首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Lespedeza cuneata (Dum. Cours.) G. Don is an invasive legume that displaces populations of native N. American congeners. Our aims are to determine the growth benefits of different rhizobacterial strains for L. cuneata and native Lespedeza virginica (L.) Britton, and to determine if these strains influence competition between these plants.

Methods

Plants were grown under nitrogen-limiting conditions in sterilized soil in pairs consisting of two L. cuneata, two L. virginica, or one of each species, and then plants were inoculated with one of seven rhizobial isolates, or with a no-strain control. After 3 months, plants were harvested for determination of biomass and nodulation rate.

Results

Five of the assayed stains improved L. cuneata biomass over uninoculated controls, but none of the strains benefited L. virginica. L. cuneata plants had more biomass and root nodules when grown in competition with L. virginica than with a conspecific.

Conclusions

Asymmetrical benefits from these symbionts accrued to invasive L. cuneata but not to native L. virginica, and this may provide the invader with a growth advantage in the field. Changes in the availability of effective symbionts in the soils of invaded sites can shape performance of native and invasive plants.  相似文献   

2.
Comparative studies of congeneric native and exotic species have proved fruitful in understanding plant traits that foster invasion. Using this approach, we investigate the complex reproductive system of the invasive Lespedeza cuneata (Dum.-Cours.) G. Don in relation to three native congeners in the variable environment of the North American tallgrass prairie. Lespedeza species produce both chasmogamous (CH) and cleistogamous (CL) flowers, and propagate clonally via vegetative buds. Utilizing multiple natural populations over 2 years, we investigated reproductive modes of individuals from bagged and unbagged treatments of each species. We found that L. cuneata produced a mean of five times as many seeds and a significantly greater number of vegetative buds than any native studied, and over twenty times as many CH flowers. Insect visitation significantly affected seed set in CH flowers, though some autonomous CH selfing occurred in all species. The invasive relied relatively less on selfing than the natives and exhibited less variation in reproductive output from both modes of reproduction. We conclude that the diverse reproductive biology and wide regeneration niche of L. cuneata in relation to its native congeners confer a fitness homeostasis that facilitates the successful spread of this invasive under a wide range of conditions.  相似文献   

3.
Herbivory has long been recognized as a significant driver of plant population dynamics, yet its effects along environmental gradients are unclear. Understanding how weather modulates plant–insect interactions can be particularly important for predicting the consequences of exotic insect invasions, and an explicit consideration of weather may help explain why the impact can vary greatly across space and time. We surveyed two native prickly pear cactus species (genus Opuntia) in the Florida panhandle, USA, and their specialist insect herbivores (the invasive South American cactus moth, Cactoblastis cactorum, and three native insect species) for five years across six sites. We used generalized linear mixed models to assess the impact of herbivory and weather on plant relative growth rate (RGR) and sexual reproduction, and we used Fisher's exact test to estimate the impact of herbivory on survival. Weather variables (precipitation and temperature) were consistently significant predictors of vital rate variation for both cactus species, in contrast to the limited and varied impacts of insect herbivory. Weather only significantly influenced the impact of herbivory on Opuntia humifusa fruit production. The relationships of RGR and fruit production with precipitation suggest that precipitation serves as a cue in determining the trade‐off in the allocation of resources to growth or fruit production. The presence of the native bug explained vital rate variation for both cactus species, whereas the invasive moth explained variation only for Ostricta. Despite the inconsistent effect of herbivory across vital rates and cactus species, almost half of Ostricta plants declined in size, and the invasive insect negatively affected RGR and fruit production. Given that fruit production was strongly size‐dependent, this suggests that Ostricta populations at the locations surveyed are transitioning to a size distribution of predominantly smaller sizes and with reduced sexual reproduction potential.  相似文献   

4.
Researchers studying invasive plants often concentrate their efforts on predictive models thought to allow invasive plants to dominate native landscapes. However, if an invasive is already well established then experimental research is necessary to provide the information necessary to effectively manage the species. Prescribing appropriate management strategies without prior experimental research may not only be ineffective but also may squander limited resources or have the unintended consequence of furthering spread. Lespedeza cuneata(Dum. Cours.) G. Don. is a well-established invasive plant of old fields and tall-grass prairie in the US. Managers suspect this species shades-out native plants and this is proposed as its primary mechanism for dominance. Using field experiments we tested probable factors allowing the species to establish itself and, once established, interfere in old field plant communities. We also examined the effects of two common anthropogenic disturbances (mowing and nutrients) on L. cuneata growth and establishment. When L. cuneata was treated (clipping, herbicide and stem pull-back) there was a significant increase in species richness and native species cover. Stem density and canopy cover of L. cuneata increased significantly with mowing frequency but decreased with nutrient input. We suggest that mowing benefits L. cuneata while also hindering woody competition. Results also indicate L. cuneata is less prevalent on nutrient enriched soils than on unamended soil. Lespedeza cuneata appears to suppress native plants by shading them out and it can subsequently take over grassland communities. Since it has a varying response to human induced disturbances and may actually benefit from mowing, land managers should be cautious when utilizing this as a management tool.  相似文献   

5.
To better understand the strategies and mechanisms of invading plants in tallgrass prairie, physiological and morphological characteristics of the invasive Lespedeza cuneata were compared to the dominant and abundant natives Ambrosia psilostachya and Andropogon gerardii. Gas exchange, chlorophyll fluorescence, plant water status, and total and specific leaf area were quantified in the field for each species both throughout daily sampling periods and across the growing season. Total and specific leaf area (cm2 g−1 of leaves) exceeded that of native species and may allow L. cuneata to successfully establish and dominate in tallgrass prairie, aiding in both resource acquisition and competitive exclusion. Gas exchange traits (e.g. net photosynthesis, stomatal conductance, and water use efficiency) of L. cuneata did not exceed other species, but remained constant throughout the daily sampling periods. The daily consistency of net photosynthesis and other gas exchange traits for L. cuneata reveal characteristics of stress tolerance. The combination of these characteristics and strategies may assist in the invasion of L. cuneata and also provide insight into general mechanisms responsible for successful invasions into tallgrass prairie.  相似文献   

6.
An increasing number of recent studies indicate that multiple interacting factors can affect the invasion of plants. However, few studies have focused on asexual propagation and the interaction of propagation with environmental factors that regulate the invasive potential of introduced exotic species in aquatic habitats. This study was designed to investigate the differences in asexual propagation between introduced exotic and non-invasive native aquatic macrophytes in nutrient-poor and nutrient-rich sediments and to test the hypothesis that differences in asexual propagation (stem fragment production) and propagule establishment between introduced exotic and non-invasive native macrophytes are driven by sediment nutrient levels. Three exotic aquatic macrophytes (Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum) recently introduced to China and their non-invasive native counterparts (Hydrilla verticillata, Moguraense, and M. ussuriense) were used for comparison in nutrient-poor (TN 0.59 and TP 0.03 mg g−1) and nutrient-rich (TN 2.35 and TP 0.10 mg g−1) sediments. After 8 weeks of growth, the exotic species tended to produce more total biomass, branch biomass and apical shoots and have higher relative growth rate (RGR) than their native counterparts in nutrient-rich sediment. Rooting efficiency and root growth of exotic fragments were higher than that of native counterparts in nutrient-rich sediment, although the survival rates of fragments did not differ between native and exotic species. In addition, superior traits (rooting efficiency and root growth) of exotic species were also observed in nutrient-poor sediment, but to a lesser degree than in nutrient-rich sediment. These results suggest that asexual propagation of these three introduced exotic macrophytes is more effective in nutrient-rich sediment than in nutrient-poor sediment in China.  相似文献   

7.
Invasive plant species can modify soils in a way that benefits their fitness more than the fitness of native species. However, it is unclear how competition among plant species alters the strength and direction of plant–soil feedbacks. We tested how community context altered plant–soil feedback between the non-native invasive forb Lespedeza cuneata and nine co-occurring native prairie species. In a series of greenhouse experiments, we grew plants individually and in communities with soils that differed in soil origin (invaded or uninvaded by L. cuneata) and in soils that were live vs. sterilized. In the absence of competition, L. cuneata produced over 60% more biomass in invaded than uninvaded soils, while native species performance was unaffected. The absence of a soil origin effect in sterile soil suggests that the positive plant–soil feedback was caused by differences in the soil biota. However, in the presence of competition, the positive effect of soil origin on L. cuneata growth disappeared. These results suggest that L. cuneata may benefit from positive plant–soil feedback when establishing populations in disturbed landscapes with few interspecific competitors, but does not support the hypothesis that plant–soil feedbacks influence competitive outcomes between L. cuneata and native plant species. These results highlight the importance of considering whether competition influences the outcome of interactions between plants and soils.  相似文献   

8.
Invasive plant species can potentially exert competitive or facilitative effects on insect pollination services of native species. Factors that influence these effects include the degree of shared pollinator species, synchronous flowering phenology, similar flower morphology and color, relatedness of invasive and natives, and showiness and densities of flowers. We investigated such plant-pollinator dynamics by comparing the invasive Lespedeza cuneata and three native congeners, all sympatric with synchronous flowering, using in situ populations over 2 years during peak floral displays. Insect visitation rates of the invasive were significantly higher per plant in both years than on the native species. The invasive exerted a competitive effect on visitation of the two native species with fewer shared pollinators, and a facilitative effect on visitation of the native species with the highest degree of shared insect visitors. Positive correlations were found between floral density and visitation rate per plant in all the native species. Although no such correlation was found for the invasive, floral density in L. cuneata was at least twenty times higher than in the native species and likely saturated the response of the pollinator community. Analyses of insect visitor taxonomic data indicated the insect communities visiting each of the Lespedeza species were generally similar though with species-specific differences. The main exception was that the common honeybee, Apis mellifera, was a primary visitor to the invasive plant species, yet was never observed on the native Lespedeza species.  相似文献   

9.
The importance of phenotypic plasticity for successful invasion by exotic plant species has been well studied, but with contradictory and inconclusive results. However, many previous studies focused on comparisons of native and invasive species that co‐occur in a single invaded region, and thus on species with potentially very different evolutionary histories. We took a different approach by comparing three closely related Centaurea species: the highly invasive C. solstitialis, and the noninvasive but exotic C. calcitrapa and C. sulphurea. These species have overlapping distributions both in their native range of Spain and in their non‐native range of California. We collected seeds from 3 to 10 populations from each region and species and grew them in common garden greenhouse conditions to obtain an F1 generation in order to reduce maternal effects. Then, F1 seeds were grown subjected to simulated herbivory, variation in nutrient availability, and competition, to explore plasticity in the responses to these conditions. We found little variation in phenotypic plasticity among species and regions, but C. solstitialis plants from California produced more biomass in competition than their Spanish conspecifics. This species also had the highest relative growth rates when in competition and when grown under low nutrient availability. Noninvasive congeners produced intermediate or opposite patterns.  相似文献   

10.
Although the ecology of many exotic invaders has been intensively examined in the novel range, few studies have comparatively explored how population dynamics differ in native and novel parts of an invading plants’ range. The population dynamics of mile-a-minute weed, Polygonum perfoliatum L., was explored in both the native (Japan) and novel (northeastern USA) portions of its range and evaluated using periodic matrix models. Projected per capita population growth rate (λ) varied within and between native and novel range populations. Surprisingly, five of the six populations in the novel range were projected to fail to replace themselves (λ<1) while only two of the four native range populations were projected to decline, although these projections had wider confidence intervals than in the novel habitat. While changes in germination, survivorship, fecundity and seed banking would have equivalent effects on population growth in the invasive habitat, small increases in plant survivorship would greatly increase λ in native populations. The differences between native and novel population growth rates were driven by lower adult survival in the native range caused by annual flooding and higher fecundity. Simulation analyses indicated that a 50% reduction in plant survival would be required to control growing populations in the novel range. Further comparative studies of other invading species in both their native and novel ranges are needed to examine whether the high per capita population growth and strong regulatory effects of adult survival in the native habitat are generally predictive of invasive behavior in novel habitats. Sachiko Araki: (Deceased)  相似文献   

11.
The evolution of increased competitive ability (EICA) hypothesis predicts that release from natural enemies in the introduced range favors exotic plants evolving to have greater competitive ability and lower herbivore resistance than conspecifics from the native range. We tested the EICA hypothesis in a common garden experiment with Sapium sebiferum in which seedlings from native (China) and invasive (USA) populations were grown in all pairwise combinations in the native range (China) in the presence of herbivores. When paired seedlings were from the same continent, shoot mass and leaf damage per seedling were significantly greater for plants from invasive populations than those from native populations. Despite more damage from herbivores, plants from invasive populations still outperformed those from native populations when they were grown together. Increased competitive ability and higher herbivory damage of invasive populations relative to native populations of S. sebiferum support the EICA hypothesis. Regression of biomass against percent leaf damage showed that plants from invasive populations tolerated herbivory more effectively than those from native populations. The results of this study suggest that S. sebiferum has become a faster-growing, less herbivore-resistant, and more herbivore-tolerant plant in the introduced range. This implies that increased competitive ability of exotic plants may be associated with evolutionary changes in both resistance and tolerance to herbivory in the introduced range. Understanding these evolutionary changes has important implications for biological control strategies targeted at problematic invaders.  相似文献   

12.
Generalist insect herbivores, such as grasshoppers, may either avoid feeding on exotic plants, potentially enabling these plants to become invasive in the introduced range, or insects may incorporate exotic plants into their diet, contributing to the biotic resistance of native communities and potentially preventing plant invasions. Accurate determination of insect diet preferences with regard to native and exotic plants can be challenging, but this information is critical for understanding the interaction between native herbivores and exotic plants, and ultimately the mechanisms underlying plant invasions. To address this, we combined behavioral and molecular approaches to accurately compare food consumption of the polyphagous red‐legged grasshopper, Melanoplus femurrubrum (De Geer) (Orthoptera: Acrididae), on native [Andropogon gerardii Vitman and Bouteloua curtipendula (Michx.) Torr.] and exotic, potentially invasive grasses [Miscanthus sinensis Andersson and Bothriochloa ischaemum (L.) Keng] (all Poaceae). We found that M. femurrubrum grasshoppers demonstrated strong feeding preferences toward exotic grasses in experiments with intact plants under both field and greenhouse conditions, but they showed no preference in experiments with clipped leaves. Additionally, we sampled the gut contents of M. femurrubrum collected in the field and identified the ingested plant species based on DNA sequences for the non‐coding region of the chloroplast trnL (UAA) gene. We found that exotic plants were prevalent in the gut contents of grasshoppers collected at study sites in Ohio and Maryland, USA. These results suggest that the generalist herbivore M. femurrubrum does not avoid feeding on exotic grasses with which they do not share coevolutionary history. In addition, by demonstrating greater food consumption of exotic plants, these grasshoppers potentially provide biotic resistance should these grasses escape cultivation and become invasive in the introduced range.  相似文献   

13.
Successful invasions by exotic plants are often attributed to a loss of co‐evolved specialists and a re‐allocation of resources from defense to growth and reproduction. However, invasive plants are rarely completely released from insect herbivory because they are frequently attacked by generalists in their introduced ranges. The novel generalist community may also affect the invasive plant's defensive strategies and resource allocation. Here, we tested this hypothesis using American pokeweed (Phytolacca americana L.), a species that has become invasive in China, which is native to North America. We examined resistance, tolerance, growth and reproduction of plant populations from both China and the USA when plants were exposed to natural generalist herbivores in China. We found that leaf damage was greater for invasive populations than for native populations, indicating that plants from invasive ranges had lower resistance to herbivory than those from native ranges. A regression of the percentage of leaf damage against mass showed that there was no significant difference in tolerance between invasive and native populations, even though the shoot, root, fruit and total mass were larger for invasive populations than for native populations. These results suggest that generalist herbivores are important drivers mediating the defensive strategies and resource allocation of the invasive American pokeweed.  相似文献   

14.
The evolution of redirecting resources from plant defense to growth or reproduction may explain why some exotic species are successful invaders in new environments. For example, the evolution of increased competitive ability hypothesis posits that escape from herbivores by invasive plants results in the selection of more vigorous genotypes that reduce their allocation of resources to defense. In addition, understanding the defense strategy of an invasive plant may help forecast the likely impact of herbivory. We tested the prediction of reduced defense (i.e., resistance) in Genista monspessulana, measured indirectly as the performance of a specialist psyllid herbivore, by comparing five native and introduced plant populations. We also examined the ability of G. monspessulana to compensate for herbivory in the presence and the absence of psyllids for a single plant population from the native and introduced regions. Plant origin (native or introduced) did not influence the psyllid’s abundance and population growth rate, suggesting no change in resistance to herbivory for introduced plants. Similarly, we found no overall difference in plant performance between individuals in the presence and the absence of psyllid herbivory, suggesting that G. monspessulana was able to fully compensate for herbivory. Damaged plants compensated by changing the pattern of branching, which also resulted in greater dry leaf biomass. We conclude that evolution of reduced defenses does not explain the success of G. monspessulana as an invader and that compensation for herbivory may limit the efficacy of the psyllid as a biological control agent.  相似文献   

15.
Tolerance, the degree to which plant fitness is affected by herbivory, is associated with invasiveness and biological control of introduced plant species. It is important to know the evolutionary changes in tolerance of invasive species after introduction in order to understand the mechanisms of biological invasions and assess the feasibility of biological control. While many studies have explored the evolutionary changes in resistance of invasive species, little has been done to address tolerance. We hypothesized that compared with plants from native populations, plants from invasive populations may increase growth and decrease tolerance to herbivory in response to enemy release in introduced ranges. To test this hypothesis, we compared the differences in growth and tolerance to simulated herbivory between plants from invasive and native populations of Chromolaena odorata, a noxious invader of the tropics and subtropics, at two nutrient levels. Surprisingly, flower number, total biomass (except at high nutrient), and relative increase in height were not significantly different between ranges. Also, plants from invasive populations did not decrease tolerance to herbivory at both nutrient levels. The invader from both ranges compensated fully in reproduction after 50?% of total leaf area had been damaged, and achieved substantial regrowth after complete shoot damage. This strong tolerance to damage was associated with increased resource allocation to reproductive structures and with mobilization of storage reserves in roots. The innately strong tolerance may facilitate invasion success of C. odorata and decrease the efficacy of leaf-feeding biocontrol agents. Our study highlights the need for further research on biogeographical differences in tolerance and their role in the invasiveness of exotic plants and biological control.  相似文献   

16.
Invasive plants often interact with antagonists that include native parasitic plants and pathogenic soil microbes, which may reduce fitness of the invaders. However, to date, most of the studies on the ecological consequences of antagonistic interactions between invasive plants and the resident biota focused only on pairwise interactions. A full understanding of invasion dynamics requires studies that test the effects of multiple antagonists on fitness of invasive plants and co‐occurring native plants. Here, we used an invasive plant Mikania micrantha, a co‐occurring native plant Coix lacryma‐jobi, and a native holoparasitic plant Cuscuta campestris to test whether parasitism on M. micrantha interacts with soil fungi and bacteria to reduce fitness of the invader and promote growth of the co‐occurring native plant. In a factorial setup, M. micrantha and C. lacryma‐jobi were grown together in pots in the presence versus absence of parasitism on M. micrantha by C. campestris and in the presence versus absence of full complements of soil bacteria and fungi. Fungicide and bactericide were used to suppress soil fungi and bacteria, respectively. Findings show that heavy parasitism by C. campestris caused the greatest reduction in M. micrantha biomass when soil fungi and bacteria were suppressed. In contrast, the co‐occurring native plant C. lacryma‐jobi experienced the greatest increase in biomass when grown with heavily parasitized M. micrantha and in the presence of a full complement of soil fungi and bacteria. Taken together, our results suggest that selective parasitism on susceptible invasive plants by native parasitic plants and soil microorganisms may diminish competitive ability of invasive plants and facilitate native plant coexistence with invasive plants.  相似文献   

17.
Endozoochory by exotic mammalian herbivores could modify vegetation composition by facilitating the dispersal and establishment of exotic and native plant species. We examined the potential for endozoochoric dispersal of native and exotic plants by exotic hog deer (Axis porcinus) in south-eastern Australia. We quantified the germinable seed content of hog deer faecal pellets collected in five vegetation types within a 10,500-ha study area that was representative of their Australian range. Twenty exotic and 22 native species germinated from hog deer faecal pellets and significantly more native species germinated compared to exotic species. Seedlings of the encroaching native shrub Acacia longifolia var. sophorae emerged, but no native trees emerged and the percentage of grasses that germinated was low (11%). The species composition of germinants was similar among the five vegetation types. We estimated that the hog deer population in our study area could potentially disperse >130,000 viable seeds daily. Our study shows how an exotic mammal can disperse seeds from both native and invasive plants and highlights the need for endozoochory to be considered more widely in studies assessing the impacts of exotic mammals on plant communities.  相似文献   

18.
Abstract White Box (Eucalyptus albens Benth.) woodlands are among Australia's most endangered ecosystems and are threatened by exotic species invasion. There is evidence from other Australian communities that phosphorus enrichment can facilitate invasion, and differential growth of native and exotic species under increased phosphorus is a possible mechanism. Two glasshouse experiments were designed to test the following three questions relating to species responses to phosphorus: (i) do exotic and native species have different patterns of growth along a gradient of increasing phosphorus?; (ii) do exotic species have a greater competitive effect on native species than do conspecifics?; (iii) does phosphorus enrichment compound the competitive effect of exotic species on native species? Four native perennial species (Themeda australis (R. Br.) Staph., Bothriochloa macra (Steud.) S. T. Blake, Austrodanthonia racemosa (R. Br.) H. P. Linder and Eucalyptus albens) and two exotic annual species (Vulpia bromoides (L) Gray and Echium plantagineum L) were used. In the first experiment, plants were grown individually under six levels of soil phosphorus ranging from 0 to 60 p.p.m. In the second experiment, individuals of Eucalyptus albens and B. macra were grown alone, with a conspecific competitor, or with an exotic (V. bromoides or Echium plantagineum) competitor under low (10 p.p.m.) and high (100 p.p.m.) phosphorus. Both exotic species showed a greater positive response to increased phosphorus than the native species in experiment 1, and Eucalyptus albens seedlings grown with Echium plantagineum were significantly smaller than individuals grown alone or with Eucalyptus albens in experiment 2. There was no evidence that high phosphorus increased the competitive effect of the exotic species, but the combination of a strong positive response to phosphorus and a strong effect on growth of a native species indicates that phosphorus enrichment could favour exotic species in woodland remnants and that field studies testing the effect of phosphorus in a broader context would be appropriate.  相似文献   

19.
Understanding the role of consumers in density‐dependent plant population dynamics is a long‐standing goal in ecology. However, the generality of herbivory effects across heterogeneous landscapes is poorly understood due to the pervasive influence of context‐dependence. We tested effects of native insect herbivory on the population dynamics of an exotic thistle, Cirsium vulgare, in a field experiment replicated across eight sites in eastern Nebraska. Using hierarchical Bayesian analysis and density‐dependent population models, we found potential for explosive low‐density population growth (λ > 5) and complex density fluctuations under herbivore exclusion. However, herbivore access drove population decline (λ < 1), suppressing complex fluctuations. While plant–herbivore interaction outcomes are famously context‐dependent, we demonstrated that herbivores suppress potentially invasive populations throughout our study region, and this qualitative outcome is insensitive to environmental context. Our novel use of Bayesian demographic modelling shows that native insect herbivores consistently prevent hard‐to‐predict fluctuations of weeds in environments otherwise susceptible to invasion.  相似文献   

20.
Invasive species are a common problem in restoration projects. Manipulating soil fertility and species arrival order has the potential to lower their abundance and achieve higher abundances of seeded native species. In a 7‐year experiment in Missouri, United States, we tested how nutrient addition and the timing of arrival of the invasive legume Lespedeza cuneata and seeded native prairie grass and forb species influenced overall community composition. Treatments that involved early arrival of seeded forb and grass species and late arrival of L. cuneata were most successful at creating community structure that fulfilled our restoration goals, displaying high abundance of seeded native forb species, low abundances of L. cuneata, and non‐native species. There were few treatment interactions, with the exception that timing seeded native forbs and timing of L. cuneata arrival interactively influenced the abundance of seeded native forbs. This suggests that the individual treatments are supporting the restoration goals, such as creating a community with low abundance of L. cuneate or high abundance of native seeded species, without restricting each other. This study demonstrates the importance of priority effects in disturbed habitats prone to invasion, the lasting effects of initial seeding on long‐term community composition, and the potential for fertilization to positively benefit restoration of degraded grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号