首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection and inflammation induce the acute-phase response (APR), leading to multiple alterations in lipid and lipoprotein metabolism. Plasma triglyceride levels increase from increased VLDL secretion as a result of adipose tissue lipolysis, increased de novo hepatic fatty acid synthesis, and suppression of fatty acid oxidation. With more severe infection, VLDL clearance decreases secondary to decreased lipoprotein lipase and apolipoprotein E in VLDL. In rodents, hypercholesterolemia occurs attributable to increased hepatic cholesterol synthesis and decreased LDL clearance, conversion of cholesterol to bile acids, and secretion of cholesterol into the bile. Marked alterations in proteins important in HDL metabolism lead to decreased reverse cholesterol transport and increased cholesterol delivery to immune cells. Oxidation of LDL and VLDL increases, whereas HDL becomes a proinflammatory molecule. Lipoproteins become enriched in ceramide, glucosylceramide, and sphingomyelin, enhancing uptake by macrophages. Thus, many of the changes in lipoproteins are proatherogenic. The molecular mechanisms underlying the decrease in many of the proteins during the APR involve coordinated decreases in several nuclear hormone receptors, including peroxisome proliferator-activated receptor, liver X receptor, farnesoid X receptor, and retinoid X receptor. APR-induced alterations initially protect the host from the harmful effects of bacteria, viruses, and parasites. However, if prolonged, these changes in the structure and function of lipoproteins will contribute to atherogenesis.  相似文献   

2.
3.
Current research on lipid metabolism in ruminants aims to improve the growth and health of the animals and the muscle characteristics associated with meat quality. This review, therefore, focuses on fatty acid (FA) metabolism from absorption to partitioning between tissues and metabolic pathways. In young calves, which were given high-fat milk diets, lipid absorption is delayed because the coagulation of milk caseins results in the retention of dietary fat as an insoluble clot in the abomasum. After weaning, the calves were fed forage- and cereal-based diets containing low levels of long-chain fatty acids (LCFA) but leading to high levels of volatile fatty acid (VFA) production by the rumen microflora. Such differences in dietary FA affect: i) the lipid transport system via the production of lipoproteins by the intestine and the liver, and (ii) the subsequent metabolism of lipids and FA by tissues. In preruminant calves, high-fat feed stimulates the secretion of triacylglycerols (TG)-rich lipoproteins (chylomicrons, very-low density lipoproteins (VLDL)). Diets rich in polyunsaturated FA (PUFA) stimulate the production of chylomicrons by the intestine (at peak lipid absorption) and of high density lipoproteins by the liver, leading to high blood concentrations of cholesterol. High levels of non-esterified FA (NEFA) uptake by the liver in high-yielding dairy cows in early lactation leads to TG infiltration of the hepatocytes (fatty liver). This is due to the low chronic capacity of the liver to synthesise and secrete VLDL particles. This abnormality in hepatic FA metabolism involves defects in apolipoprotein B synthesis and low availability of apolipoproteins and lipids for VLDL packaging. Fatty liver in calves is also caused by milk containing either soybean oil (rich in n-6 PUFA), or coconut oil (rich in C12:0 and C14:0). The ability of muscle tissue to use FA as an energy source depends on its mitochondrial content and, hence, on many physiological factors. The uptake and partitioning of LCFA between oxidation and storage in muscle is regulated by the activity of key intracellular enzymes and binding proteins. One such protein, carnitine palmitoyltransferase I (CPT I) controls the transport of LCFA into mitochondria. Metabolites derived from LCFA inhibit glucose oxidation, decrease the activity of CPT I and decrease the efficiency of ATP production by mitochondria. Most research on tissue lipid metabolism in ruminants is focused on: i) the partitioning of FA oxidation between intracellular peroxisomes and mitochondria in the liver and in muscles; (ii) the regulation of lipid metabolism by leptin, a recently discovered hormone secreted by mature adipocytes; and iii) the effects of activation of the nuclear receptors (PPARs and RXR) by LCFA or by phytol metabolites derived from chlorophyll.  相似文献   

4.
Hepatocytes play a crucial role in regulating lipid metabolism by exporting cholesterol and triglyceride into plasma through secretion of very low density lipoproteins (VLDL). VLDL production is also required for release of hepatitis C virus (HCV) from infected hepatocytes. Here, we show that long chain acyl-CoA synthetase 3 (ACSL3) plays a crucial role in secretion of VLDL and HCV from hepatocytes. In cultured human hepatoma Huh7 cells, ACSL3 is specifically required for incorporation of fatty acids into phosphatidylcholine. In cells receiving small interfering RNA targeting ACSL3, secretion of apolipoprotein B, the major protein component of VLDL, was inhibited and the lipoprotein was rapidly degraded. This inhibition in secretion was completely eliminated when these cells were treated with phosphatidylcholine. Treatment of cells with small interfering RNA targeting ACSL3 also inhibited secretion of HCV from Huh7-derived cells. These results identify ACSL3 as a new enzymatic target to limit VLDL secretion and HCV infection.  相似文献   

5.
Previous studies with fasting rats showed that the intestine produces endogenous very low density lipoproteins (VLDL) which resemble those in the plasma. Intestinal VLDL also were found to be important in lipid transport during absorption of saturated but not of unsaturated fat. These findings depended upon separations of a chylomicron-rich fraction (S(f) > 400) from VLDL (S(f) 20-400) by preparative ultracentrifugation methods based on particle flotation rates. The present studies correlate this method with electron microscopic measurement of lipoprotein particle size. Almost all intestinal lymph lipoprotein particles from fasting rats were less than 750 A in diameter, and could not be distinguished morphologically from plasma VLDL. Cholestyramine administration or bile diversion led to decreased lymph lipid output, correlating with marked reduction in VLDL. This supports the concept that lymph VLDL contain endogenous lipid which is reabsorbed from the intestinal lumen. During exogenous fatty acid absorption, lymph lipoprotein particle sizes were significantly smaller after administration of palmitate than after administration of linoleate, a finding consistent with ultracentrifugal evidence of the importance of VLDL in lipid transport during palmitate absorption. These studies fully confirm and extend earlier observations. Together, they show that the intestine is a source of endogenous VLDL in the fasting animal. In addition, significant quantities of exogenous lipid are transported in VLDL during palmitate absorption, whereas with linoleate absorption nearly all lipid is in chylomicrons. These findings indicate that the small intestine plays a role in lipoprotein metabolism which extends beyond the absorption of dietary fat.  相似文献   

6.
Very-low-density lipoproteins (VLDL) isolated from fresh normolipidemic plasma were able to compete with labeled low-density lipoproteins (LDL) for receptor binding as efficiently as LDL in human skin fibroblasts. However, VLDL from fresh plasma failed to stimulate acyl-CoA: cholesterol acyltransferase (ACAT) (EC 2.3.1.26) activity significantly. When plasma was stored at 4 degrees C for 24-48 h before ultracentrifugation, the VLDL were able to stimulate ACAT activity significantly. Proteolytic and lipolytic enzymes do not appear to play a role in this phenomenon. The increased capacity of VLDL from stored plasma to stimulate ACAT activity appears to be due partly to the increase in the internalization and degradation processes. Both the larger and the smaller VLDL subclasses were able to stimulate ACAT activity in the cells. The actual changes that take place in the VLDL molecule during the storage of plasma are not known.  相似文献   

7.
Studies of lipoproteins in this homogenous study population indicate clear and consistent associations between obesity and abnormalities in lipoproteins. These include both increases in VLDL and lower HDL, which were observed in both men and women. A high production of total body cholesterol in obese subjects, probably associated with increased flux of glucose and free fatty acids, leads to a greater production of VLDL. This, in turn, creates a greater flux of metabolic products of VLDL either back to the liver or through LDL. Obesity induces an increase in hepatic lipase, perhaps in women because of lower estrogen levels, which is associated with lower HDL concentrations, and altered HDL composition. Several of these observed changes, such as the greater proportion of VLDL remnants, the greater flux of particles through the LDL compartment, and the altered HDL composition, may be associated with increased atherosclerosis. However, preliminary data do not show a relationship between obesity and death from coronary heart disease in this population. More studies are needed to resolve this apparent conflict.  相似文献   

8.
Hydrolysis by endothelial lipases of triacylglycerol-rich lipoproteins of diabetic origin were compared to lipoproteins of non-diabetic origin. The plasma lipoprotein fraction of density < 1.006 g/ml, including chylomicrons and VLDL, were incubated in vitro with post-heparin plasma (PHP) lipases. The lipoproteins of diabetic origin were hydrolysed at a significantly slower rate than lipoproteins from normal rats by the lipoprotein lipase component of PHP. However, if rats were fasted for 16 h prior to lipoprotein recovery, no differences in rates of VLDL hydrolysis were observed. Slower hydrolysis of lipoproteins of diabetic origin reflected a decrease in the apolipoprotein CII/CIII ratio and other changes in the apolipoprotein profile. To assess whether diabetic rats were less able to clear triacylglycerol independent of changes in the nature of the lipoproteins, we monitored the clearance of chylomicron-like lipid emulsions in hepatectomized rats. In vivo, emulsion triacylglycerol hydrolysis was not slowed due to diabetes. However, control and diabetic rats, which had been fasted for 16 h, cleared triacylglycerol at about twice the rate of fed rats. Triacylglycerol secretion rates in diabetic and control rats were similar, whether fed or fasted. We conclude that in streptozocin diabetic rats, hypertriglyceridemia was not due to overproduction of chylomicron- or VLDL-triacylglycerol, nor to decreased endothelial lipase activities. Rather, in fed diabetic rats, the triacylglycerol-rich lipoproteins are poorer substrates for lipoprotein lipase. This may lead to slower formation of remnants which would exacerbate slow remnant removal. VLDL of diabetic origin were hydrolysed as efficiently as VLDL from control donors, suggesting that in the fed state the lipolytic defect may be specific for chylomicrons.  相似文献   

9.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

10.
Isolated mouse peritoneal macrophages that had been stimulated with thioglycolate were shown to take up and degrade normal human 125I-very low density lipoproteins (VLDL). Uptake occurred via a specific cell surface receptor which was shown to be 1) temperature-dependent, 2) calcium-dependent, and 3) susceptible to proteolytic digestion. The receptor-mediated uptake and degradation of VLDL markedly stimulated the synthesis and accumulation of triglyceride and cholesteryl ester within macrophages. The degradation of the protein and lipid portions of VLDL occurred within lysosomes. Competition studies showed that the binding site for VLDL was different from the receptor for normal low density lipoproteins or for acetylated low density lipoproteins but that there was cross competition with beta-VLDL. In addition, positive charges appeared to play an important role in the recognition of VLDL by their receptors since polyamines were able to markedly inhibit VLDL binding, degradation, and lipid accumulation while negatively charged compounds were without effects. These studies indicate that 1) stimulated mouse peritoneal macrophages possess specific receptors which recognize normal human VLDL and 2) the receptor-mediated uptake of VLDL results in the accumulation of triglyceride and cholesteryl ester within macrophages.  相似文献   

11.
Lipoprotein lipase (LPL) is a key enzyme involved in the metabolism of lipoproteins, providing tissues like adipose tissue or skeletal muscle with fatty acids. LPL is also expressed in the brain, fulfilling yet unknown functions. Using a neuroblastoma cell line transfected with a NEO- or a LPL-expression vector, we have developed a model to study the function of LPL in neurons exposed to native or copper-oxidized lipoproteins. The addition to the culture media of VLDL with 10 microm copper sulfate led to a significant reduction in the viability of NEO transfectants whereas LPL-transfectants were protected from this injury. In the presence of VLDL and CuSO(4), LPL transfectants were even able to display significant neurite extension. This neuritogenic effect was also observed in LPL transfectants exposed to native lipoproteins. However, addition of VLDL particles oxidized with CuSO(4) prior to their addition to the culture media resulted in neurotoxic effects on LPL transfectants. These findings suggest that the presence of LPL in cultured neuronal cells modulates the physiological response of neurons following exposure to native or oxidized lipoproteins. LPL could thus play a key role in the differentiation of Neuro-2A cells and in the pathophysiological effects of oxidative stress in several neurodegenerative disorders.  相似文献   

12.
Circulating lipoproteins are thought to play an important role in the detoxification of lipopolysaccharide (LPS) by binding the bioactive lipid A portion of LPS to the lipoprotein surface. It has been assumed that hypocholesterolemia contributes to inflammation during critical illness by impairing LPS neutralization. We tested whether critical illness impaired LPS binding to lipoproteins and found, to the contrary, that LPS binding was enhanced and that LPS binding to the lipoprotein classes correlated with their phospholipid content. Whereas low serum cholesterol was almost entirely due to the loss of esterified cholesterol (a lipoprotein core component), phospholipids (the major lipoprotein surface lipid) were maintained at near normal levels and were increased in a hypertriglyceridemic subset of septic patients. The levels of phospholipids found in the LDL and VLDL fractions varied inversely with those in the HDL fraction, and LPS bound predominantly to lipoproteins in the LDL and VLDL fractions when HDL levels were low. Lipoproteins isolated from the serum of septic patients neutralized the bioactivity of the LPS that had bound to them. Our results show that the host response to acute inflammation and infection tends to maintain lipoprotein phospholipid levels and that, despite hypocholesterolemia and reduced HDL levels, circulating lipoproteins maintain their ability to bind and neutralize an important bacterial agonist, LPS.  相似文献   

13.
Plasma lipoproteins (VLDL, LDL, Lp[a] and HDL) function primarily in lipid transport among tissues and organs. However, cumulative evidence suggests that lipoproteins may also prevent bacterial, viral and parasitic infections and are therefore a component of innate immunity. Lipoproteins can also detoxify lipopolysaccharide and lipoteichoic acid. Infections can induce oxidation of LDL, and oxLDL in turn plays important anti‐infective roles and protects against endotoxin‐induced tissue damage. There is also evidence that apo(a) is protective against pathogens. Taken together, the evidence suggests that it might be valuable to introduce the concept that plasma lipoproteins belong in the realm of host immune response.  相似文献   

14.
Lipoproteins have a vital role in the development of metabolic and cardiovascular diseases ranging from protective to deleterious effects on target tissues. VLDL has been shown to induce lipotoxic lipid accumulation and exert a variety of negative effects on cardiomyocytes. Lipotoxicity and endoplasmic reticulum (ER) stress are proposed to be the mediators of damaging effects of metabolic diseases on cardiovascular system. We treated cardiomyocytes with lipoproteins to evaluate the adaptability of these cells to metabolic stress induced by starvation and excess of lipoproteins, and to evaluate the effect of lipoproteins and lipid accumulation on ER stress. VLDL reversed metabolic stress induced by starvation, while HDL did not. VLDL induced dose-dependent lipid accumulation in cardiomyocytes, which however did not result in reduced cell viability or induction of ER stress. Moreover, VLDL or HDL pre-treatment reduced ER stress in cardiomyocytes induced by tunicamycin and palmitic acid as measured by the expression of ER stress markers, even in conditions of increased lipid accumulation. VLDL and HDL induced activation of pro-survival ERK1/2 in cardiomyocytes; however, this activation was not involved in the protection against ER stress. Additionally, we observed that LDLR and VLDLR are regulated differently by lipoproteins and cellular stress, as lipoproteins induced VLDLR protein independently of the level of lipid accumulation. We conclude that VLDL is not a priori detrimental for cardiomyocytes and can even have beneficial effects, enabling cell survival under starvation and attenuating ER stress.  相似文献   

15.
The acute phase response (APR) is responsible for great changes in protein and lipid metabolism. For example, marked changes are observed in the metabolism of fatty acids, triglycerides, cholesterol and sphingolipids. Those lipids are partly recovered in the lipoproteins and subsequently in the plasma. Beside these lipid families, nothing is known about phospholipids and their synthesis in endomembranes during the APR. Our studies show that phosphatidylserine synthesis is stimulated during the APR and that this lipid is increased in the endoplasmic reticulum (ER) and the ER-derived vesicles.  相似文献   

16.
The aim of this study was to determine the effect of oleic acid and insulin on the secretion of lipoproteins by HepG2 cells grown in minimum essential medium. Triglycerides were the major neutral lipid (57% of total) and apoB was the predominant apolipoprotein (56% of total) secreted by these cells. The addition of oleate resulted in a two-fold increase in the concentration of neutral lipids but only a slight to moderate increase in the apolipoprotein (A-I, A-II, B, and E) levels. The secretion of very low density lipoproteins (VLDL) was stimulated by 425%, low density lipoproteins (LDL) by 77%, and high density lipoproteins (HDL) by 68%. Whereas neutral lipid composition of LDL was unchanged, the VLDL particles contained a significantly higher percentage of triglyceride and lower percentages of cholesterol and cholesteryl esters compared with VLDL secreted in the absence of oleate. Oleate had no significant effect on the composition of apolipoproteins in VLDL, LDL and HDL. In basal medium, insulin caused a significant decrease in the secretion of neutral lipids and apolipoproteins, particularly triglycerides and apoB. In addition to a 60-68% reduction in the total concentration of VLDL and LDL, insulin altered their composition by producing particles that had a significantly lower content of triglycerides, contained less apoB, and were deficient in apoE. There were no major changes in the concentration or composition of HDL particles. Insulin had a similar but less pronounced effect on the concentration and composition of lipoproteins secreted in the presence of oleate. The increased accumulation of triglycerides in the HepG2 cells concomitant with their reduced levels in the medium suggests that insulin may affect the secretion rather than synthesis of triglyceride-rich lipoproteins.  相似文献   

17.
The effect of lipid transfers on the structure and composition of high density lipoproteins (HDL) has been studied in vitro in incubations that contained the lipoprotein-free fraction of human plasma as a source of lipid transfer protein. These incubations did not contain lecithin:cholesterol acyltransferase activity and were not supplemented with lipoprotein lipase. Incubations were performed at 37 degrees C for 6 hr in both the presence and absence of either added very low density lipoproteins (VLDL) or the artificial triglyceride emulsion, Intralipid. Incubation in the absence of added VLDL or Intralipid had little or no effect on the HDL. By contrast, incubation in the presence of either VLDL or Intralipid resulted in marked changes in the HDL. The effect of incubation with VLDL was qualitatively similar to that of Intralipid; both resulted in obvious transfers of lipid and changes in the density, particle size, and composition of HDL. Incubation of the plasma fraction of density 1.006-1.21 g/ml, total HDL, or HDL3 with either VLDL or Intralipid resulted in the following: 1) a depletion of the cholesteryl ester and free cholesterol content and an increase in the triglyceride content of both HDL2 and HDL3; 2) a decrease in density and an increase in particle size of the HDL3 to form a population of HDL2-like particles; and 3) the formation of a discrete population of very small lipoproteins with a density greater than that of the parent HDL3. The newly formed lipoproteins had a mean particle radius of 3.7-3.8 nm and consisted mainly of protein, predominantly apolipoprotein A-I and phospholipid.  相似文献   

18.
In vitro metabolism of apolipoprotein E   总被引:1,自引:0,他引:1  
Apolipoprotein E plays a major role in the uptake of chylomicrons and of very-low-density lipoprotein (VLDL) remnants by the liver. It has also been clearly demonstrated that apolipoprotein E rapidly and spontaneously exchanges between lipoproteins. To assess whether all lipoprotein-bound apolipoprotein E is available to participate in spontaneous transfer and/or exchange, the present study followed the fate of radiolabeled apolipoprotein E in an in vitro system. The results show that in vitro, apolipoprotein E can be considered as having both a spontaneously exchangeable pool and a nonexchangeable pool. Based upon specific radioactivity data, only a limited amount of apolipoprotein E originating in VLDL or in high-density lipoproteins (HDL) was capable of in vitro exchange with that in other lipoprotein fractions. Lipolysis of VLDL triacylglycerol by milk lipoprotein lipase, however, resulted in complete transfer of VLDL apolipoprotein E mass and radioactivity to HDL, supporting the potential for transformation of exchangeable apolipoprotein to a transferable pool in vivo. The results of these studies indicate that during the course of lipoprotein metabolism, conformational changes occur which alter the accessibility of apolipoprotein E. Such dynamic heterogeneity may have implications for the regulation of lipoprotein metabolism.  相似文献   

19.
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.  相似文献   

20.
Guha M  England C  Herscovitz H  Gursky O 《Biochemistry》2007,46(20):6043-6049
Very-low-density lipoproteins (VLDL) are metabolic precursors of low-density lipoproteins (LDL) and a risk factor for atherosclerosis. Human VLDL are heterogeneous complexes containing a triacylglycerol-rich apolar lipid core and polar surface composed of phospholipids, a nonexchangeable apolipoprotein B, and exchangeable apolipoproteins E and Cs. We report the first stability study of VLDL. Circular dichroism and turbidity data reveal an irreversible heat-induced VLDL transition that involves formation of larger particles and repacking of apolar lipids but no global protein unfolding. Heating rate effect on the melting temperature indicates a kinetically controlled reaction with high activation energy, Ea. Arrhenius analysis of the turbidity data reveals two kinetic phases with Ea = 53 +/- 7 kcal/mol that correspond to distinct morphological transitions observed by electron microscopy. One transition involves VLDL fusion, partial rupture, and dissociation of small spherical particles (d = 7-15 nm), and another involves complete lipoprotein disintegration and lipid coalescence into droplets accompanied by dissociation of apolipoprotein B. The small particles, which are unique to VLDL denaturation, are comparable in size and density to high-density lipoproteins (HDL); they have an apolar lipid core and polar surface composed of exchangeable apolipoproteins (E and possibly Cs) and phospholipids. We conclude that, similar to HDL and LDL, VLDL are stabilized by kinetic barriers that prevent particle fusion and rupture and decelerate spontaneous interconversion among lipoprotein classes and subclasses. In addition to fusion, VLDL disruption involves transient formation of HDL-like particles that may mimic protein exchange among VLDL and HDL pools in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号