首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A correlation between high-performance liquid chromatography (HPLC) analysis and an in situ enzyme-linked immunosorbent assay (ELISA) for 8,5'-cycloadenosine formation in irradiated poly(A) has been established. The correlation shows that the ELISA precisely reflects changes in the combined yield of R- and S-8,5'-cycloadenosine but that a correction factor must be applied to the ELISA values for accuracy. The HPLC analysis reveals that the intramolecular cyclization proceeds stereoselectively in irradiated poly(A) to preferentially produce the R isomer at pH 7.0 which is similar to the result for irradiated adenosine but in contrast to the result for 5'-AMP where the S isomer predominates at neutral pH. The HPLC analysis shows that two events originating in hydroxyl radical attack at the sugar phosphate backbone in poly(A); that is, adenine release and 8,5'-cycloadenosine formation have somewhat different dose-yield responses. The formation of 8-hydroxyadenosine was detected in the HPLC chromatograms of poly(A) irradiated under N2O at neutral pH, and the yield of this compound was similar to the yield observed in 5'-AMP or adenosine irradiated under similar conditions.  相似文献   

2.
Polyclonal antisera specific for 8,5'-cycloadenosine-5'-monophosphate (8,5'-cyclo-AMP) or its deoxy analog (8,5'-cyclo-dAMP) were elicited by immunizing rabbits with a conjugate prepared by the method of Johnston et al. [Biochemistry 22, 3453-3460 (1983)]. A competitive enzyme-linked immunosorbent assay (ELISA) was developed and used to detect the formation of these products in irradiated solutions of polyadenylic acid [poly(A)] or DNA which were saturated with nitrous oxide, nitrogen, or oxygen. The 8,5'-cyclo-AMP or 8,5'-cyclo-dAMP moieties could be detected in poly(A) at 1.0 krad and in native DNA at 10 krad, respectively. The yield of 8,5'-cyclo-dAMP was found to be two to three times higher in irradiated double-stranded DNA than in single-stranded DNA. The hydroxyl radical appears to initiate 8,5'-cyclonucleotide formation in irradiated nucleic acids, as demonstrated by the inhibition of 8,5'-cyclo-AMP formation in irradiated poly(A) by dimethyl sulfoxide. However, irradiation under nitrous oxide, particularly at low doses, does not lead to the expected increases in the yield of the 8,5'-cyclonucleotide.  相似文献   

3.
Koizumi M  Breaker RR 《Biochemistry》2000,39(30):8983-8992
Two classes of RNA aptamers that bind the second messenger adenosine 3',5'-cyclic monophosphate (cAMP; 1) were isolated from a random-sequence pool using in vitro selection. Class I and class II aptamers are formed by 33- and 31-nucleotide RNAs, respectively, and each is comprised of similar stem-loop and single-stranded structural elements. Class II aptamers, which dominate the final selected RNA population, require divalent cations for complex formation and display a dissociation constant (K(D)) for cAMP of approximately 10 microM. A representative class II aptamer exhibits substantial discrimination against 5'- and 3'-phosphorylated nucleosides such as ATP, 5'-AMP, and 3'-AMP. However, components of cAMP such as adenine and adenosine also are bound, indicating that the adenine moiety is the primary positive determinant of ligand binding. Specificity of cAMP binding appears to be established by hydrogen bonding interactions with the adenine base as well as by steric interactions with groups on the ribose moiety. In addition, the aptamer recognizes 8,5'-O-cycloadenosine (2) but not N(3), 5'-cycloadenosine (3), indicating that this RNA might selectively recognize the anti conformation of the N-glycosidic bond of cAMP.  相似文献   

4.
The complexation of molybdate with the nucleotides adenosine-5'-monophosphate (5'-AMP), adenosine-3'-monophosphate (3'-AMP) and guanosine-5'-monophosphate (5'-GMP) has been investigated by (1)H and (31)P NMR and Mo K-edge X-ray absorption near edge (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Acidification of aqueous solutions containing molybdate and each of the nucleotides resulted in the formation of a single species characterized by (1)H resonances which are deshielded relative to those of free nucleotide. Analysis of the two-component systems indicated a Mo/nucleotide ratio of 2.5:1 for the complexation species. White compounds, characterized as Na(2)[Mo(5)O(15)(HB)(2)] (B=5'-AMP, 5'-GMP), have been isolated from the acidified molybdate/H(2)B solutions. Dissolution in D(2)O replicates the NMR spectra of the solution species observed prior to precipitation. Solution and solid state Mo K-edge XAS and EXAFS spectroscopy of Na(2)[Mo(5)O(15)(HAMP)(2)] and Na(6)[Mo(5)O(15)(PO(4))(2)] provide convincing evidence for the presence of a pentamolybdodiphosphate core in the molybdate-nucleotide complexes in both the solid and solution states.  相似文献   

5.
The relative reactivity of a series of nitroaromatic radiosensitizers toward the C(5') radical intermediate leading to 8,5'-cycloadenosine formation in deoxygenated solutions of irradiated polyadenylic acid (poly A) was assessed using standard competition kinetic analysis. Formation of 8,5'-cycloadenosine was assayed by an indirect, competitive, enzyme-linked immunosorbent assay (ELISA) described in an earlier report. In the absence of oxygen, the nitroaromatics inhibit 8,5'-cyclonucleoside formation in a way which generally increases with radiosensitizer electron affinity. Although hydroxyl radical scavenging by the nitroaromatics may account for a relatively small decrease in 8,5'-cyclonucleoside formation, the data suggest that oxidation of the C(5') radical intermediate is the more plausible explanation for the decreased yield of the 8,5'-cyclonucleoside with increasing nitroaromatic electron affinity.  相似文献   

6.
The concentration dependence of the chemical shifts for protons H-2, H-8, and H-1' of adenosine (Ado), 2'-AMP, 3'-AMP and 5'-AMP was measured in D2O at 27 degrees C under several degrees of protonation. All results are consistent with the isodesmic model of indefinite noncooperative stacking. The association constants for Ado decrease with increasing protonation: Ado (K = 15 M-1) greater than D(Ado)+/Ado (6.0 M-1) greater than D(Ado)+ (0.9 M-1). In contrast, a maximum is observed with 5'-AMP: 5'-AMP2- (K = 2.1 M-1) less than D(5'-AMP)- (3.4 M-1) less than D2(5'-AMP) +/- /D(5'-AMP)- (5.6 M-1) greater than D2(5'-AMP) +/- (approximately 2 M-1) greater than D3(5'-AMP)+ (less than or equal to 1 M-1). Self-stacking is most pronounced here if 50% of the adenine residues are protonated at N-1; complete base protonation reduces the stacking tendency drastically. Comparing the self-association of 2'-, 3'- and 5'-AMP shows that there is no influence of the phosphate-group position in the 2-fold negatively charged species, i.e., K congruent to 2 M-1 for all three AMP2- species. More importantly, there is also no significant influence observed if the stacking tendency of the three D2(AMP) +/- /D(AMP)-1:1 mixtures is compared (K congruent to 6-7 M-1); moreover, the measured association constants are within experimental error identical with the constant determined for D(Ado)+/Ado (K = 6.0 M-1). This indicates that any coulombic contribution between the -PO3(H)- group and the H+ (N-1) unit of the adenine residue to the stability of the mentioned stacks in D2O is small. However, experiments in 50% (v/v) dioxane-D8/D2O with the D2(5'-AMP) +/- /D(5'-AMP)- 1:1 system reveal, despite its low solubility, that coulombic interactions contribute to the self-association in an environment with a reduced polarity (compared to that of water). The implications of these observations for biological systems are briefly indicated.  相似文献   

7.
The concentration dependence of the chemical shifts of the protons H-2, H-8 and H-1' for 2'-, 3'- and 5'-AMP2- and of the protons H-2, H-7, H-8 and H-1' for tubercidin 5'-monophosphate (= 7-deaza-AMP2-; TuMP2-) has been measured in D2O at 27 degrees C to elucidate the self-association of the nucleoside monophosphates (NMPs). The results are consistent with the isodesmic model of indefinite non-cooperative stacking; the association constants for all four NMPs are very similar: K approximately 2 M-1. These 1H-NMR measurements and those on the dependence of the chemical shifts on the pD of the solutions indicate that the NMP2- species exist predominately in the anti conformation. Comparison of the shift data for 5'-TuMP and 5'-AMP shows that no hydrogen bonding between N-7 and -PO3H- occurs; hence, the previously observed and confirmed 'wrongway' chemical shift [Martin, R. B. (1985) Acc. Chem. Res 18, 32] connected with the deprotonation of the -PO3H- group most probably results from the anisotropic properties of the phosphate group which is in the anti conformation close to N-7. From the dependence between the chemical shift and the pD of the solutions the acidity constants were calculated for the four protonated NMPs, and for adenosine and D-ribose 5'-monophosphate. The measurements also allow an estimation of the first acidity constant of H3(5'-AMP)+ (pKDD3(AMP) = 0.9 and pKHH3(AMP) = 0.4). The values for pKHH2(NMP) and pKHH(NMP) were also determined from potentiometric pH titrations in aqueous solution (I = 0.1 M, NaNO3; 25 degrees C). The agreement of the results obtained by the two methods is excellent. The position of the phosphate group at the ribose moiety and the presence of N-7 in the base moiety influence somewhat the acid-base properties of the mentioned NMPs. Measurements with 5'-AMP in 50% (v/v) aqueous dioxane show that lowering of the solvent polarity facilitates removal of the proton from the H+(N-1) site while the -PO2-3 group becomes more basic; this increases the pH range in which the monoprotonated H(5'-AMP)- species is stable and which is now also extended into the physiological pH region. Some consequences of this observation for biological systems are indicated.  相似文献   

8.
The immunological action of RNA mononucleotides was studied in animal experiments. The most pronounced activation of macrophagal glycolysis urea cycle, oxidative phosphorylation, lysosomal hydrolases was induced by uridine 5'-monophosphate (5'-UMP) and guanosine 5'-monophosphate (5'-GMP); 5'-GMP also induced the maximum increase of the expression of FC gamma receptors. 5'-UMP ensured cell activation comparable with the total action of all mononucleotides. 5'-UMP and 5'-GMP, used in combination, produced the highest stimulating effect on macrophages, and the addition of low-active adenosine 5'-monophosphate (5'-AMP) to active 5'-UMP did not decrease the stimulating potency of the latter. The stimulating activity of sodium nucleinate exceeded that of all mononucleotides and their combinations. 5'-GMP and 5'-AMP induced the maximum activation of oxygen metabolism, evaluated by chemiluminescence, while 5'-UMP and cytidine 5'-monophosphate (5'CMP) proved to be inactive. The shift of the phosphate group to the third carbon atom or the production of the oligonucleotide 5'-UMP consisting of 5-15 nucleotides resulted in the appearance of the capacity for stimulating oxygen metabolism in macrophages. Their in vitro cultivation with 5'-GMP and 5'-AMP induced the maximum increase of cell spreading in comparison with other mononucleotides, while the maximum increase of phagocytosis was ensured only by 5'-UMP and 5'-GMP.2+ 5'-UMP and 5'-GMP enhanced nonospecific resistance to Salmonella typhi infection, and sodium nucleinate, to Pseudomonas pseudomallei and Pseudomonas mallei infections.  相似文献   

9.
H A Tajmir-Riahi 《Biopolymers》1991,31(9):1065-1075
The interaction of the La (III) and Tb (III) ions with adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), and 2'-deoxyguanosine-5'-monophosphate (5'-dGMP) anions with metal/nucleotide ratios of 1 and 2 has been studied in aqueous solution in acidic and neutral pHs. The solid complexes were isolated and characterized by Fourier transform ir and 1H-nmr spectroscopy. The lanthanide (III)-nucleotide complexes are polymeric in nature both in the solid and aqueous solutions. In the metal-nucleotide complexes isolated from acidic solution, the nucleotide binding is via the phosphate group (inner sphere) and an indirect metal-N-7 interaction (outer-sphere) with the adenine N-1 site protonated. In the complexes obtained from neutral solution, metal chelation through the N-7 and the PO3(2-) group is prevailing. In aqueous solution, an equilibrium between the inner and outer sphere metal-nucleotide interaction has been observed. The ribose moiety shows C2'-endo/anti pucker in the free AMP anion and in the lanthanide (III)-AMP complexes, whereas the GMP anion with C2'-endo/anti sugar conformation exhibits a mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers in the lanthanide (III)-GMP salts. The deoxyribose has O4'-endo/anti sugar pucker in the free dGMP anion and a C3'-endo/anti, in the lanthanide (III)-dGMP complexes.  相似文献   

10.
Isolation and identification of a novel .OH-induced product, namely an 8,5'-cyclo-2'-deoxyguanosine moiety, in DNA and 2'-deoxyguanosine are described. .OH radicals were generated in dilute aqueous solutions by gamma-irradiation. Analyses of 2'-deoxyguanosine and enzymic hydrolysates of DNA by gas chromatography-mass spectrometry (g.c.-m.s.) after trimethylsilylation showed the presence of 8,5-cyclo-2'-deoxyguanosine on the basis of its fragment ions. This product was isolated by h.p.l.c. Its u.v. and n.m.r. spectra taken were in agreement with the structure suggested by its mass spectrum. Exact masses of the typical ions from the mass spectrum of the trimethylsilyl derivative of this product were measured by high-resolution m.s. The values found were in excellent agreement with the theoretical mass derived from the suggested fragmentation patterns. Both (5'R)- and (5'S)-epimers of 8,5'-cyclo-2'-deoxyguanosine were observed. These two diastereomers were separated from each other by g.c. as well as by h.p.l.c. The assignment of the epimers was accomplished on the basis of the n.m.r. data. The formation of 8,5'-cyclo-2'-deoxyguanosine was suppressed by the presence of O2 in the solutions. The use of g.c.-m.s. with the selected-ion monitoring technique facilitated the detection of 8,5'-cyclo-2'-deoxyguanosine in DNA at radiation doses as low as 1 Gy. Its mechanism of formation probably involves hydrogen atom abstraction by .OH radicals from the C-5' of the 2'-deoxyguanosine moiety followed by intramolecular cyclization with the formation of a covalent bond between the C-5' and C-8 and subsequent oxidation of the resulting N-7-centred radical.  相似文献   

11.
Single-crystal X-ray methods have been used to characterize a nickel derivative of adenosine 5'-monophosphate, of stoicheiometry [Ni(5'-AMP)(H2O)5]-H2O. The metal atom binds to the N(7) position on the adenine base, with the five remaining octahedral coordination sites about nickel occupied by water molecules. The phosphate group is connected via intramolecular hydrogen bonds to coordinated water molecules.  相似文献   

12.
Cytosolic diacylglycerol kinase was inhibited drastically by nucleoside monophosphate. The inhibition was relatively specific for adenosine-5'-monophosphate (5'-AMP), although uridine-5'-monophosphate was also effective. The effect of 5'-AMP on diacylglycerol kinase appeared to be indirect since the degree of inhibition lessened with the dilution of the cytosol and the more purified enzyme failed to respond to 5'-AMP. A 5'-AMP-dependent mediator is proposed to be involved in the inactivation of diacylglycerol kinase.  相似文献   

13.
Kopecký V  Mojzes P  Burda JV  Dostál L 《Biopolymers》2002,67(4-5):285-288
The acid-base properties of the acyclic antiviral nucleotide analogue 9- [2-(phosphonomethoxy)ethyl] adenine (PMEA) in aqueous solutions are studied by means of Raman spectroscopy in a pH range of 1-11 and compared with the properties of its common adenosine monophosphate counterparts (5'-AMP, 3'-AMP, and 2'-AMP). Factor analysis is used to separate the spectra of pure ionic species (PMEA2-, HPMEA-, H2PMEA, H3PMEA+) in order to determine their abundance, sites of protonation, and corresponding spectroscopic pK(a) values. The characteristic Raman features of the neutral adenine moiety in PMEA2- and HPMEA- species resemble those of neutral adenine in the AMPs, whereas significant differences are observed between the Raman spectra of the N1-protonated adenine of the solute zwitterionic H2PMEA and its N1-protonated AMP counterparts. On the contrary, the spectrum of crystalline H2PMEA, adopting an "anti-like" conformation, is found to be similar to the N1-protonated AMPs in solution. To explain peculiar Raman features a "syn-like" conformation is suggested for N1-protonated PMEA species in aqueous solutions instead of an anti-like one adopted by H2PMEA in crystals or by common AMPs in aqueous solutions. A physical mechanism of the anti-like to syn-like conformational transition of the solute PMEA that is due to adenine protonation and the flexibility of the (phosphonomethoxy)ethyl group is proposed and discussed.  相似文献   

14.
J L Gabriel  G W Plaut 《Biochemistry》1990,29(14):3528-3535
The specificity of yeast NAD-specific isocitrate dehydrogenase for the structures of the allosteric effector 5'-AMP was examined with analogues modified in the purine ring, pentosyl group, and 5'-phosphate group. An unsubstituted 6-amino group was essential for activation as was the phosphoryl group at the 5'-position. Activity was retained when an oxygen function of the 5'-phosphoryl was replaced by sulfur (Murry & Atkinson, 1968) or by nitrogen (phosphoramidates). 2-NH2-AMP, 2-azido-AMP, and 8-NH2-AMP were active; 8-azido-AMP and 8-Br-AMP were inactive. The configuration or nature of substituents about carbons 2' and 3' of the pentosyl portion of AMP was not critical for allosteric activation since AMP analogues containing, e.g., 2',3'-dideoxyribose or the bulky 2',3'-O-(2,4,6-trinitrocyclo-hexadienylidene) substituent (TNP-AMP) were active. TNP-AMP was bound to the enzyme with fluorescence enhancement and had an S0.5 for activation similar to the S0.5 for AMP. Positive effector activity was decreased when the pentosyl moiety of 5'-AMP was replaced by the six-membered nitrogen-containing morpholine group, indicating that the pentosyl group may be critical as a spacer for the proper geometry of binding to enzyme at the 6-amino and 5'-phosphoryl groups of 5'-AMP. A comparison of molecular models of 5'-AMP with 8,5'-cycloAMP suggests that the species of 5'-AMP required for binding to the enzyme contains the purine and ribose moieties in an anti conformation and positioning of the 5'-phosphate trans with respect to carbon 4'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Isopropylnoradrenaline (ISO), 3',5'-AMP and dibutyryl-3',5'-AMP decreased the oxygen tension (pO2) in the liver and the spleen and increased the body oxygen consumption (VO2). Time dynamics of these two effects was closely correlated for ISO and 3',5'-AMP. An increase of heat output was not accompanied by any significant changes in the respiration coefficient. Pempidine and dihydroergotamine failed to prevent 3',5'-AMP effects; inderal somewhat decreased these effects. Apparently, the catecholamine influence upon pO2 was a result of the VO2 increase through 3'5'-AMP effects are largely direct, but they include the in vivo and beta-receptor component; 2',3'-AMP decreased pO2 and VO2.  相似文献   

16.
Adenosine 3'-phosphate and 2'-deoxyadenosine 3'-phosphate inhibit silkworm fat body adenylate cyclase. The inhibition has a rapid onset, and is dependent on the concentration of Mn2+ or Mg2+. The concentrations of 2'-deoxy-3'-AMP required for 50% inhibition (Ki) are 13 microM with 2 mM Mn2+ and 32 microM with 10 mM Mg2+. These Ki values are 7-30 times lower than that for 2'-deoxyadenosine. Stimulation of adenylate cyclase by NaF renders the activity more sensitive to the nucleotide inhibition, reducing the Ki value to 4 microM in the presence of Mn2+. The inhibitory activity is specific for adenine 3'-nucleotide; Ki for 2'-AMP and 5'-AMP are ten times or more higher than that for 3'-AMP, and the other 3'-nucleotides including 8-bromo-3'-AMP, 3'-IMP and 3'-GMP have little or no inhibitory activity.  相似文献   

17.
18.
We hypothesized that DNA damage products (5'R)-8,5'-cyclo-2'-deoxyadenosine (R-cdA) and (5'S)-8,5'-cyclo-2'-deoxyadenosine (S-cdA) may be well-suited biomarkers of risk and diagnosis for atherosclerosis. We tested this hypothesis by measuring the levels of R-cdA and S-cdA and another product, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), in urine of atherosclerosis patients and healthy individuals using liquid chromatography-tandem mass spectrometry with isotope dilution. We showed the presence of these products at significantly greater concentrations in urine of atherosclerosis patients than in that of healthy individuals. Our data suggest that R-cdA and S-cdA can be accurately and reproducibly measured in human urine as potential biomarkers of risk and diagnosis for atherosclerosis.  相似文献   

19.
It has been shown that the quantum yield of the photochemical conversion of adenine and the corresponding nucleosides and nucleoside 5'-phosphates in liquid (pH 5.6 and 2.0) and frozen aqueous solutions do not exceed 10(-4). The quantum yield of the photoconversion of guanine-containing nucleosides and nucleoside 5'-phosphates in liquid aqueous solution (pH 5.6) after removal of oxygen by passing through nitrogen and in the frozen state do not exceed 0.3 x 10(-4). The quantum yield in oxygen-containing liquid aqueous solutions increase to 0.3 x 10(-3), i.e. to values commensurate with the quantum yield of pyrimidine photolysis.  相似文献   

20.
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号