首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
—(1) The effects of exposure of rats to increased atmospheric concentrations of CO2 on brain metabolism in vivo were studied. (2) After 2·5 min exposure to an atmosphere of 20% CO2, the rate of glucose utilization by brain decreased from 0·61 μmol/min per g to 0·32 μmol/min per g and remained between 0·3 and 0·4 μmol/min per g for 60 min, the longest interval studied. O2 utilization, calculated from the arteriovenous difference of O2 across the brain and blood flow, was 3·5 μmol/min per g in controls and was 4·7 μmol/min per g after 5 min in the 20% CO2 atmosphere. (3) The concentrations of glucose, glucose 6-phosphate and aspartate were increased during the first 10 min of CO2 exposure whereas the concentrations of other glycolytic intermediates, tricarboxylic acid cycle intermediates and glutamate were decreased. The amount of endogenous substrate which disappeared during the first 10 min was sufficient, if used to supplement glucose as a fuel, to maintain the O2 consumption at, or slightly above, the control level. Glutamate and lactate were quantitatively the most important energy sources. (4) The mechanism whereby‘CO2 decreased the rate of glucose utilization is uncertain. The initial rise in glucose 6-phosphate and fall in fructose 1,6-diphosphate concentrations suggested that an inhibition of phosphofructokinase was responsible. However, after 60 min in 20% CO2, the concentrations of both of these metabolites returned to normal while the rate of glucose utilization remained depressed.  相似文献   

2.
Abstract: Brains of mice fed the creatine analogue cyclocreatine accumulated 10 γmol/g fresh wt. of cyclocreatine, of which 93% occurred as the synthetic phosphagen, cyclocreatine-P (l-carboxymethyl-2-imino-3-phosphonoimidazolidine). In brains containing cyclocreatine-P2-, creatine-P (phosphocreatine) levels were lowered 40%; levels of ATP, P1, and glucose were not altered: glutamate levels were lowered 17%: and aspartate levels were lowered 56%, relative to controls. When cyclocreatine was removed from the diet, brain cyclocreatine levels decreased with a half-life of 17 to 28 days. Ischemia was initiated in brains by decapitation of mice previously injected with the centrally acting muscle relaxant mephenesin. The initial creatine-P pool of 2-3 γmol/g was completely depleted within 1 min in ischemic brains of both control and cyclocreatine-fed mice. In brains of cyclocreatine-fed mice, the much larger cyclocreatine-P pool of 9.3 γmol/g decreased to 6 γmol/g after 2 min and to 2.2 γrnol/g after 4 min of ischemia, with a correspondingly increased accumulation of P1. Levels of total cellular ATP were sustained slightly longer during ischemia in brains containing cyclocreatine-P. Available energy reserves of control brains were almost completely depleted after 2 min of ischemia, whereas generation and utilization of high-energy phosphate continued for more than 3 min after initiation of ischemia in brains of cyclocreatine-fed mice. These data suggest that during ischemic episodes cyclocreatine-P can function as a supplemental reservoir of high-energy phosphate and prolong the time required to exhaust the available energy stores of ischemic brain.  相似文献   

3.
—At various times during a 2-day study, the levels of adenine nucleotides and selected glycolytic intermediates were determined in brains of chicks fed a diet containing d -galactose (40%, w/w). The levels of ATP and glucose 6-phosphate had decreased by 9 h after initiation of the diet, whereas those of fructose 1,6-diphosphate, 3-phosphoglycerate, l -α-glycerophosphate, and lactate were not reduced until after 18 h had elasped. Although glucose 1-phosphate was not appreciably affected, glucose and glycogen were depleted during the latter stages of the toxicity. The cerebral levels of 3′,5′-cyclic AMP and citrate did not differ significantly between the two dietary groups at 48 h. The changes in the levels of cerebral glycolytic intermediates and high-energy phosphates during ischemia indicated that the glycolytic rate was diminished in the chicks fed galactose and that high-energy phosphate compounds were depleted sooner than in controls. After intraperitoneal injection of [14C]glucose, the specific radioactivity and levels of glucose in the plasma from chicks fed either diet were similar, whereas they were significantly reduced in the brains from galactosefed animals. We suggest that galactose interferes with the uptake of glucose into the brain and that this mechanism may be an important factor in d -galactose-induced neurotoxicity in the chick.  相似文献   

4.
ENZYMIC AND CEREBRAL METABOLIC EFFECTS OF 2-DEOXY-d-GLUCOSE   总被引:8,自引:6,他引:2  
—The time course of effects of 2-deoxy-d -glucose on cerebral glucose metabolism has been studied in vivo and the inhibitory actions of 2-deoxy-d -glucose and 2-deoxy-d -glucose-6-phosphate on cerebral glycolytic enzymes in vitro. Mice were given 2-deoxy-d -glucose 3 g/kg intraperitoneally. Blood 2-deoxy-d -glucose/glucose ratio was 2–3 from 5 to 30 min after injection, the hyperglycaemic response to 2-deoxy-d -glucose having been suppressed with propranolol. Maximal cerebral 2-deoxy-d -glucose uptake observed was 1μ11 μmol/g/min between 5 and 10 min after injection. At 10 min brain concentrations of 2-deoxy-d -glucose and 2-deoxy-d -glucose-6-phosphate were 5·82 and 3·12 μmol/g. Analysis of the fate of d -[U-14C] glucose given subcutaneously 5 min before death showed that glucose uptake was reduced to 40–60 per cent of control from 5 to 30 min after 2-deoxy-d -glucose. However brain glucose concentration rose three to five-fold 20–30 min after 2-deoxy-d -glucose. The majority of glucose entering the brain after 10 min of 2-deoxy-d -glucose treatment was recovered as glucose. Conversion of brain glucose to other acid soluble components was reduced to 1/3 at 10 min and 1/5 at 20–30 min. Glucose-6-phosphate concentration rose from 5 min onwards and was maintained at twice control concentration from 10–30 min. However, because of the rapid entry of 2-deoxy-d -glucose and its conversion to 2-deoxy-d -glucose-6-phosphate, the 2-deoxy-d -glucose 6-P/glucose 6-P ratio was between 19 and 32. Brain adenosine triphosphate concentration did not change, creatine phosphate concentration fell after 25 min. Measurement of enzyme activities in cerebral homogenates (using 1 mivs substrate concentration) showed that hexokinase (EC 2.7.1.1) was 40 per cent inhibited by 5 mm -deoxy-d -glucose (but not by 2-deoxy-d -glucose 6-P). Glucose 6-P dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.43) and phosphoglucomutase (EC 2.7.5.1) were not affected by either 2-deoxy-d -glucose (5 mm ) or 2-deoxy-d -glucose 6-P (5 or 20 mm ). Hexose-phosphate isomerase (EC 5.3.1.9) was 70 per cent inhibited by 20 mm -d -deoxy-d -glucose 6-P. Phosphofructokinase (EC 2.7.1.11) was inhibited by 17 per cent by 2-deoxy-d -glucose 6-P (20 mm ). During the initial impairment of cerebral function by 2-deoxy-d -glucose there is competitive inhibition of glucose transport into the brain; later, glycolysis is more powerfully depressed by the inhibition of isomerase produced by the high intracerebral concentration of 2-deoxyglucose-6-phosphate.  相似文献   

5.
Abstract: In the cerebral cortices of rats, during insulininduced hypoglycemia, changes in the concentrations of labile phosphate compounds [ATP, ADP, AMP, and phosphocreatine (PCr)] and glycolytic metabolites (lactate, pyruvate, and glucose) as well as phospholipids and free fatty acids (FFAs) were studied in relation to extracellular potassium and calcium activities. Changes in extracellular calcium and potassium activities occurred at approximately the onset of isoelectricity. The extracellular calcium activity dropped from 1.17 ± 0.14 mM to 0.18 ± 0.28 mM and the potassium activity rose from 3.4 ± 0.94 mM to 48 ± 12 mM (means ± SD). Minutes prior to this ionic change the levels of ATP, PCr, and phospholipids were unchanged while the levels of FFAs remained unchanged or slightly elevated. Following the first ionic change the steady-state levels of ATP decreased by 40%, from 2.42 to 1.56 μmol/g. PCr levels decreased by 75%, from 4.58 to 1.26 μmol/g. Simultaneously, the levels of FFAs increased from 338 to 642 nmol/g, arachidonic acid displaying the largest relative increase, 33 to 130 nmol/g. The first ionic change was followed by a short period of normalization of ionic concentrations followed by a sustained ionic change. This was accompanied by a small additional decrease in ATP (to 1.26 μmol/g). The FEA levels increased to 704 nmol/g. There was a highly sig nificant negative correlation between the levels of FFAs and the energy charge of the tissue. The formation of FFAs was accompanied by a decrease in the phospholipid pool. The largest relative decrease was observed in the inositol phosphoglycerides, followed by serine and ethanolamine phosphoglycerides. After 10 min of isoelectricity the levels of phospholipids had decreased by 5.12 μmol/g while the levels of FFAs had increased by 0.46 μmol/g, indicating oxidative metabolism or washout of the released FFAs. The attenuation of the rapid initial changes in the levels of the energy metabolites and FFAs as well as the correlation between the energy charge and the levels of FFAs suggests that a new steady state is established following the first ionic change. The importance of these reactions for the development of hypogiycemic neuronal damage is discussed.  相似文献   

6.
An isolated rat brain preparation was perfused using glucose-free (=aglycemic) media. The high-energy phosphates, substrates of the glycolytic pathway, free atnino acids, acetylcholine as well as the intracellular distribution of hexokinase activity were determined in brain tissues. The EEG was evaluated visually. The levels of glycolytic substrates, glutamate, and glutamine in cortical tissue decreased after aglycemic perfusion, whereas the aspartate level increased and the GABA level remained unchanged. The high-energy phosphate content seemed to be unaffected for about 15 min of aglycemic perfusion and fell significantly after 20 min. The EEG of the isolated brain changed rapidly after starting aglycemic perfusion and became isoelectric after 12–15 min. Hyperglycemic perfusion (35 mmol glucose per liter perfusion medium) did not alter the energy metabolism of the isolated brain. The breakdown of cerebral energy metabolism and of EEG activity was postponed when thiopental was added to the perfusion medium. The soluble hexokinase activity measured in cortical tissue was reduced after aglycemic perfusion and was enhanced after thiopental. Hyperglycemic perfusion did not influence the intracellular hexokinase distribution. The acetylcholine level in the striatum of the isolated rat brain was significantly decreased by aglycemia and was increased in hypothalamus by thiopental. It was suggested that hexokinase bound to the mitochondrial membrane may play an important role in the relationship of energy metabolism and neuronal activity.  相似文献   

7.
Abstract— Concentrations in whole rat brains of lipids (total lipids, phospholipids, galactolipids, cholesterol, plasmalogens) and of proteolipid protein were not altered after feeding for 2 and 6 weeks of diets containing 5 per cent excess l -phenylalanine. After 2 weeks of diet with 7 per cent excess l -phenylalanine there was a slight reduction (5–10 per cent) in the concentrations in whole brain of cholesterol and galactolipids. No significant effects were noted in cerebral hemispheres after 3 weeks of diets with 7 per cent excess l -phenylalanine. In the 5 and 7 per cent supplemented groups of animals, the total amounts of the various lipids were initially reduced to levels which were within 10 per cent of those in diet-matched controls. The results for rats indicate that after 3 weeks of age only very moderate effects on accumulation of cerebral lipids can be produced by excess dietary l -phenylalanine fed at the most toxic levels of supplementation, while lower levels of dietary supplementation are without effect. The results suggest further that the more mature brain is resistant to alteration of deposition of myelin lipids by high levels of phenylalanine.  相似文献   

8.
Phenylalanine uptake in Chlorella fusca was measured, using the membrane filter technique. The cells were synchronized, and harvested at specific points of the life cycle. Experiments with autospores showed that the uptake followed saturation kinetics, with a Km= 5 μM. Vmax, was 0.1 nmol/min × 107 cells. The optimum temperature for the uptake was 40°C, and the activation energy was 1700 J/mol. The uptake showed a high specificity towards l -phenylalanine; presence of the unlabelled stereoisomer did not inhibit the uptake. Uptake of l -phenylalanine was inhibited in the presence of other analogues or other amino acids, but only if they were present in concentrations considerably higher than that of L-phenylalanine. Variations in the ratio of Na4+ to K+ in the external solution during uptake experiments did not have any influence upon the uptake rate of l -phenylalanine. The cells were able to take up the amino acid against a concentration gradient. At pool maximum the ratio between internal and external amino acid concentration was 1000/1. 2,4-Dinitro-phenol inhibited the uptake completely. Exchange between internal and external l -phenylalanine could not be demonstrated. The Km value did not change during the life cycle of the cells. The uptake rate reached a maximum at the end of the light period, and fell to a minimum just before sporulation started. It is concluded that Chlorella fusca cells have a highly specific, active uptake system for l -phenylalanine. The system is constitutive, independent on the K or Na concentration, and the mechanism of uptake does not change during the life cycle of the cells.  相似文献   

9.
—Brains of mice fed a diet containing 1% cyclocreatine (1-carboxymethyl-2-iminoimidazolidine) accumulated the high energy phosphate compound cyclocreatine-P (1-carboxymethyl-2-imino-3-phosphonoimidazolidine), an analogue of creatine-P (phosphocreatine). During a 50-day feeding period mouse brain cyclocreatine-P increased linearly to 14 μmol/g fresh wt; during this time the total phosphagen level of brain, creatine-P plus cyclocreatine-P, increased from 3 to 15 μmol/g. When the blood-brain barrier was circumvented, a more rapid accumulation of synthetic phosphagen was achieved. Minced brain preparations from 11 to 15-day chick embryos incubated in vitro with 30 mm -cyclocreatine accumulated 10 μmol/g of cyclocreatine-P in 90 min, and this novel high energy phosphate pool could be depleted by incubation with 105 mm -potassium ions or 3 μm -valinomycin. Subsequent regeneration of the depleted pools could also be demonstrated. Brain tissue containing a supplemental reservoir of cyclocreatine-P, which is utilized to regenerate ATP much more slowly than creatine-P, might be better able to withstand anoxia and certain other metabolic stresses, but this has not been established. However, the marked delay of onset of rigor previously shown to occur in ischemic heart and skeletal muscle of cyclocreatine-fed animals is compatible with this suggestion.  相似文献   

10.
The age-associated changes in the levels and synthesis of dolichyl phosphate and dolichyl diphosphate derivatives were investigated in brain and liver of 057B1/NNia mice. The total chloroform/methanol (2:1, v/v)-extractable phosphorylated dolichols of brain increased from 1.01 micrograms/g at 3 months to 5.22 micrograms/g at 28 months of age. The long-chain dolichyl diphosphate oligosaccharide (Dol-PP-oligo) levels of brain increased from 0.82 microgram/g in 3 months to 2.8 micrograms/g in 28-month-old animals. However, in liver and in kidney, the levels of these components were unaffected by age. Incorporation of labelled glucose from UDP-glucose into dolichyl phosphate glucose and Dol-PP-oligo in brain microsomes was unaffected by age, whereas, in liver microsomes, the rates of synthesis of both components increased by 50-150%. The increased rate of synthesis and lack of accumulation of Dol-PP-oligo in liver suggest an active utilization and/or catabolism of these glycoprotein precursors. The accumulation of Dol-PP-oligo in aging brain may reflect its decreased utilization for N-glycosylation and/or reduced catabolism.  相似文献   

11.
In the present investigation we monitored the incorporation of [14C] from [U-14C]glucose into various rat brain glycolytic intermediates of conscious and pentobarbital-anesthetized animals. Labeled glucose was delivered to brain by single bolus intracarotid injection and brain tissue was subsequently prepared at 15, 30 and 45 sec by freeze-blowing. Glycolytic intermediates were then separated by column chromatography. Our results showed a gradual decrease with time of14C-labeled glucose which gave a calculated rate for glucose metabolism of 0.86 mol/min/g and 0.56 mol/min/g in conscious and anesthetized animals, respectively. Compared to the results obtained using conscious animals the administration of pentobarbital not only resulted in a significant attenuation of the rate of glucose metabolism but also caused a similar reduction in the amount of14C incorporated into several glycolytic intermediates. These intermediates included: glucose 6-phosphate, fructose 6-phosphate, fructose, 1,6 diphosphate, dihydroxyacetone phosphate and post glycolytic compounds. In addition, pretreatment with pentobarbital resulted in a 75% increase in the endogenous concentration of glucose, 10% increase in glucose 6-phosphate, no change in fructose 6-phosphate and 42% decrease in lactate compared to levels in brains obtained from conscious animals. These results are discussed in relation to control of glycolysis through coupled regulation at hexokinase-phosphofructokinase.  相似文献   

12.
Proteolytic activity in whole blood may lead to release of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). We investigated the role of the human erythrocyte in storage and generation of ADMA in healthy controls (n = 36) and critically ill patients (n = 38). Both free and total (sum of free and protein-incorporated) ADMA were measured. Upon incubation of intact erythrocytes with extracellular ADMA (0 to 40 μmol/l), equilibrium between intra- and extracellular ADMA was reached within 3 h. Compared with controls, patients had significantly higher basal concentrations of ADMA in plasma (0.88 ± 0.75 vs. 0.41 ± 0.07 μmol/l) and erythrocytes (1.28 ± 0.55 vs. 0.57 ± 0.14 μmol/l). Intracellular and plasma ADMA were significantly correlated in the patient group only (r = 0.834). Upon lysis, followed by incubation at 37°C for 2 h, free ADMA increased sevenfold (to 8.60 ± 3.61 μmol/l in patients and 3.90 ± 0.78 μmol/l in controls). In lysates of controls, free ADMA increased further to 9.85 ± 1.35 μmol/l after 18 h. Total ADMA was 15.43 ± 2.44 μmol/l and did not change during incubation. The increase of free ADMA during incubation corresponded to substantial release of ADMA from the erythrocytic protein-incorporated pool (21.9 ± 4.6% at 2 h and 60.8 ± 7.6% at 18 h). ADMA was released from proteins other than hemoglobin, which only occurred after complete lysis and was blocked by combined inhibition of proteasomal and protease activity. Neither intact nor lysed erythrocytes mediated degradation of free ADMA. We conclude that intact erythrocytes play an important role in storage of ADMA, whereas upon erythrocyte lysis large amounts of free ADMA are generated by proteolysis of methylated proteins, which may affect plasma levels in hemolysis-associated diseases.  相似文献   

13.
Effect of prednisolone on isolated preparations of trachea of normal rats and rats with fibrosing alveolitis was studied. Prednisolone at a concentration of 0.4 μg/l decreased responses of smooth muscle on stimulation of preganglionic nerve fibers at trachea areas with intramural ganglia in rats with acute alveolitis by 48%, while in normal rats—by 19% of control. In trachea preparations without ganglia, prednisolone at a dose of 10 μg/l decreased responses of muscle to the nerve fiber stimulation by 21.3%. The higher prednisolone doses were less efficient: 0.1–10 μg/l glucocorticoid practically did not affect the smooth muscle responses produced by stimulation of muscle cells. In rats with fibrosing alveolitis, 10 μg/l prednisolone restored the smooth muscle responses to control values in preparations of trachea with intramural ganglia. After the prednisolone treatment, amplitude of the rat trachea muscle contraction in response to the nerve fiber electric stimulation did not differ statistically significantly from control and 0.1–10 μg/l prednisolone did not change the response value. The conclusion is made that prednisolone affected the diseased rats more efficiently than the healthy animals. The character of the glucocorticoid effect depends on the presence of intramural ganglia in the trachea wall.  相似文献   

14.
The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.  相似文献   

15.
During exercise, contracting muscles can override sympathetic vasoconstrictor activity (functional sympatholysis). ATP and adenosine have been proposed to play a role in skeletal muscle blood flow regulation. However, little is known about the role of muscle training status on functional sympatholysis and ATP- and adenosine-induced vasodilation. Eight male subjects (22 ± 2 yr, Vo(2max): 49 ± 2 ml O(2)·min(-1)·kg(-1)) were studied before and after 5 wk of one-legged knee-extensor training (3-4 times/wk) and 2 wk of immobilization of the other leg. Leg hemodynamics were measured at rest, during exercise (24 ± 4 watts), and during arterial ATP (0.94 ± 0.03 μmol/min) and adenosine (5.61 ± 0.03 μmol/min) infusion with and without coinfusion of tyramine (11.11 μmol/min). During exercise, leg blood flow (LBF) was lower in the trained leg (2.5 ± 0.1 l/min) compared with the control leg (2.6 ± 0.2 l/min; P < 0.05), and it was higher in the immobilized leg (2.9 ± 0.2 l/min; P < 0.05). Tyramine infusion lowers LBF similarly at rest, but, when tyramine was infused during exercise, LBF was blunted in the immobilized leg (2.5 ± 0.2 l/min; P < 0.05), whereas it was unchanged in the control and trained leg. Mean arterial pressure was lower during exercise with the trained leg compared with the immobilized leg (P < 0.05), and leg vascular conductance was similar. During ATP infusion, the LBF response was higher after immobilization (3.9 ± 0.3 and 4.5 ± 0.6 l/min in the control and immobilized leg, respectively; P < 0.05), whereas it did not change after training. When tyramine was coinfused with ATP, LBF was reduced in the immobilized leg (P < 0.05) but remained similar in the control and trained leg. Training increased skeletal muscle P2Y2 receptor content (P < 0.05), whereas it did not change with immobilization. These results suggest that muscle inactivity impairs functional sympatholysis and that the magnitude of hyperemia and blood pressure response to exercise is dependent on the training status of the muscle. Immobilization also increases the vasodilatory response to infused ATP.  相似文献   

16.
Enzymatic synthesis of the aspartame precursor, N -(benzyloxycarbonyl)- l -aspartyl- l -phenylalanine methyl ester (Z-AspPheOMe) was performed with highly concentrated molten substrates. A mixture composed of molten N -(benzyloxycarbonyl)- l -aspartic acid (Z-Asp) and l -phenylalanine methyl ester (PheOMe) mixtures of 20 M could be prepared at 50°C. This Z-Asp/PheOMe mixture was applied to the enzymatic synthesis of Z-AspPheOMe using free thermolysin. Synthesis of Z-AspPheOMe was observed in the range of 100-150 &#119 l of NaOH solution (12.5 M) addition to a reaction mixture consisting of 1.0 mmol Z-Asp and 1.0 mmol PheOMe at 50°C. The enzymatic activity increased with increasing water addition, and reached a maximum at 100 &#119 l in addition to the reaction mixture of 1.0 mmol Z-Asp, 1.0 mmol PheOMe and 125 &#119 l of the NaOH solution. In this reaction system, the conversion at the reaction equilibrium was about 60%, the initial reaction rate calculated on the basis of the enzyme weight was 2.2 &#119 mol/g s, and the productivity calculated on the basis of the reaction mixture volume was 300 mol/m 3 h.  相似文献   

17.
Abstract: Previously we have shown that hypercarbia produces a larger decrease in agonal glycolytic rate in 1-month-old swine than in newborns. In an effort to understand the mechanism responsible for this difference, we tested the hypothesis that hypercarbia produces age-related changes in the concentration of one or more effectors of phosphofructokinase activity. Specifically, in vivo 31P and 1H NMR spectroscopy was used to compare changes in lactate levels, intracellular pH, free magnesium concentration, and content of phosphorylated metabolites for these two age groups at three intervals during the first 1.5 min of complete ischemia in the presence or absence of hypercarbia (Paco 2 = 102–106 mm Hg). Hypercarbia produced the same drop in intracellular brain pH for both age groups, but the decrease in phosphocreatine level and increase in inorganic phosphate content were greater in 1-month-olds compared with newborns. During ischemia there was no difference between the magnitude of change in intracellular pH and levels of phosphocreatine and inorganic phosphate in hypercarbic 1-month-olds versus newborns. Under control conditions, i.e., normocarbia and normoxia, the free Mg2+ concentration was lower and the fraction of magnesium-free ATP was higher for newborns than 1-month-olds. However, there was no change in these variables for either age group during hypercarbia and early during ischemia. Thus, age-related differences in the relative decrease in agonal glycolytic rate during hypercarbia could not be explained by differences in intracellular pH, inorganic phosphate content, or free magnesium concentration. The [ADP]free at control was higher in newborns compared with 1-month-olds, and there was no age-related difference in [AMP]free. These variables did not change for newborns when exposed to hypercarbia, but for 1-month-olds [ADP]free and [AMP]free increased during hypercarbia relative to control values. High-energy phosphate utilization during ischemia for hypercarbic 1-month-olds was reduced by 74% compared with normocarbic 1-month-olds during ischemia, whereas the reduction in energy utilization (14%) was not significant for hypercarbic versus normocarbic newborns during ischemia. Because hypercarbia reduces the rate of ATP depletion during ischemia in 1-month-olds to a greater extent than in newborns, the increase in [ADP]free and [AMP]free will be slower in the former age group. It follows therefore that for 1-month-olds, the agonal glycolytic rate would not be accelerated by ADP and AMP to the same degree during hypercarbia plus ischemia compared with normocarbic plus ischemia, whereas for newborns hypercarbia has relatively little impact on agonal glycolytic rate.  相似文献   

18.
Diabetes mellitus is associated with deterioration of glycemic control and progressive metabolic derangements. This study investigated the effect of honey as an adjunct to glibenclamide or metformin on glycemic control in streptozotocin-induced diabetic rats. Diabetes was induced in rats by streptozotocin. The diabetic rats were randomized into six groups and administered distilled water, honey, glibenclamide, glibenclamide and honey, metformin or metformin and honey. The animals were treated orally once daily for four weeks. The diabetic control rats showed hypoinsulinemia (0.27 ± 0.01 ng/ml), hyperglycemia (22.4 ± 1.0 mmol/L) and increased fructosamine (360.0 ± 15.6 μmol/L). Honey significantly increased insulin (0.41 ± 0.06 ng/ml), decreased hyperglycemia (12.3 ± 3.1 mmol/L) and fructosamine (304.5 ± 10.1 μmol/L). Although glibenclamide or metformin alone significantly (p < 0.05) reduced hyperglycemia, glibenclamide or metformin combined with honey produced significantly much lower blood glucose (8.8 ± 2.9 or 9.9 ± 3.3 mmol/L, respectively) compared to glibenclamide or metformin alone (13.9 ± 3.4 or 13.2 ± 2.9 mmol/L, respectively). Similarly, glibenclamide or metformin combined with honey produced significantly (p < 0.05) lower fructosamine levels (301.3 ± 19.5 or 285.8 ± 22.6 μmol/L, respectively) whereas glibenclamide or metformin alone did not decrease fructosamine (330.0 ± 29.9 or 314.6 ± 17.9 μmol/L, respectively). Besides, these drugs or their combination with honey increased insulin levels. Glibenclamide or metformin combined with honey also significantly reduced the elevated levels of creatinine, bilirubin, triglycerides, and VLDL cholesterol. These results indicate that combination of glibenclamide or metformin with honey improves glycemic control, and provides additional metabolic benefits, not achieved with either glibenclamide or metformin alone.  相似文献   

19.
With a modification of the spectrophotofluorometric (SPF) method of HESS & UDENFRIEND (1959) (J. Pharmac. exp. Ther. 127 , 175-177), brain tryptamine levels in the rat (20.9 ng/g) and guinea-pig (20.7 ng/g) were found to be less than those in the dog (32.1 ng/g) and cat (52.2 ng/g). Regional distribution studies in the dog and cat showed that tryptamine was present in all major brain regions with highest concentrations in the spinal cord. Blood levels of tryptamine in the guinea-pig, dog and cat (6-7 ng/ml) were lower than brain levels. Pargyline significantly increased brain tryptamine in both the dog and cat; whereas, isocarboxazid (after 4 h) increased brain tryptamine levels in the dog but decreased brain levels in the cat. Reserpine (0.5-1.0 mg/kg per day for 1-4 days) did not significantly decrease brain, spinal cord or blood tryptamine levels in the dog. Spinal cord transection did not decrease tryptamine levels below the lesion in the chronic spinal dog.  相似文献   

20.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号