首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huh JR  Vernooy SY  Yu H  Yan N  Shi Y  Guo M  Hay BA 《PLoS biology》2004,2(1):E15
Spermatozoa are generated and mature within a germline syncytium. Differentiation of haploid syncytial spermatids into single motile sperm requires the encapsulation of each spermatid by an independent plasma membrane and the elimination of most sperm cytoplasm, a process known as individualization. Apoptosis is mediated by caspase family proteases. Many apoptotic cell deaths in Drosophila utilize the REAPER/HID/GRIM family proapoptotic proteins. These proteins promote cell death, at least in part, by disrupting interactions between the caspase inhibitor DIAP1 and the apical caspase DRONC, which is continually activated in many viable cells through interactions with ARK, the Drosophila homolog of the mammalian death-activating adaptor APAF-1. This leads to unrestrained activity of DRONC and other DIAP1-inhibitable caspases activated by DRONC. Here we demonstrate that ARK- and HID-dependent activation of DRONC occurs at sites of spermatid individualization and that all three proteins are required for this process. dFADD, the Drosophila homolog of mammalian FADD, an adaptor that mediates recruitment of apical caspases to ligand-bound death receptors, and its target caspase DREDD are also required. A third apoptotic caspase, DRICE, is activated throughout the length of individualizing spermatids in a process that requires the product of the driceless locus, which also participates in individualization. Our results demonstrate that multiple caspases and caspase regulators, likely acting at distinct points in time and space, are required for spermatid individualization, a nonapoptotic process.  相似文献   

2.
The 60-kDa heat shock protein family (Hsp60) is found in prokaryotes, mitochondria, and chloroplasts. The Hsp60 proteins promote proper protein folding by preventing aggregation. In Drosophila melanogaster, the hsp60 gene is essential for a variety of developmental processes, beginning at early embryogenesis. In this study we show that an additional member of the Drosophila hsp60 gene family, hsp60B, is essential in male fertility. In males homozygous for a mutation of the hsp60B gene, developmental processes appeared normal throughout most of spermatogenesis, including spermatocyte growth, meiosis, and spermatid elongation. At these stages, mitochondria also displayed a differentiation process similar to wild-types. However, we found that the mutation disrupted a late stage of spermatogenesis, the spermatid individualization process. In this process, the individualization complex is assembled at spermatid nuclear heads, traverses along spermatid tails, and generates membranes for each of the spermatids in a cyst. Our analysis further shows that the individualization complex in sterile males displayed abnormal morphology as it was traveling along the spermatid tails. The Drosophila Hsp60 proteins are believed to be exclusively localized in the mitochondria. Our observation that the hsp60B mutation displayed no apparent defect in mitochondrial differentiation during spermatogenesis suggests that the Hsp60B protein may operate in a nonmitochondrial location.  相似文献   

3.
Class V myosins are multifunctional molecular motors implicated in vesicular traffic, RNA transport, and mechanochemical coupling of the actin and microtubule-based cytoskeletons. To assess the function of the single myosin V gene in Drosophila (MyoV), we have characterized both deletion and truncation alleles. Mutant animals exhibit no detectable defects during embryogenesis but are delayed in larval development; most die prior to 3rd instar. MyoV protein is widely distributed; however, there are no obvious cytological defects in mutant larval tissues where MyoV was normally highly expressed. Of the few adult MyoV mutant escapers, females were fertile but males were not. We examined the expression of MyoV during spermatogenesis. MyoV was associated with membranes, microtubule, and actin structures required for spermatid maturation; MyoV was strongly associated with the sperm nuclei during the maturation of the actin-rich investment cones that package spermatids in individual membranes. In MyoV mutant escaper males, the early stages of spermatogenesis were normal; however, in the later stages, the investment cones stained weakly for actin and their registration was disrupted; no mature sperm were produced. Our results suggest that MyoV contributes to the formation of the actin-based investment cones and acts to coordinate and/or anchor these structures and other components of the individualization complex.  相似文献   

4.
Lasp family proteins contain an amino-terminal LIM domain, two actin-binding nebulin repeats and a carboxyl-terminal SH3 domain. Vertebrate Lasp-1 localizes to focal adhesions and the leading edge of migrating cells, and is required for cell migration. To assess the in vivo function of Lasp, we generated a null mutant in Drosophila Lasp. Lasp(1) is homozygous viable, but male sterile. In Lasp mutants the stem cell niche is no longer anchored to the apical tip of the testis, and actin cone migration is perturbed resulting in improper spermatid individualization. Hub cell mislocalization can by phenocopied by expressing Lasp or betaPS integrin RNAi transgenes in somatic cells, and Lasp genetically interacts with betaPS integrin, demonstrating that Lasp functions together with integrins in hub cells to anchor the stem cell niche. Finally, we show that the stem cell niche is maintained even if it is not properly localized.  相似文献   

5.
Timakov B  Zhang P 《Genetics》2000,155(1):179-189
The heterochromatic Y chromosome of Drosophila melanogaster contains approximately 40 Mb of DNA but has only six loci mutable to male sterility. Region h1-h9 on YL, which carries the kl-3 and kl-5 loci, induces male sterility when present in three copies. We show that three separate segments within the region are responsible for the triplosterility and have an additive effect on male fertility. The triplosterile males displayed pleiotropic defects, beginning at early postmeiotic stages. However, the triplosterility was unaffected by kl-3 or kl-5 alleles. These data suggest that region h1-h9 is complex and may contain novel functions in addition to those of the previously identified kl-3 and kl-5 loci. The kl-3 and kl-5 mutations as well as deficiencies within region h1-h9 result in loss of the spermatid axonemal outer dynein arms. Examination using fluorescent probes showed that males deficient for h1-h3 or h4-h9 displayed a postmeiotic lesion with disrupted individualization complexes scattered along the spermatid bundle. In contrast, the kl-3 and kl-5 mutations had no effect on spermatid individualization despite the defect in the axonemes. These results demonstrate that region h1-h9 carries genetically separable functions: one required for spermatid individualization and the other essential for assembling the axonemal dynein arms.  相似文献   

6.
A G Fraser  N J McCarthy    G I Evan 《The EMBO journal》1997,16(20):6192-6199
Caspases are involved in the execution of cell death in all multicellular organisms so far studied, including the nematode worm, fruit fly and vertebrates. While Caenorhabditis elegans has only a single identified caspase, CED-3, whose activity is absolutely required for all developmental programmed cell deaths, most mammalian cell types express multiple caspases with varying specificities. The fruit fly Drosophila melanogaster is genetically tractable, less complex than vertebrates and possesses two known caspases, DCP-1 and drICE. The fly may therefore provide a good model system for examining the hierarchy and relative roles of individual caspases in the execution of apoptosis. We have examined the role of drICE in in vitro apoptosis of the D.melanogaster cell line S2. We show that cytoplasmic lysates made from S2 cells undergoing apoptosis induced by either reaper (rpr) expression or cycloheximide treatment contain a caspase activity with DEVD specificity which can cleave p35, lamin DmO, drICE and DCP-1 in vitro, and which can trigger chromatin condensation in isolated nuclei. Using antibodies specific to drICE, we show that immunodepletion of drICE from these lysates is sufficient to remove most measurable in vitro apoptotic activity, and that re-addition of exogenous drICE to such immunodepleted lysates restores apoptotic activity. We conclude that, at least in S2 cells, drICE can be the sole caspase effector of apoptosis.  相似文献   

7.
《Fly》2013,7(4):261-272
Spermatogenesis in all animal species occurs within a syncytium. Only at the very end of spermatogenesis are individual sperm cells resolved from this syncytium in a process known as individualization. Individualization in Drosophila begins as a membrane-cytoskeletal complex known as the individualization complex (IC) assembles around the sperm heads and proceeds down the flagella, removing cytoplasm from between the sperm tails and shrink-wrapping each spermatid into its own plasma membrane as it travels. The mulet (mlt) mutation results in severely disrupted ICs, indicating that the mlt gene product is required for individualization. Inverse PCR followed by cycle sequencing maps all known P-insertion alleles of mlt to two overlapping genes, CG12214 (the Drosophila tubulin-binding cofactor E-like homolog) and KCNQ (a large voltage-gated potassium channel). However, since the alleles of mlt map to the 5′-UTR of CG12214 and since CG12214 is contained within an intron of KCNQ, it was hypothesized that mlt and CG12214 are allelic. Indeed, CG12214 mutant testes exhibited severely disrupted ICs and were indistinguishable from mlt mutant testes, thus further suggesting allelism. To test this hypothesis, alleles of mlt were crossed to CG12214 in order to generate trans-heterozygous males. Testes from all trans-heterozygous combinations revealed severely disrupted ICs and were also indistinguishable from mlt mutant testes, indicating that mlt and CG12214 fail to complement one another and are thus allelic. In addition, complementation testing against null alleles of KCNQ verified that the observed individualization defect is not caused by a disruption of KCNQ. Finally, since a population of spermatid-associated microtubules known to disappear prior to movement of the IC abnormally persists during individualization in CG12214 mutant testes, this work implicates TBCE-like in the removal of these microtubules prior to IC movement. Taken together, these results identify mlt as CG12214 and suggest that the removal of microtubules by TBCE-like is a necessary pre-requisite for proper coordinated movement of the IC.  相似文献   

8.
Spermatogenesis in all animal species occurs within a syncytium. Only at the very end of spermatogenesis are individual sperm cells resolved from this syncytium in a process known as individualization. Individualization in Drosophila begins as a membrane-cytoskeletal complex known as the individualization complex (IC) assembles around the sperm heads and proceeds down the flagella, removing cytoplasm from between the sperm tails and shrink-wrapping each spermatid into its own plasma membrane as it travels. The mulet (mlt) mutation results in severely disrupted ICs, indicating that the mlt gene product is required for individualization. Inverse PCR followed by cycle sequencing maps all known P-insertion alleles of mlt to two overlapping genes, CG12214 (the Drosophila tubulin-binding cofactor E-like homolog) and KCNQ (a large voltage-gated potassium channel). However, since the alleles of mlt map to the 5′-UTR of CG12214 and since CG12214 is contained within an intron of KCNQ, it was hypothesized that mlt and CG12214 are allelic. Indeed, CG12214 mutant testes exhibited severely disrupted ICs and were indistinguishable from mlt mutant testes, thus further suggesting allelism. To test this hypothesis, alleles of mlt were crossed to CG12214 in order to generate trans-heterozygous males. Testes from all trans-heterozygous combinations revealed severely disrupted ICs and were also indistinguishable from mlt mutant testes, indicating that mlt and CG12214 fail to complement one another and are thus allelic. In addition, complementation testing against null alleles of KCNQ verified that the observed individualization defect is not caused by a disruption of KCNQ. Finally, since a population of spermatid-associated microtubules known to disappear prior to movement of the IC abnormally persists during individualization in CG12214 mutant testes, this work implicates TBCE-like in the removal of these microtubules prior to IC movement. Taken together, these results identify mlt as CG12214 and suggest that the removal of microtubules by TBCE-like is a necessary pre-requisite for proper coordinated movement of the IC.  相似文献   

9.
The initiator caspase Dronc is the only Drosophila caspase that contains a caspase activation and recruitment domain (CARD). Although Dronc has been implicated as an important effector of apoptosis, the genetic function of dronc in normal development is unclear because dronc mutants have not been available. In an EMS mutagenesis screen, we isolated four point mutations in dronc that recessively suppress the eye ablation phenotype caused by eye-specific overexpression of hid. Homozygous mutant dronc animals die during pupal stages; however, at a low frequency we obtained homozygous adult escapers. These escapers have additional cells in the eye and wings that are less transparent and slightly curved down. We determined that this is due to lack of apoptosis. Our analyses of dronc mutant embryos suggest that dronc is essential for most apoptotic cell death during Drosophila development, but they also imply the existence of a dronc-independent cell death pathway. We also constructed double mutant flies for dronc and the apoptosis inhibitor diap1. dronc mutants can rescue the ovarian degeneration phenotype caused by diap1 mutations, confirming that dronc acts genetically downstream of diap1.  相似文献   

10.
11.
S L Wang  C J Hawkins  S J Yoo  H A Müller  B A Hay 《Cell》1999,98(4):453-463
Drosophila Reaper (RPR), Head Involution Defective (HID), and GRIM induce caspase-dependent cell death and physically interact with the cell death inhibitor DIAP1. Here we show that HID blocks DIAP1's ability to inhibit caspase activity and provide evidence suggesting that RPR and GRIM can act similarly. Based on these results, we propose that RPR, HID, and GRIM promote apoptosis by disrupting productive IAP-caspase interactions and that DIAP1 is required to block apoptosis-inducing caspase activity. Supporting this hypothesis, we show that elimination of DIAP1 function results in global early embryonic cell death and a large increase in DIAP1-inhibitable caspase activity and that DIAP1 is still required for cell survival when expression of rpr, hid, and grim is eliminated.  相似文献   

12.
Huh JR  Guo M  Hay BA 《Current biology : CB》2004,14(14):1262-1266
Achieving proper organ size requires a balance between proliferation and cell death. For example, at least 40%-60% of cells in the Drosophila wing disc can be lost, yet these discs go on to give rise to normal-looking adult wings as a result of compensatory proliferation. The signals that drive this proliferation are unknown. One intriguing possibility is that they derive, at least in part, from the dying cells. To explore this hypothesis, we activated cell death signaling in specific populations of cells in the developing wing but prevented these cells from dying through expression of the baculovirus p35 protein, which inhibits the activity of effector caspases that mediate apoptosis. This allowed us to uncouple the activation steps of apoptosis from death itself. Here we report that stimulation of cell death signaling in the wing disc-in the absence of cell death-results in increased proliferation and ectopic expression of Wingless, a known mitogen in the wing. Activation of the apical cell death caspase Dronc is necessary and sufficient to drive both of these processes. Our results demonstrate an unanticipated function, the nonautonomous induction of proliferation, of an apical cell death caspase. This activity is likely to contribute to tissue homeostasis by promoting local compensatory proliferation in response to cell death. We speculate that dying cells may communicate cell fate or behavior instructions to their neighbors in other contexts as well.  相似文献   

13.
14.
Proteases of the caspase family play key roles in the execution of apoptosis. In Drosophila there are seven caspases, but their roles in cell death have not been studied in detail due to a lack of availability of specific mutants. Here, we describe the generation of a specific mutant of the Drosophila gene encoding DRONC, the only caspase recruitment domain (CARD) containing apical caspase in the fly. dronc mutants are pupal lethal and our studies show that DRONC is required for many forms of developmental cell deaths and apoptosis induced by DNA damage. Furthermore, we demonstrate that DRONC is required for the autophagic death of larval salivary glands during metamorphosis, but not for histolysis of larval midguts. Our results indicate that DRONC is involved in specific developmental cell death pathways and that in some tissues, effector caspase activation and cell death can occur independently of DRONC.  相似文献   

15.
The role of zinc in caspase activation and apoptotic cell death   总被引:15,自引:0,他引:15  
In addition to its diverse role in many physiological systems, zinc (Zn) has now been shown to be an important regulator of apoptosis. The purpose of this review is to integrate previously published knowledge on Zn and apoptosis with current attempts to elucidate the mechanisms of action of this biometal. This paper begins with an introduction to apoptosis and then briefly reviews the evidence relating Zn to apoptosis. The major focus of this review is the mechanistic actions of Zn and its candidate intracellular targets. In particular, we examine the cytoprotective functions of Zn which suppress major pathways leading to apoptosis, as well as the more direct influence of Zn on the apoptotic regulators, especially the caspase family of enzymes. These two mechanisms are closely related since a decline in intracellular Zn below a critical threshold level may not only trigger pathways leading to caspase activation but may also facilitate the process by which the caspases are activated. Studies by our laboratory in airway epithelial cells show that Zn is co-localized with the precursor form of caspase-3, mitochondria and microtubules, suggesting this Zn is critically placed to control apoptosis. Further understanding the different pools of Zn and how they interact with apoptotic pathways should have importance in human disease.  相似文献   

16.
17.
Apoptotic cells are known to regulate the ordered dismantling of intercellular contacts through caspase activity. Despite the important role of desmoglein (Dsg) 2 in epithelial cell-cell adhesion, the fate of this widespread desmosomal cadherin during apoptosis is yet poorly understood. Here, by means of pharmacological approaches, we investigated whether Dsg2 was targeted by caspases in HaCaT and HT-29 cell lines undergoing staurosporine (STS)-induced apoptosis. Results showed that STS induced a caspase-dependent form of cell-death in both keratinocytes (HaCaT) and enterocytes (HT-29), that associated with progressive depletion of Dsg2 from cell lysates. The proteolytic processing of full-length Dsg2 resulted in the appearance of a 70-kDa fragment which was released into the cytosol. Consistently, immunofluorescence studies revealed that Dsg2 staining was abolished from cell surface whereas the cytoplasmic region of Dsg2 did localize intracellularly. Plakoglobin (Pg) also underwent cleavage and detached from Dsg2. Apoptotic changes paralleled with progressive loss of intercellular adhesion strength. All these biochemical, morphological, and functional changes were regulated by caspase 3. Indeed, in the presence of the caspase 3-inhibitor z-DEVD-fmk, full-length Dsg2 protein levels were preserved, whereas the amount of the 70-kDa fragment was maintained on control levels. Furthermore, cells pretreated with z-DEVD-fmk retained the membrane labeling of Dsg2. Taken together, our data demonstrate that the apoptotic processing of Dsg2 is mediated by caspase 3 in epithelial cells.  相似文献   

18.
Variations in subunit composition and modification have been proposed to regulate the multiple functions of cytoplasmic dynein. Here, we examine the role of the Drosophila ortholog of tctex-1, the 14-kDa dynein light chain. We show that the 14-kDa light chain is a bona fide component of Drosophila cytoplasmic dynein and use P element excision to generate flies that completely lack this dynein subunit. Remarkably, the null mutant is viable and the only observed defect is complete male sterility. During spermatid differentiation, the 14-kDa light chain is required for the localization of a nuclear "cap" of cytoplasmic dynein and for proper attachment between the sperm nucleus and flagellar basal body. Our results provide evidence that the function of the 14-kDa light chain in Drosophila is distinct from other dynein subunits and is not required for any essential functions in early development or in the adult organism.  相似文献   

19.
Among the seven caspases encoded in the fly genome, only dronc contains a caspase recruitment domain. To assess the function of this gene in development, we produced a null mutation in dronc. Animals lacking zygotic dronc are defective for programmed cell death (PCD) and arrest as early pupae. These mutants present a range of defects, including extensive hyperplasia of hematopoietic tissues, supernumerary neuronal cells, and head involution failure. dronc genetically interacts with the Ced4/Apaf1 counterpart, Dark, and adult structures lacking dronc are disrupted for fine patterning. Furthermore, in diverse models of metabolic injury, dronc- cells are completely insensitive to induction of cell killing. These findings establish dronc as an essential regulator of cell number in development and illustrate broad requirements for this apical caspase in adaptive responses during stress-induced apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号