首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 268 bp region (P268) of the pea plastocyanin gene promoter responsible for high-level expression has been shown to interact with the high mobility group proteins HMG-1 and HMG-I/Y isolated from pea shoot chromatin. cDNAs encoding an HMG-1 protein of 154 amino acid residues containing a single HMG-box and a C-terminal acidic tail and an HMG-I/Y-like protein of 197 amino acid residues containing four AT-hooks have been isolated and expressed in Escherichia coli to provide large amounts of full-length proteins. DNase I footprinting identified eight binding sites for HMG-I/Y and six binding sites for HMG-1 in P268. Inhibition of binding by the antibiotic distamycin, which binds in the minor groove of A/T-rich DNA, revealed that HMG-I/Y binding was 400-fold more sensitive than HMG-1 binding. Binding-site selection from a pool of random oligonucleotides indicated that HMG-I/Y binds to oligonucleotides containing stretches of five or more A/T bp and HMG-1 binds preferentially to oligonucleotides enriched in dinucleotides such as TpT and TpG.  相似文献   

2.
We have determined the domains of the mammalian high mobility group (HMG)I chromosomal proteins necessary and sufficient for binding to the narrow minor groove of stretches of A.T-rich DNA. Three highly conserved regions within each of the known HMG-I proteins is closely related to the consensus sequence T-P-K-R-P-R-G-R-P-K-K. A synthetic oligopeptide corresponding to this consensus "binding domain" (BD) sequence specifically binds to substrate DNA in a manner similar to the intact HMG-I proteins. Molecular Corey-Pauling-Koltun model building and computer simulations employing energy minimization programs to predict structure suggest that the consensus BD peptide has a secondary structure similar to the antitumor and antiviral drugs netropsin and distamycin and to the dye Hoechst 33258. In vitro these ligands, which also preferentially bind to A.T-rich DNA, have been demonstrated to effectively compete with both the BD peptide and the HMG-I proteins for DNA binding. The BD peptide also contains novel structural features such as a predicted Asx bend or "hook" at its amino-terminal end and laterally projecting cationic Arg/Lys side chains or "bristles" which may contribute to the binding properties of the HMG-I proteins. The predicted BD peptide structure, which we refer to as the "A.T-hook," represents a previously undescribed DNA-binding motif capable of binding to the minor groove of stretches of A.T base pairs.  相似文献   

3.
High-mobility-group proteins HMG-1 and HMG-I/Y bind at overlapping sites within the A/T-rich enhancer element of the pea plastocyanin gene. Competition binding experiments revealed that HMG-1 enhanced the binding of HMG-I/Y to a 31-bp region (P31) of the enhancer. Circularization assays showed that HMG-1, but not HMG-I/Y, was able to bend a linear 100-bp DNA containing P31 so that the ends could be ligated. HMG-1, but not HMG-I/Y, showed preferential binding to the circular 100-bp DNA compared with the equivalent linear DNA, indicating that alteration of the conformation of the DNA by HMG-1 was not responsible for enhanced binding of HMG-I/Y. Direct interaction of HMG-I/Y and HMG-1 in the absence of DNA was demonstrated by binding of 35S-labeled proteins to immobilized histidine-tagged proteins, and this was due to an interaction of the N-terminal HMG-box-containing region of HMG-1 and the C-terminal AT-hook region of HMG-I/Y. Kinetic analysis using the IAsys biosensor revealed that HMG-1 had an affinity for immobilized HMG-I/Y (Kd = 28 nM) similar to that for immobilized P31 DNA. HMG-1-enhanced binding of HMG-I/Y to the enhancer element appears to be mediated by the formation of an HMG-1-HMG-I/Y complex, which binds to DNA with the rapid loss of HMG-1.  相似文献   

4.
Histone H1, HMG-1 and HMG-I(Y) are mammalian nuclear proteins possessing distinctive DNA-binding domain structures that share the common property of preferentially binding to four-way junction (4H) DNA, an in vitro mimic of the in vivo genetic recombination intermediate known as the Holliday junction. Nevertheless, these three proteins bind to 4H DNA in vitro with very different affinities and in a mutually exclusive manner. To investigate the molecular basis for these distinctive binding characteristics, we employed base pair resolution hydroxyl radical footprinting to determine the precise sites of nucleotide interactions of both HMG-1 and histone H1 on 4H DNA and compared these contacts with those previously described for HMG-I(Y) on the same substrate. Each of these proteins had a unique binding pattern on 4H DNA and yet shared certain common nucleotide contacts on the arms of the 4H DNA molecule near the branch point. Both the HMG-I(Y) and HMG-1 proteins made specific contacts across the 4H DNA branch point, as well as interacting at discrete sites on the arms, whereas the globular domain of histone H1 bound exclusively to the arms of the 4H DNA substrate without contacting nucleotides at the crossover region. Experiments employing the chemical cleavage reagent 1, 10-orthophenanthroline copper(II) attached to the C-terminal end of a site-specifically mutagenized HMG-I(Y) protein molecule demonstrated that this protein binds to 4H DNA in a distinctly polar, direction-specific manner. Together these results provide an attractive molecular explanation for the observed mutually exclusive 4H DNA-binding characteristics of these proteins and also allow for critical assessment of proposed models for their interaction with 4H DNA substrates. The results also have important implications concerning the possible in vivo roles of HMG-I(Y), histone H1 and HMG-1 in biological processes such as genetic recombination and retroviral integration.  相似文献   

5.
6.
We have previously detected and purified a Friend erythroleukemic mouse cell nonhistone chromatin protein having extraction and acid-solubility properties like the low molecular weight "high mobility group" (HMG) nuclear proteins. We show here that the electrophoretic properties and the amino acid composition of this mouse cell "HMG-like" protein is comparable to those of the HMG-I proteins isolated from human HeLa S3 cells, African green monkey cells, Ehrlich ascites mouse cells, and rat fibroblast cells. Therefore, we have also designated the Friend erythroleukemic mouse cell protein as HMG-I. In common with the other HMG proteins the Friend cell HMG-I protein can undergo a variety of post-translational biochemical modifications including acetylation, ADP-ribosylation, glycosylation, and phosphorylation. Surprisingly, in the course of these studies we found that in vivo radiolabeling experiments revealed that only two minor HMG-14 subspecies (and/or possibly a minor HMG-I subspecies) are phosphorylated whereas HMG-1, -2, -17, and the major HMG-14 are not heavily phosphorylated.  相似文献   

7.
We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration in vitro with specially designed mini-donor HIV-1 DNA, a supercoiled plasmid acceptor, purified bacterium-derived HIV-1 integrase (IN), and host HMG protein family members. This system is comparable to one previously described for avian sarcoma virus (ASV) (A. Aiyar et al., J. Virol. 70:3571-3580, 1996) that was stimulated by the presence of HMG-1. Sequence analyses of individual HIV-1 integrants showed loss of 2 bp from the ends of the donor DNA and almost exclusive 5-bp duplications of the acceptor DNA at the site of integration. All of the integrants sequenced were inserted into different sites in the acceptor. These are the features associated with integration of viral DNA in vivo. We have used the ASV and HIV-1 reconstituted systems to compare the mechanism of concerted DNA integration and examine the role of different HMG proteins in the reaction. Of the three HMG proteins examined, HMG-1, HMG-2, and HMG-I(Y), the products formed in the presence of HMG-I(Y) for both systems most closely match those observed in vivo. Further analysis of HMG-I(Y) mutants demonstrates that the stimulation of integration requires an HMG-I(Y) domain involved in DNA binding. While complexes containing HMG-I(Y), ASV IN, and donor DNA can be detected in gel shift experiments, coprecipitation experiments failed to demonstrate stable interactions between HMG-I(Y) and ASV IN or between HMG-I(Y) and HIV-1 IN.  相似文献   

8.
High mobility group proteins HMG-I(Y) and HMG-1, as well as histone H1, all share the common property of binding to four-way junction DNA (4H), a synthetic substrate commonly used to study proteins involved in recognizing and resolving Holliday-type junctions formed during in vivo genetic recombination events. The structure of 4H has also been hypothesized to mimic the DNA crossovers occurring at, or near, the entrance and exit sites on the nucleosome. Furthermore, upon binding to either duplex DNA or chromatin, all three of these nuclear proteins share the ability to significantly alter the structure of bound substrates. In order to further elucidate their substrate binding abilities, electrophoretic mobility shift assays were employed to investigate the relative binding capabilities of HMG-I(Y), HMG-1 and H1 to 4H in vitro. Data indicate a definite hierarchy of binding preference by these proteins for 4H, with HMG-I(Y) having the highest affinity (Kd approximately 6.5 nM) when compared with either H1 (Kd approximately 16 nM) or HMG-1 (Kd approximately 80 nM). Competition/titration assays demonstrated that all three proteins bind most tightly to the same site on 4H. Hydroxyl radical footprinting identified the strongest site for binding of HMG-I(Y), and presumably for the other proteins as well, to be at the center of 4H. Together these in vitro results demonstrate that HMG-I(Y) and H1 are co-dominant over HMG-1 for binding to the central crossover region of 4H and suggest that in vivo both of these proteins may exert a dominant effect over HMG-1 in recognizing and binding to altered DNA structures, such as Holliday junctions, that have conformations similar to 4H.  相似文献   

9.
High-mobility-group proteins HMG-1 and HMG-I/Y bind to multiple sites within a 268 bp A/T-rich enhancer element of the pea plastocyanin gene (PetE). Within a 31 bp region of the enhancer, the binding site for HMG-1 overlaps with the binding site for HMG-I/Y. The kinetics of binding and the affinities of HMG-1 and HMG-I/Y for the 31 bp DNA were determined using surface plasmon resonance. Due to very high non-specific interactions of the HMG proteins with a carboxymethyl–dextran matrix, a novel method using a cholesterol tag to anchor the DNA in a supported lipid monolayer on a thin gold film was devised. The phosphatidylcholine monolayer produced a surface that reduced background interactions to a minimum and permitted the measurement of highly reproducible protein–DNA interactions. The association rate constant (ka) of HMG-I/Y with the 31 bp DNA was ~5-fold higher than the rate constant for HMG-1, whereas the dissociation constant (KD) for HMG-I/Y (3.1 nM) was ~7-fold lower than that for HMG-1 (20.1 nM). This suggests that HMG-I/Y should bind preferentially at the overlapping binding site within this region of the PetE enhancer.  相似文献   

10.
水稻AT-hook基因家族生物信息学分析   总被引:1,自引:0,他引:1  
张贵慰  曾珏  郭维  罗琼 《植物学报》2014,49(1):49-62
AT-hook是一种小型的DNA结合蛋白基序, 在哺乳动物非组蛋白染色体的高移动组蛋白(HMG-I/Y)中首次发现。对其它生物的研究表明, AT-hook蛋白在染色质结构组装、靶细胞特异性结合、转录调控和生长发育的调控中发挥重要作用。利用生物信息学方法, 从水稻(Oryza sativa)基因组中鉴定出了45个编码AT-hook蛋白的基因, 并对这些基因的系统进化、染色体定位及其编码蛋白的结构和功能等进行了系统的生物信息学分析。结果表明, 水稻AT-hook蛋白的结构和特性分化不显著; 45个水稻AT-hook基因可划分成5个亚族; 染色体复制是基因家族成员扩增的进化途径之一。基因数字表达分析结果显示, AT-hook基因主要在水稻幼穗中表达, 并通过qRT-PCR验证了部分基因的数字表达结果。  相似文献   

11.
12.
HMG-14 and HMG-17 form a family of ubiquitous non-histone chromosomal proteins and have been reported to bind preferentially to regions of active chromatin structure. Our previous studies demonstrated that the chicken HMG-17 gene is dispensable for normal growth of the DT40 chicken lymphoid cell line. Here it is shown that the major chicken HMG-14 gene,HMG-14a, is also dispensable and, moreover, that DT40-derived cells lacking both HMG-17 and HMG-14a proteins show no obvious change in phenotype with respect to the parental DT40 cells. Furthermore, no compensatory changes in HMG-14b or histone protein levels were observed in cells lacking both HMG-14a and HMG-17, nor were any alterations detected in such hallmarks of chromatin structure as DNaseI-hypersensitive sites or micrococcal nuclease digestion patterns. It is concluded that the HMG-14a and HMG-17 proteins are not required for normal growth of avian cell linesin vitro, nor for the maintenance of DNaseI-hypersensitive sites in chromatin.  相似文献   

13.
The DNA sequence specific interaction of the high mobility group non-histone protein HMG-I (Y) with the 3' untranslated region of the bovine interleukin-2 cDNA has been studied. Circular dichroism and thermal denaturation studies suggest that HMG-I (Y) alters the conformational state and increases the thermal stability of the DNA. Additionally, amino acid sequence analysis suggests that the previously identified non-histone protein HMG-Y is an isoform of HMG-I.  相似文献   

14.
Using spectroscopic methods, we have studied the structural changes induced in both protein and DNA upon binding of the High-Mobility Group I (HMG-I) protein to a 21-bp sequence derived from mouse satellite DNA. We show that these structural changes depend on the stoichiometry of the protein/DNA complexes formed, as determined by Job plots derived from experiments using pyrene-labeled duplexes. Circular dichroism and melting temperature experiments extended in the far ultraviolet range show that while native HMG-I is mainly random coiled in solution, it adopts a beta-turn conformation upon forming a 1:1 complex in which the protein first binds to one of two dA.dT stretches present in the duplex. HMG-I structure in the 1:1 complex is dependent on the sequence of its DNA target. A 3:1 HMG-I/DNA complex can also form and is characterized by a small increase in the DNA natural bend and/or compaction coupled to a change in the protein conformation, as determined from fluorescence resonance energy transfer (FRET) experiments. In addition, a peptide corresponding to an extended DNA-binding domain of HMG-I induces an ordered condensation of DNA duplexes. Based on the constraints derived from pyrene excimer measurements, we present a model of these nucleated structures. Our results illustrate an extreme case of protein structure induced by DNA conformation that may bear on the evolutionary conservation of the DNA-binding motifs of HMG-I. We discuss the functional relevance of the structural flexibility of HMG-I associated with the nature of its DNA targets and the implications of the binding stoichiometry for several aspects of chromatin structure and gene regulation.  相似文献   

15.
16.
17.
18.
The effect of chicken erythrocyte High Mobility Group protein 1 (HMG-1) on the enzymatic hydrolysis of purified double-stranded and single-stranded bacteriophage lambda DNA was studied. HMG-1 was found to inhibit the digestion of single- and double-stranded DNA by S1 nuclease and DNase I, respectively. HMG-I increased the rate of hydrolysis of double-stranded DNA by micrococcal nuclease, particularly at low HMG-1/DNA ratios, and had little effect on the hydrolysis of single-stranded DNA by micrococcal nucleases, even at high HMG-1 DNA ratios. We also present a semi-quantitative estimate that HMG-1 and HMG-2 occur in chromatin from rapidly dividing, cultured rat hepatoma cells at about 8 times the level that they occur in adult rat liver chromatin.  相似文献   

19.
20.
The non-histone proteins HMG-1, HMG-2, HMG-3, HMB-8, HMG-14, and HMG-17 (Goodwin, G. H., SANDERS, C., and Johns, E. W. (1973) Eur. J. Biochem. 38, 14) were purified from calf thymus. The apparent molecular weights on polyacrylamide gels run in the presence of sodium dodecyl sulfate of the high mobility group (HMB) proteins were determined. Those for HBG-1 and HMG-2 agreed with the molecular weights determined by sedimentation; that for HMG-17 was anomalously high. Antibodies against HMG-1 were elicited in rabbits. The interaction between HMG-1 and anti-HBG-1 was measured by quantitative precipitation and by the microcomplement fixation technique. Quantitative microcomplement fixation assays revealed that the indices of dissimilarity between HMG-1 and HMG-2, HMG-3, HMG-8, HMG-14, and HMG-17 were 2.0, 1.0, 3.8, 10.0, and 6.1, respectively. These correspond to 6%, 0%, 12%, 20%, and 16% sequence difference between HMG-1 and the other five HMG proteins, although the immunological distance between HMG-1 and HMG-14 may be too large to allow a good correlation between the sequence and the immunological reaction. Antibodies to HMB-1 bind to chromatin purified from calf thymus. Therefore, we suggest that the in situ organization of HMG proteins in chromatin and chromosomes may be studied by serological techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号