首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reproductive asynchrony increases with environmental disturbance   总被引:1,自引:0,他引:1  
While it is widely recognized that the manner in which organisms adjust their timing of reproduction reflects evolutionary strategies aimed at minimizing offspring mortality or maximizing reproductive output, the conditions under which the evolutionarily stable strategy involves synchronous or asynchronous reproduction is a matter of considerable discord. A recent theoretical model predicts that whether a population displays reproductive synchrony or asynchrony will depend on the relative scales of intrinsic regulation and environmental disturbance experienced by reproducing individuals. This model predicts that, under conditions of negligible competition and large-scale environmental perturbation, evolution of a single mixed strategy will result in asynchronous reproduction. We tested this prediction using empirical data on large-scale climatic fluctuation and the annual timing of reproduction by three species of flowering plants covering 1300-population-years and four degrees of latitude in Norway. In agreement with model predictions, within populations of all three species reproductive asynchrony increased with the magnitude of large-scale climatic perturbation, but bore no relation to the strength of local density dependence. These results suggest that mixed evolutionarily stable strategies can arise from the interplay of combinations of agents of selection and the scale at which they operate; hence it is fruitless to associate synchronous versus asynchronous timing with particular single factors like climate, competition, or predation.  相似文献   

2.
Mountain plants are particularly sensitive to climate warming because snowmelt timing exerts a direct control on their reproduction. Current warming is leading to earlier snowmelt dates and longer snow-free periods. Our hypothesis is that high-mountain Mediterranean plants are not able to take advantage of a lengthened snow-free period because this leads to longer drought that truncates the growing season. However, reproductive timing may somewhat mitigate these negative effects through temporal shifts. We assessed the effects of flowering phenology on the reproductive success of Silene ciliata, a Mediterranean high-mountain plant, across an altitudinal gradient during two climatically contrasting years. The species showed a late-flowering pattern hampering the use of snowmelt water. Plant fitness was largely explained by the elapsed time from snowmelt to onset of flowering, suggesting a selective pressure towards early flowering caused by soil moisture depletion. The proportion of flowering plants decreased at the lowest population, especially in the drier year. Plants produced more flowers, fruits and seeds at the highest population and in the mild year. Our results indicate that water deficit in dry years could threaten the lowland populations of this mountainous species, while high-altitude environments are more stable over time.  相似文献   

3.
Quantifying intraspecific demographic variation provides a powerful tool for exploring the diversity and evolution of life histories. We investigate how habitat-specific demographic variation and the production of multiple offspring types affect the population dynamics and evolution of delayed reproduction in a clonal perennial herb with monocarpic ramets (white hellebore). In this species, flowering ramets produce both seeds and asexual offspring. Data on ramet demography are used to parameterize integral projection models, which allow the effects of habitat-specific demographic variation and reproductive mode on population dynamics to be quantified. We then use the evolutionarily stable strategy (ESS) approach to predict the flowering strategy-the relationship between flowering probability and size. This approach is extended to allow offspring types to have different demographies and density-dependent responses. Our results demonstrate that the evolutionarily stable flowering strategies differ substantially among habitats and are in excellent agreement with the observed strategies. Reproductive mode, however, has little effect on the ESSs. Using analytical approximations, we show that flowering decisions are predominantly determined by the asymptotic size of individuals rather than variation in survival or size-fecundity relationships. We conclude that habitat is an important aspect of the selective environment and a significant factor in predicting the ESSs.  相似文献   

4.
The timing of reproduction is a key determinant of fitness. Here, we develop parameterized integral projection models of size-related flowering for the monocarpic perennial Oenothera glazioviana and use these to predict the evolutionarily stable strategy (ESS) for flowering. For the most part there is excellent agreement between the model predictions and the results of quantitative field studies. However, the model predicts a much steeper relationship between plant size and the probability of flowering than observed in the field, indicating selection for a 'threshold size' flowering function. Elasticity and sensitivity analysis of population growth rate lambda and net reproductive rate R(0) are used to identify the critical traits that determine fitness and control the ESS for flowering. Using the fitted model we calculate the fitness landscape for invading genotypes and show that this is characterized by a ridge of approximately equal fitness. The implications of these results for the maintenance of genetic variation are discussed.  相似文献   

5.
Plants show phenological responses to herbivory. Some enclosure experiments have demonstrated that the onset of the peak flowering season is dependent on grazing pressure. We constructed a mathematical model using Pontryargin's maximum principle to investigate changes in flowering time by examining shifts in resource allocation from vegetative to reproductive plant components. We represented a primary production of a plant individual by two types of function of vegetative part size, a linear function and a convex non-linear function. The results of a linear production model indicate that optimal phenology follows a schedule that switches from the production of vegetative parts to that of reproductive parts at a given time ('bang-bang' control). However, in a non-linear model, a singular control, wherein the plant invests in both productive and reproductive parts, may be included between obligate production and reproduction periods. We assumed that the peak of the flowering season occurs immediately following the exclusive investment in reproduction. In a linear production model, differential herbivory rates on the vegetative and reproductive parts of a plant resulted in shifts in the peak flowering time. A higher herbivory rate on the vegetative components advanced the peak, whereas it was delayed when grazing pressure focused on reproductive components of the plant. In the non-linear production model, increased grazing pressure tended to postpone the flowering peak. These results corresponded well with results of enclosure experiments, thus suggesting adaptive control of flowering time in plants.  相似文献   

6.
Changes in the seasonal timing of life history events are documented effects of climate change. We used a general model to study how dispersal and competitive interactions affect eco-evolutionary responses to changes in the temporal distribution of resources over the season. Specifically, we modeled adaptation of the timing of reproduction and population dynamic responses in two competing populations that disperse between two habitats characterized by an early and late resource peak. We investigated three scenarios of environmental change: (1) food peaks advance in both habitats, (2) in the late habitat only and (3) in the early habitat only. At low dispersal rates the evolutionarily stable timing of reproduction closely matched the local resource peak and the environmental change typically caused population decline. Larger dispersal rates rendered less intuitive eco-evolutionary population responses. First, dispersal caused mismatch between evolutionarily stable timing of reproduction and local resource peaks and as a result, reproductive output for subpopulations could increase as well as decrease when resource availability underwent temporal shifts. Second, population responses were contingent on competition between populations. This could accelerate population declines and cause extinctions or even reverse population trends from negative to positive compared to the low dispersal case. When dispersal rate was large and the early resource peak was advanced available niche space was reduced. Hence, even when a population survived the environmental change and obtained positive equilibrium population density, subsequent adaptation of competing populations could drive it to extinction due to convergent evolution and competitive exclusion. These results shed new light on the role of competition and dispersal for the evolution of timing of life history events and provide guidelines for understanding short and long-term population response to climate change.  相似文献   

7.
Successful reproduction of flowering plants requires the appropriate timing of the floral transition, as triggered by environmental and internal cues and as regulated by multiple signaling modules. Among these modules, microRNAs (miRNAs), the evolutionarily conserved regulators, respond to environmental and internal cues and network with other integrators of flowering cues. Moreover, miRNA signaling modules affect the timing of flowering in many plant species. Here, we comprehensively review recent progress in understanding the function of miRNAs and their target genes in flowering time regulation in diverse plant species. We focus on the role of the miRNA-target gene modules in various flowering pathways and their conserved and divergent functions in flowering plants. We also examine, in depth, the crosstalk by sequential activity of miR156 and miR172, two of the most-studied and evolutionarily conserved miRNAs in both annual and perennial plants.  相似文献   

8.
Phenology is an important part of life history that is gaining increased attention because of recent climate change. We use game theory to model phenological adaptation in migratory birds that compete for territories at their breeding grounds. We investigate how the evolutionarily stable strategy (ESS) for the timing of arrival is affected by changes in the onset of spring, the timing of the resource peak, and the season length. We compare the ESS mean arrival date with the environmental optimum, that is, the mean arrival date that maximizes fitness in the absence of competition. When competition is strong, the ESS mean arrival date responds less than the environmental optimum to shifts in the resource peak but more to changes in the onset of spring. Increased season length may not necessarily affect the environmental optimum but can still advance the ESS mean arrival date. Conversely, shifting a narrow resource distribution may change the environmental optimum without affecting the ESS mean arrival date. The ESS mean arrival date and the environmental optimum may even shift in different directions. Hence, treating phenology as an evolutionary game rather than an optimization problem fundamentally changes what we predict to be an adaptive response to environmental changes.  相似文献   

9.
We study the evolution of an individual’s reproductive strategy in a mechanistic modeling framework. We assume that the total number of juveniles one adult individual can produce is a finite constant, and we study how this number should be distributed during the season, given the types of inter-individual interactions and mortality processes included in the model. The evolution of the timing of reproduction in this modeling framework has already been studied earlier in the case of equilibrium resident dynamics, but we generalize the situation to also fluctuating population dynamics. We find that, as in the equilibrium case, the presence or absence of inter-juvenile aggression affects the functional form of the evolutionarily stable reproductive strategy. If an ESS exists, it can have an absolutely continuous part only if inter-juvenile aggression is included in the model. If inter-juvenile aggression is not included in the model, an ESS can have no continuous parts, and only Dirac measures are possible.  相似文献   

10.
The association between the reproductive phenology of epiphytic communities with environmental and ecological factors remains largely unexplored. Because epiphytes depend on environmental moisture, seasonal changes in moisture conditions likely act as the primary determinants of their reproductive timing. We examined whether water limitation or pollinator competition structures the flowering phenologies of an epiphytic community in a seasonal mountain forest in Costa Rica. Additionally, we addressed the environmental factors that might trigger floral induction. Using a 24‐month dataset of bimonthly flowering records from 104 species, we found high seasonality of flowering at the species level but somewhat lower seasonality at the community level. The flowering mid‐dates of most epiphytes, particularly from monocotyledonous species, occurred during the wettest months, as predicted if water limitation structures flowering. The increased moisture and nutrient availability during the rainy season give epiphytes the resources needed to complete floral development and anthesis, and later fruit and seed maturation. The observed flowering pattern of epiphytes coincides with reproductive patterns of terrestrial herbs and shrubs from seasonal tropical ecosystems, and suggests shared constraints to sexual reproduction in both ecological guilds under similar climatic conditions. In contrast, flowering patterns of congeneric epiphytes in the same pollination guild mostly did not follow the expectations of a pollinator competition scenario. Finally, we discuss the possible combined effect of precipitation, temperature, and daily insolation on floral induction of epiphytic plants.  相似文献   

11.
Y. Shitaka  T. Hirose 《Oecologia》1998,114(3):361-367
We studied the effects of a change in flowering date on the reproductive output of a short-day annual plant, Xanthium canadense. The flowering date was changed by photoperiodic manipulation to 1 month earlier or later than the natural flowering date. Plants with the natural flowering date attained the highest reproductive output. For those flowering 1 month earlier or later, the reproductive output was decreased by 42% or 23%, respectively. The reproductive output was analyzed as the product of the biomass production during the reproductive period and its allocation to the reproductive organs. Although delay in flowering increased biomass production, it decreased its fractional allocation to the reproductive organs. The highest reproductive output in the natural flowering plants resulted from a compromise between these two effects of flowering. Plants flowering earlier had higher translocation rates to the reproductive organs and accelerated plant senescence. Later flowering caused a reduction in biomass translocation to the reproductive organs and thus extended the reproductive period. These experimental results are discussed in relation to the cost of reproduction and the optimal time for flowering that maximizes the final reproductive output. It is suggested that the natural flowering time maximized the reproductive output while minimizing the cost of reproduction. Received: 11 September 1997 / Accepted: 12 December 1997  相似文献   

12.
Plants have three basic means of reproduction, by outcrossing, by selfing, and asexually. In most plant populations, at least two and often all three of these options are everpresent, so that individuals adopt mixed mating strategies at evolutionarily stable strategy (ESS) threshholds. Because mating systems are genetically controlled and affect genotype structure, they are liable to feedback. Productive habitats with a large standing crop are more likely to favour outcrossing, while unproductive habitats may favour asexuality or selfing, so that mating systems may change through seral development, even within the same species. Outcrossing tends to break up linkage disequilibria, but may also favour the creation of adaptive linkage groups. Mechanisms whereby male sexual selection, small population size and selfing can influence the genetic structure of populations are examined.  相似文献   

13.
14.
Toshihiko Sato 《Oikos》2000,88(2):309-318
The effects of two phenological constraints in resource investment to reproduction – resource limitation at the flowering stage and unpredictability of resources gained after flowering – on the resource allocation between male and female functions in monocarpic plants are considered using the ESS (evolutionarily stable strategy) approach. The model predicts that the sex allocation including the seed maturation stage has a female bias, when the quantity of reproductive resources available at flowering is small compared with that which is obtained after flowering, or when the cost of seed maturation relative to ovule production is low. The fluctuation of the quantity of resources available for seed maturation favors overproduction of ovules. As a result, more resources are allocated to female function and less to male function at flowering. The ESS allocation depends on the variability of resources and the cost of seed maturation relative to ovule production. The probability that total resource allocation has a female bias becomes higher than 0.5, and it depends on the cost of seed maturation relative to ovule production rather than resource variability. On the other hand, the probability that resource allocation has a female bias decreases with resource variability if we assume that the floral sex ratio is fixed. Future studies of plant sex allocation would profit by taking account of the phenological process of reproduction such as ovule production or seed maturation.  相似文献   

15.
《新西兰生态学杂志》2011,30(3):387-395
Reproductive phenology is likely to vary spatially with environmental conditions that alter microclimate, in particular temperature. We hypothesized that within the same plant community type, environmental changes produced by recent burning would alter plant phenological patterns and temporal structure of the plant community. Specifically, we predicted accelerated flowering and fruiting dates in the burned, open environment compared with the unburned, intact community. We tested this hypothesis in a post-fire tall shrubland (matorral) in northwestern Patagonia, Argentina. During the reproductive season, phenological stages of seven vascular plant species were monitored weekly. Temperature, humidity, soil nutrients and photosynthetically-active radiation were also recorded. At the burned site, flowering began earlier in all species and the success rate of fruiting was higher. These patterns correlated with significant environmental differences, including higher mean temperatures at the burned site.  相似文献   

16.
Variation in population growth rate over environmental gradients was determined for the annual Impatiens pallida (Balsaminaceae), by monitoring age- and size-specific survivorship and fecundity in five populations of this summer-flowering and primarily woodland species. All I. pallida seedlings emerged within a few days of each other and a size hierarchy was established within a month, and remained unchanged thereafter. Light and initial seedling density together explained 67% of the variance in mean adult plant size. As a result of differences among populations in the amount of disturbance, survivorship to the time of floral bud production ranged from 39% to 93% of the initial seedling total. Survivorship during the reproductive period was most affected by plant size and soil moisture. For plants surviving to flowering time, the probability of setting seed, the type of seed and the number of seeds produced per plant were significantly positively correlated with plant size. More than 82% of all seeds were produced by plants greater than or 1 m tall. Cleistogamy was the major form of reproduction in 4 out of 5 populations monitored. The net reproductive rate (R0) differed greatly among populations, ranging from 1.23 to 16.27. Population growth rate increased with increasing resource availability and decreasing disturbance during the growing season. The magnitude of R0 depended primarily on 1) timing, intensity and frequency of disturbance, 2) length of the reproductive period, and 3) population size structure.  相似文献   

17.
Under climate warming, plants will undergo novel selective pressures to adjust reproductive timing. Adjustment between reproductive phenology and environment is expected to be higher in arctic and alpine habitats because the growing season is considerably short. As early- and late-flowering species reproduce under very different environmental conditions, selective pressures on flowering phenology and potential effects of climate change are likely to differ between them. However, there is no agreement on the magnitude of the benefits and costs of early- vs. late-flowering species under a global warming scenario. In spite of its relevance, phenotypic selection on flowering phenology has rarely been explored in alpine plants and never in Mediterranean high mountain species, where selective pressures are very different due to the summer drought imposed over the short growth season. We hypothesized that late-flowering plants in Mediterranean mountains should present stronger selective pressures towards early onset of reproduction than early-flowering species, because less water is available in the soil as growing season progresses. We performed selection analyses on flowering onset and duration in two high mountain species of contrasting phenology. Since phenotypic selection can be highly context-dependent, we studied several populations of each species for 2 years, covering their local altitudinal ranges and their different microhabitats. Surrogates of biotic selective agents, like fruitset for pollinators and flower and fruit loss for flower and seed predators, were included in the analysis. Differences between the early- and the late-flowering species were less than expected. A consistent negative correlational selection of flowering onset and duration was found affecting plant fitness, i.e., plants that bloomed earlier flowered for longer periods improving plant fitness. Nevertheless, the late-flowering species may experience higher risks under climate warming because in extremely warm and dry years the earlier season does not bring about a longer flowering duration due to summer drought.  相似文献   

18.
The timing of when to initiate reproduction is an important transition in any organism's life cycle. There is much variation in flowering time among populations, but we do not know to what degree this variation contributes to local adaptation. Here we use a reciprocal transplant experiment to examine the presence of divergent natural selection for flowering time and local adaptation between two distinct populations of Mimulus guttatus. We plant both parents and hybrids (to tease apart differences in suites of associated parental traits) between these two populations into each of the two native environments and measure floral, vegetative, life-history, and fitness characters to assess which traits are under selection at each site. Analysis of fitness components indicates that each of these plant populations is locally adapted. We obtain striking evidence for divergent natural selection on date of first flower production at these two sites. Early flowering is favored at the montane site, which is inhabited by annual plants and characterized by dry soils in midsummer, whereas intermediate (though later) flowering dates are selectively favored at the temperate coastal site, which is inhabited by perennial plants and is almost continually moist. Divergent selection on flowering time contributes to local adaptation between these two populations of M. guttatus, suggesting that genetic differentiation in the timing of reproduction may also serve as a partial reproductive isolating barrier to gene flow among populations.  相似文献   

19.
A central issue in life history theory is how organisms trade off current and future reproduction. A variety of organisms exhibit intermittent breeding, meaning sexually mature adults will skip breeding opportunities between reproduction attempts. It’s thought that intermittent breeding occurs when reproduction incurs an extra cost in terms of survival, energy, or recovery time. We have developed a matrix population model for intermittent breeding, and use adaptive dynamics to determine under what conditions individuals should breed at every opportunity, and under what conditions they should skip some breeding opportunities (and if so, how many). We also examine the effect of environmental stochasticity on breeding behavior. We find that the evolutionarily stable strategy (ESS) for breeding behavior depends on an individual’s expected growth and mortality, and that the conditions for skipped breeding depend on the type of reproductive cost incurred (survival, energy, recovery time). In constant environments there is always a pure ESS, however environmental stochasticity and deterministic population fluctuations can both select for a mixed ESS. Finally, we compare our model results to patterns of intermittent breeding in species from a range of taxonomic groups.  相似文献   

20.
Selection gradient analysis examines the strength and direction of phenotypic selection as well as the curvature of fitness functions, allowing predictions on and insights into the process of evolution in natural populations. However, traditional linear and quadratic selection analyses are not capable of detecting other features of fitness functions, such as asymmetry or thresholds, which may be relevant for understanding key aspects of selection on many traits. In these cases, additional analyses are needed to test specific hypotheses about fitness functions. In this study we used several approaches to analyze selection on a major life-history trait—flowering time—in the annual plant Brassica rapa subjected to experimentally abbreviated and lengthened growing seasons. We used a model that incorporated a tradeoff between the time allocated to growth versus the time allocated to reproduction in order to predict fitness function shape. The model predicted that optimal flowering time shifts to earlier and later dates as the growing season contracts and expands. It also showed the flowering time fitness function to be asymmetrical: reproductive output increases modestly between the earliest and the optimal flowering date, but then falls sharply with later dates, truncating in a ‘tail of zeros’. Our experimental results strongly supported selection for early flowering in short season and selection for late flowering in long season conditions. We also found support for the predicted asymmetry of the flowering time fitness function, including a ‘tail of zeros’ at later flowering dates. The form of the fitness function revealed here has implications for interpreting estimates of selection on flowering time in natural populations and for refining predictions on evolutionary response to climate change. More generally, this study illustrates the value of diverse statistical approaches to understanding mechanisms of natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号