首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We aimed to investigate difference in the effects of water and a liquid nutritional meal on the parasympathetic and gastric myoelectrical activities. The study was a repeated-measures design in which each subject was presented with 500 ml of water and a liquid nutritional meal (Ensure) on two separate and random sessions. The electrogastrography (EGG) and electrocardiogram were simultaneously recorded in 16 healthy subjects. There were no significant changes in the EGG-3 cycle per minute (cpm) power, any HRV variable, or the transfer function magnitude after Ensure intake. Water ingestion resulted in a significant increase in both the EGG-3 cpm power and the transfer magnitude compared to Ensure intake (P < 0.05). The effects of water and Ensure on the parasympathetic and gastric electric activities are different, in which the latter is less likely to provoke an autonomic response after gastric stimulation.  相似文献   

2.
Conventional spectral analyses of heart rate variability (HRV) have been limited to stationary signals and have not allowed the obtainment of information during transient autonomic cardiac responses. In the present study, we evaluated the ability of the short-time Fourier transform (STFT) method to detect transient changes in vagal effects on the heart. We derived high-frequency power (HFP, 0.20-0.40 Hz) as a function of time during active orthostatic task (AOT) from the sitting to standing posture before and after selective vagal (atropine sulfate 0.04 mg/kg) and sympathetic (metoprolol 0.20 mg/kg) blockades. The HFP minimum point during the first 30 s after standing up was calculated and compared with sitting and standing values. Reactivity scores describing the fast and slow HFP responses to AOT were calculated by subtracting the minimum and standing values from the sitting value, respectively. The present results, obtained without controlled respiration, showed that in the drug-free condition, HFP decreased immediately after standing up (P < 0.001) and then gradually increased toward the level characteristic for the standing posture (P < 0.001), remaining lower than in the sitting baseline posture (P < 0.001). The magnitudes of the fast and slow HFP responses to AOT were abolished by the vagal blockade (P < 0.001) and unaffected by the sympathetic blockade. These findings indicate that HFP derived by the STFT method provided a tool for monitoring the magnitude and time course of transient changes in vagal effects on the heart without the need to interfere with normal control by using blocking drugs.  相似文献   

3.
We performed time-varying spectral analyses of heart rate variability (HRV) and blood pressure variability (BPV) recorded from 16 normal humans during acoustically induced arousals from sleep. Time-varying autoregressive modeling was employed to estimate the time courses of high-frequency HRV power, low-frequency HRV power, the ratio between low-frequency and high-frequency HRV power, and low-frequency power of systolic BPV. To delineate the influence of respiration on HRV, we also computed respiratory airflow high-frequency power, the modified ratio of low-frequency to high-frequency HRV power, and the average transfer gain between respiration and heart rate. During cortical arousal, muscle sympathetic nerve activity and heart rate increased and returned rapidly to baseline, but systolic blood pressure, the ratio between low-frequency and high-frequency HRV power, low-frequency HRV power, the modified ratio of low-frequency to high-frequency HRV power, and low-frequency power of systolic BPV displayed increases that remained above baseline up to 40 s after arousal. High-frequency HRV power and airflow high-frequency power showed concommitant decreases to levels below baseline, whereas the average transfer gain between respiration and heart rate remained unchanged. These findings suggest that 1) arousal-induced changes in parasympathetic activity are strongly coupled to respiratory pattern and 2) the sympathoexcitatory cardiovascular effects of arousal are relatively long lasting and may accumulate if repetitive arousals occur in close succession.  相似文献   

4.
An analysis of cardiorespiratory dynamics during mental arithmetic, which induces stress, and sustained attention was conducted using information theory. The information storage and internal information of heart rate variability (HRV) were determined respectively as the self-entropy of the tachogram, and the self-entropy of the tachogram conditioned to the knowledge of respiration. The information transfer and cross information from respiration to HRV were assessed as the transfer and cross-entropy, both measures of cardiorespiratory coupling. These information-theoretic measures identified significant nonlinearities in the cardiorespiratory time series. Additionally, it was shown that, although mental stress is related to a reduction in vagal activity, no difference in cardiorespiratory coupling was found when several mental states (rest, mental stress, sustained attention) are compared. However, the self-entropy of HRV conditioned to respiration was very informative to study the predictability of RR interval series during mental tasks, and showed higher predictability during mental arithmetic compared to sustained attention or rest.  相似文献   

5.
The decline in physical capacity in the elderly can be ameliorated by low-velocity, low-impact exercises. Wai tan kung (WTK), a traditional Taiwanese conditioning exercise, is suitable for older people. This study evaluated the effect of WTK on autonomic nervous modulation in the elderly. Twenty WTK practitioners and 20 normal controls were recruited in this study. The stationary state spectral heart rate variability (HRV) measures, hemodynamics, and spirometry between the WTK group and normal controls and sequential changes in HRV measures and hemodynamics after WTK were compared. We found that the standard deviation and coefficient of variation of RR intervals, total power, low frequency power (LFP), and normalized LFP (nLFP) in WTK practitioners before WTK were all significantly higher than those of normal controls. After WTK, the normalized high-frequency power increased (nHFP) significantly from 27.7±13.2 normalized units (nu) before WTK to 37.6±16.0 nu 30 min after WTK, and to 39.8±20.1 nu 60 min after WTK. In contrast, LFP/HFP decreased significantly from 1.3±1.0 before WTK to 1.0±0.9 30 min after WTK and to 0.8±0.6 60 min after WTK. We concluded that in the short term, WTK enhances vagal modulation and suppresses sympathetic modulation, whereas in the long term, WTK enhances sympathetic modulation without compromising vagal modulation of the elderly. Thus WTK is good health-promoting calisthenics that can be recommended to the elderly.  相似文献   

6.
Heart rate variability (HRV) has been widely used as a measure of vagal activation in physiological, psychological, and clinical examinations. We studied the within-subject quantitative relationship between HRV and vagal effects on the heart in different body postures during a gradually decreasing vagal blockade. Electrocardiogram and respiratory frequency were measured in subjects (8 endurance athletes and 10 participants of nonendurance sports) in supine, sitting, and standing postures before the blockade, under vagal blockade (atropine sulfate, 0.04 mg/kg), and four times during a 150-min recovery from the blockade. Fast Fourier transform was used to calculate low-frequency power (LFP, 0.04-0.15 Hz), high-frequency power (HFP, 0.15-0.40 Hz), and total power (TP, 0.04-0.40 Hz). A within-subject linear regression analysis of recovery time on each HRV index was conducted. Complete vagal blockade decreased all HRV significantly, particularly HFP (P < 0.001). A linear fit explained a large portion of the within-subject variance between recovery time and natural log-transformed (ln) HRV indexes in every posture, with coefficients of determination (R2) in the supine posture [means (SD)]: 98 (SD 2)% for mean R-R interval, 87 (SD 10)% for lnLFP, 87 (SD 13)% for lnHFP, and 91 (SD 10)% for lnTP. Neither body posture nor endurance-training background had an impact on R2 values. There was marked between-subject variation in the R2 values, slopes, and intercepts. In conclusion, all HRV, particularly HFP, is predominantly under vagal control. Within subjects, lnLFP, lnHFP, and lnTP increased linearly with the gradually decreasing vagal blockade in all postures.  相似文献   

7.
We studied heart rate (HR), heart rate variability (HRV), and respiratory sinus arrhythmia (RSA) in four male subjects before, during, and after 16 days of spaceflight. The electrocardiogram and respiration were recorded during two periods of 4 min controlled breathing at 7.5 and 15 breaths/min in standing and supine postures on the ground and in microgravity. Low (LF)- and high (HF)-frequency components of the short-term HRV (< or =3 min) were computed through Fourier spectral analysis of the R-R intervals. Early in microgravity, HR was decreased compared with both standing and supine positions and had returned to the supine value by the end of the flight. In microgravity, overall variability, the LF-to-HF ratio, and RSA amplitude and phase were similar to preflight supine values. Immediately postflight, HR increased by approximately 15% and remained elevated 15 days after landing. LF/HF was increased, suggesting an increased sympathetic control of HR standing. The overall variability and RSA amplitude in supine decreased postflight, suggesting that vagal tone decreased, which coupled with the decrease in RSA phase shift suggests that this was the result of an adaptation of autonomic control of HR to microgravity. In addition, these alterations persisted for at least 15 days after return to normal gravity (1G).  相似文献   

8.
Impaired autonomic control represents a cardiovascular risk factor during long-term spaceflight. Little has been reported on blood pressure (BP), heart rate (HR), and heart rate variability (HRV) during and after prolonged spaceflight. We tested the hypothesis that cardiovascular control remains stable during prolonged spaceflight. Electrocardiography, photoplethysmography, and respiratory frequency (RF) were assessed in eight male cosmonauts (age 41-50 yr, body-mass index of 22-28 kg/m2) during long-term missions (flight lengths of 162-196 days). Recordings were made 60 and 30 days before the flight, every 4 wk during flight, and on days 3 and 6 postflight during spontaneous and controlled respiration. Orthostatic testing was performed pre- and postflight. RF and BP decreased during spaceflight (P < 0.05). Mean HR and HRV in the low- and high-frequency bands did not change during spaceflight. However, the individual responses were different and correlated with preflight values. Pulse-wave transit time decreased during spaceflight (P < 0.05). HRV reached during controlled respiration (6 breaths/min) decreased in six and increased in one cosmonaut during flight. The most pronounced changes in HR, BP, and HRV occurred after landing. The decreases in BP and RF combined with stable HR and HRV during flight suggest functional adaptation rather than pathological changes. Pulse-wave transit time shortening in our study is surprising and may reflect cardiac output redistribution in space. The decrease in HRV during controlled respiration (6 breaths/min) indicates reduced parasympathetic reserve, which may contribute to postflight disturbances.  相似文献   

9.
Otolith activation increases muscle sympathetic nerve activity (MSNA), and MSNA activation may alter associations among autonomic oscillators, including those modulating cerebral hemodynamics. The purpose of this study was to determine the influence of vestibulosympathetic activation on cerebral and autonomic rhythms. We recorded the ECG, finger arterial pressure, end-tidal CO(2), respiration, cerebral blood flow velocity, and MSNA in eight subjects. Subjects breathed at 0.25 Hz for 5 min in the prone and head-down positions. We analyzed data in time and frequency domains and performed cross-spectral analyses to determine coherence and transfer function magnitude. Head-down rotation increased MSNA from 7 +/- 1.3 to 12 +/- 1.5 bursts/min (P = 0.001) but did not affect R-R intervals, arterial pressures, mean cerebral blood flow velocities (V(mean)), or their power spectra. Vestibular activation with head-down rotation had no effect on mean arterial pressure and V(mean) transfer function magnitude. The two new findings from this study are 1) head-down rotation independently activates the sympathetic nervous system with no effect on parasympathetic activity or V(mean); and 2) frequency-dependent associations between arterial pressures and V(mean) are independent of vestibular activation. These findings support the concept that vestibular-autonomic interactions independently and redundantly serve to maintain steady-state hemodynamics.  相似文献   

10.
Heart rate (HR) power spectral indexes are limited as measures of the cardiac autonomic nervous systems (CANS) in that they neither offer an effective marker of the beta-sympathetic nervous system (SNS) due to its overlap with the parasympathetic nervous system (PNS) in the low-frequency (LF) band nor afford specific measures of the CANS due to input contributions to HR [e.g., arterial blood pressure (ABP) and instantaneous lung volume (ILV)]. We derived new PNS and SNS indexes by multisignal analysis of cardiorespiratory variability. The basic idea was to identify the autonomically mediated transfer functions relating fluctuations in ILV to HR (ILV-->HR) and fluctuations in ABP to HR (ABP-->HR) so as to eliminate the input contributions to HR and then separate each estimated transfer function in the time domain into PNS and SNS indexes using physiological knowledge. We evaluated these indexes with respect to selective pharmacological autonomic nervous blockade in 14 humans. Our results showed that the PNS index derived from the ABP-->HR transfer function was correctly decreased after vagal and double (vagal + beta-sympathetic) blockade (P < 0.01) and did not change after beta-sympathetic blockade, whereas the SNS index derived from the same transfer function was correctly reduced after beta-sympathetic blockade in the standing posture and double blockade (P < 0.05) and remained the same after vagal blockade. However, this SNS index did not significantly decrease after beta-sympathetic blockade in the supine posture. Overall, these predictions were better than those provided by the traditional high-frequency (HF) power, LF-to-HF ratio, and normalized LF power of HR variability.  相似文献   

11.
It has not hitherto been clarified whether there is an association between dietary behavior and circadian variation in autonomic nervous system activity among shift workers. This study examines diurnal 24-h rhythm in heart rate variability (HRV) and dietary behavior among rotating shift workers, while taking into account the sleep-wake cycle and physical activity. The subjects were 11 female and 2 male nurses or caregivers working in a rotating 2-shift system at a health care facility. All the subjects were asked to undergo 24-h electrocardiograph and step count recordings, and to record the time of each meal and the amounts of each food and beverage consumed. Coarse graining spectral analysis was used for approximately 10-min segments of HRV to derive the total power (TOT: >0.04 Hz) of the periodic components and the integrated power of periodic components in the low-frequency (LF: 0.04–0.15 Hz) and high-frequency (HF: >0.15 Hz) ranges. Then the ratio of HF power to TOT (HF nu) and the ratio of LF power to HF power (LF/HF) were calculated to assess cardiac vagal tone and cardiac sympathovagal balance, respectively. Single cosinor analysis was used to obtain 24-h period variations in both variables of HRV. Acrophases of HF nu and LF/HF expressed in time since awakening were significantly (p<0.05) delayed for subjects having breakfast at a later time after awakening. Multivariable regression analysis indicated that the timing of breakfast, the ratio of energy intake at dinner to total energy intake, and total energy intake were correlated to the acrophases of HF nu and/or LF/HF. These results suggest that the phase angle between circadian variation in cardiac autonomic nervous system activity and the sleep-wake cycle may be associated with dietary behavior in shift workers.  相似文献   

12.
Respiratory sinus arrhythmia (RSA) has been widely used as a measure of the cardiac vagal control in response to stress. However, RSA seems not to be a generalized indicator because of its dependency on respiratory parameter and individual variations of RSA amplitude (A(RSA)). We hypothesized that phase-lag variations between RSA and respiration may serve as a normalized index of the degree of mental stress. Twenty healthy volunteers performed mental arithmetic task (ART) after 5 min of resting control followed by 5 min of recovery. Breathing pattern, beat-to-beat R-R intervals, and blood pressure (BP) were determined using inductance plethysmography, electrocardiography, and a Finapres device, respectively. The analytic signals of breathing and RSA were obtained by Hilbert transform and the degree of phase synchronization (λ) was quantified. With the use of spectral analysis, heart rate variability (HRV) was estimated for the low-frequency (LF) and high-frequency (HF) bands. A steady-state 3-min resting period (REST), the first 3 min (ART1), and the last 3 min (ART2) of the ART period (ranged from 6- to 19 min) and the last 3 min of the recovery period (RCV) were analyzed separately. Heart rate, systolic BP, and breathing frequency (f(R)) increased and λ, A(RSA), and HF power decreased from REST to ART (P < 0.01). The λ was correlated with normalized A(RSA) and the HF power. The decrease in λ could not be explained solely by the increase in f(R). We conclude that mental stress exerts an influence on RSA oscillations, inducing incoherent phase lag with respect to breathing, in addition to a decrease in RSA.  相似文献   

13.
Premenopausal women have a lower risk of cardiovascular disease (CVD) compared with men of a similar age. Furthermore, the regulation of factors that influence CVD appears to differ between the sexes, including control of the autonomic nervous system (ANS) and the renin-angiotensin system. We examined the cardiac ANS response to angiotensin II (Ang II) challenge in healthy subjects to determine whether differences in women and men exist. Thirty-six healthy subjects (21 women, 15 men, age 38 ± 2 years) were studied in a high-salt balance. Heart-rate variability (HRV) was calculated by spectral power analysis [low-frequency (LF) sympathetic modulation, high-frequency (HF) parasympathetic/vagal modulation, and LF:HF as a measure of overall ANS balance]. HRV was assessed at baseline and in response to graded Ang II infusions (3 ng·kg(-1)·min(-1) × 30 min; 6 ng·kg(-1)·min(-1) × 30 min). Cardiac ANS tone did not change significantly in women after each Ang II dose [3 ng·kg(-1)·min(-1) mean change (Δ)LF:HF (mean ± SE) 0.5 ± 0.3, P = 0.8, vs. baseline; 6 ng·kg(-1)·min(-1) ΔLF:HF (mean ± SE) 0.5 ± 0.4, P = 0.4, vs. baseline], whereas men exhibited an unfavorable shift in overall cardiac ANS activity in response to Ang II (ΔLF:HF 2.6 ± 0.2, P = 0.01, vs. baseline; P = 0.02 vs. female response). This imbalance in sympathovagal tone appeared to be largely driven by a withdrawal in cardioprotective vagal activity in response to Ang II challenge [ΔHF normalized units (nu), -5.8 ± 2.9, P = 0.01, vs. baseline; P = 0.006 vs. women] rather than an increase in sympathetic activity (ΔLF nu, -4.5 ± 5.7, P = 0.3, vs. baseline; P = 0.5 vs. women). Premenopausal women maintain cardiac ANS tone in response to Ang II challenge, whereas similarly aged men exhibit an unfavorable shift in cardiovagal activity. Understanding the role of gender in ANS modulation may help guide risk-reduction strategies in high-risk CVD populations.  相似文献   

14.
大鼠心率变异性频谱中高频成分的中枢机理分析   总被引:7,自引:0,他引:7  
Shen LL  Cao YX  Wu GQ  Li P 《生理学报》1998,50(4):392-400
本文探讨心率变异性(HRV)频谱中高频成分的中枢机理。对正常SD大量给予不同频率的人工通气并电刺激延髓疑核,观察HRV频谱的改变,记录与呼吸节律同步的延髓头端腹外侧区(rVLM)及其周围区神经元细胞外单位放电,对HRV和放电变异性进行相干函数分析。结果显示:(1)HRV的高频成分的中心频率随着人工通气频率的增加而增加,呈高度线性相关,(r=0.83,P〈0.0001);(2)对rVLM及其周围区与  相似文献   

15.
Two different spectral analyses of heart rate (HR) variability (HRV) were performed on seven young male subjects to evaluate the effects of different color temperatures of light exposure (6700 K, 5000 K, 3000 K) before sleep on cardiac vagal activity. In investigating HRV, we used an ordinary fast Fourier transform (FFT) and coarse graining spectral analysis (CGSA), which selectively extracts random fractal components from a given time series. The results showed that suppressions of HR during sleep after 6700 K light exposure were more inhibited than the other two lighting conditions. Increases in high-frequency (HF) components of HRV during sleep were also inhibited by 6700 K pre-sleep lighting. These results indicate that pre-sleep exposure to light of a higher color temperature may inhibit the enhancement of cardiac vagal activity during sleep. Moreover, significant HF alterations were shown in fractal-free HF (not in ordinary HF) components by CGSA. Because the HF component originates from respiratory sinus arrhythmia with periodical fluctuations, CGSA may be an appropriate approach for HRV evaluation during sleep.  相似文献   

16.
The high-frequency (HF) component of the heart rate variability (HRV) is regarded as an index of cardiac vagal responsiveness. However, when vagal tone is decreased, nonneural mechanisms could account for a significant proportion of the HF component. To test this hypothesis, we examined the HRV spectral power in 20 patients with mild chronic heart failure (CHF) and 11 controls before and during ganglion blockade with trimethaphan camsylate (3-6 mg/min iv). A small HF component was still present during ganglion blockade, and its amplitude did not differ between CHF patients and controls. The average contribution of nonneural oscillations to the HF component was 15% (range 1-77%) in patients with CHF and 3% (range 0. 7-30%) in healthy controls (P < 0.005). During controlled breathing at 0.16 Hz, however, it decreased to 1% (range 0.2-13%) in healthy controls and 5% (range 1-44%) in CHF patients. Our results indicate that the HF component can significantly overestimate cardiac vagal responsiveness in patients with mild CHF. This bias is improved by controlled breathing, since this maneuver increases the vagal contribution to HF without affecting its nonneural component.  相似文献   

17.
Heart rate during sinus rhythm is modulated through the autonomic nervous system, which generates short-term oscillations. The high-frequency components in these oscillations are associated with respiration, causing sinus arrhythmia, mediated by the parasympathetic nervous system. In this study, we evaluated whether slow, controlled respiration causes cyclic fluctuations in the frequency of the fibrillating atria. Eight patients (four women; median age 63 yr, range 53-68 yr) with chronic atrial fibrillation (AF) and third-degree atrioventricular block treated by permanent pacemaker were studied. ECG was recorded during baseline rest, during 0.125-Hz frequency controlled respiration, and finally during controlled respiration after full vagal blockade. We calculated fibrillatory frequency using frequency analysis of the fibrillatory ECG for overlapping 2.5-s segments; spectral analysis of the resulting frequency trend was performed to determine the spectrum of variations of fibrillatory frequency. Normalized spectral power at respiration frequency increased significantly during controlled respiration from 1.4 (0.76-2.0) (median and range) at baseline to 2.7 (1.2-5.8) (P = 0.01). After vagal blockade, the power at respiration frequency decreased to 1.2 (0.23-2.8) (P = 0.01). Controlled respiration causes cyclic fluctuations in the AF frequency in patients with long-duration AF. This phenomenon seems to be related to parasympathetic modulations of the AF refractory period.  相似文献   

18.
In subjects with sinus rhythm, respiration has a profound effect on heart rate variability (HRV) at high frequencies (HF). Because this HF respiratory arrhythmia is lost in atrial fibrillation (AF), it has been assumed that respiration does not influence the ventricular response. However, previous investigations have not considered the possibility that respiration might influence HRV at lower frequencies. We hypothesized that Cheyne-Stokes respiration with central sleep apnea (CSR-CSA) would entrain HRV at very low frequency (VLF) in AF by modulating atrioventricular (AV) nodal refractory period and concealed conduction. Power spectral analysis of R-wave-to-R-wave (R-R) intervals and respiration during sleep were performed in 13 subjects with AF and CSR-CSA. As anticipated, no modulation of HRV was detected at HF during regular breathing. In contrast, VLF HRV was entrained by CSR-CSA [coherence between respiration and HRV of 0.69 (SD 0.22) at VLF during CSR-CSA vs. 0.20 (SD 0.19) at HF during regular breathing, P < 0.001]. Comparison of R-R intervals during CSR-CSA demonstrated a shorter AV node refractory period during hyperpnea than apnea [minimum R-R of 684 (SD 126) vs. 735 ms (SD 147), P < 0.001] and a lesser degree of concealed conduction [scatter of 178 (SD 56) vs. 246 ms (SD 72), P = 0.001]. We conclude that CSR-CSA entrains the ventricular response to AF, even in the absence of HF respiratory arrhythmia, by inducing rhythmic oscillations in AV node refractoriness and the degree of concealed conduction that may be a function of autonomic modulation of the AV node.  相似文献   

19.
A method for the accurate time-domain characterization of respiratory sinus arrhythmia (RSA) pattern is presented and applied to two groups of healthy subjects to lay the baseline of RSA patterns and to underlay their features: response to standing, stability in successive recordings, and individuality of the shape of RSA pattern. RSA pattern is evaluated by selective averaging of heart rate (HR) changes from multiple respiratory cycles over the respiratory phase and represents the complete modulating function of HR by respiration. The RSA pattern is evaluated with free respiration and even in cases of severe arrhythmia. Estimation error is 6-8% in magnitude, phase resolution is 0.2 rad, and sensitivity margin for respiratory-related HR variability (HRV) components is 1%. RSA magnitude, phase lag, and expiration-to-inspiration time ratio are derived in addition to the entire pattern. In a group of 10 healthy young adults, a phase lag difference of 11.4 +/- 8.5% (mean +/- SD, P < 0.004) was observed between supine and standing postures, possibly ascribed to breathing mechanics. A second group of 15 healthy young adults at supine rest showed stability of the RSA pattern in successive recordings (several weeks apart) as well as individuality among subjects. This may suggest a nonscalar individual long-term index for cardiorespiratory coupling. The method is complementary to the existing statistical and spectral methods. It allows the complete characterization of the primary RSA components and may provide new insight into the effects of vagal activity and changes in clinical conditions.  相似文献   

20.
This study examines the acute effect of heart rate variability (HRV) biofeedback on HRV measures during and immediately after biofeedback and during the following laboratory-induced stress. Eighteen healthy males exposed to work-related stress were randomised into an HRV biofeedback group (BIO) or a comparative group (COM). Subjects completed a modified Stroop task before (Stroop 1) and after (Stroop 2) the intervention. Both groups had similar physiological responses to stress in Stroop 1. In Stroop 2, the COM group responded similarly to the way they did to Stroop 1: respiratory frequency (RF) and heart rate (HR) increased, RMSSD and high frequency (HF) power decreased or had a tendency to decrease, while low frequency (LF) power showed no change. The BIO group responded differently in Stroop 2: while RF increased and LF power decreased, HR, RMSSD and HF power showed no change. In the BIO group, RMSSD was higher in Stroop 2 compared to Stroop 1. In conclusion, HRV biofeedback induced a short term carry-over effect during both the following rest period and laboratory-induced stress suggesting maintained HF vagal modulation in the BIO group after the intervention, and maintained LF vagal modulation in the COM group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号