sensitive and specific LC-MS/MS method for the simultaneous analyses of viramidine and ribavirin in human plasma was developed and validated. The method involved the addition of [13C]viramidine and [13C]ribavirin as internal standards, protein precipitation with acetonitrile, HPLC separation, and quantification by MS/MS system using positive electrospray ionization in the multiple reaction monitoring mode (MRM). The precursor-->product ion transitions were monitored at 245-->113, 250-->113, 244-->112, and 249-->112 for ribavirin, [13C]ribavirin, viramidine, and [13C]viramidine, respectively. The calibration curves for viramidine and ribavirin were linear over a concentration range of 1-1000 ng/mL. For both viramidine and ribavirin, the lower limit of quantification (LLOQ) was 1 ng/mL. For viramidine, intra- and inter-day analyses of QC samples at 1, 5, 250, and 1000 ng/mL indicated good precision (%CV between 1.0 and 7.0%) and accuracy (%bias between -4.3 and 5.2%). For ribavirin, intra- and inter-day analyses of QC samples at 1, 5, 250, and 1000 ng/mL indicated similar precision (%CV between 0.8 and 8.3%) and accuracy (%bias between -5.8 and 9.4%). Both viramidine and ribavirin were stable in human plasma stored at room temperature for at least 3 h, 4 degrees C for at least 6 h, and for at least three freeze-thaw cycles. This accurate and highly specific assay provides a useful method for evaluating the pharmacokinetics of viramidine and ribavirin in man following administration of viramidine.  相似文献   

20.
A sensitive high-performance liquid chromatography method coupled to UV and single mass spectrometry (MS) detection was developed for the determination of tenofovir in human plasma. A solid phase extraction procedure (Bond-Elut C18 Varian cartridges) provided high extraction efficiency (91% for tenofovir and 68.8% for the internal standard, 3-methylcytidine). An atlantis-dC-18 analytical column is used with an isocratic mode elution of a mixture (pH 2.5) of ammonium acetate/methanol (98.5:1.5, v/v). Detection was performed at 260 nm and by using the ion at m/z 288. The signals from both detectors were validated over the range of 10-1000 ng mL(-1) and were found to be linear, accurate and precise. At the lowest limit of quantification, 10 ng mL(-1) for UV and 5 ng mL(-1) for MS, the average coefficient of variation was 6.9 and 3.9%, respectively. To investigate the potential of the validated method for clinical studies, more than 170 samples from HIV-infected adult patients were then analyzed with this assay. A good correlation was observed between the results obtained with both detectors. However, in several cases discordant results were observed between UV and MS detections. Therefore, tenofovir can sometimes suffer from interferences using either UV or single MS detection. We concluded that the double detection allows to obtain a more specific quantification of tenofovir. The present assay is sound and can be used for therapeutic drug monitoring allowing a higher reliability of the results which are transmitted to the medical team.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号