首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study investigated whether beta-muricholic acid, a natural trihydroxy hydrophilic bile acid of rodents, acts as a biliary cholesterol-desaturating agent to prevent cholesterol gallstones and if it facilitates the dissolution of gallstones compared with ursodeoxycholic acid (UDCA). For gallstone prevention study, gallstone-susceptible male C57L mice were fed 8 weeks with a lithogenic diet (2% cholesterol and 0.5% cholic acid) with or without 0.5% UDCA or beta-muricholic acid. For gallstone dissolution study, additional groups of mice that have formed gallstones were fed chow with or without 0.5% beta-muricholic acid or UDCA for 8 weeks. One hundred percent of mice fed the lithogenic diet formed cholesterol gallstones. Addition of beta-muricholic acid and UDCA decreased gallstone prevalence to 20% and 50% through significantly reducing biliary secretion rate, saturation index, and intestinal absorption of cholesterol, as well as inducing phase boundary shift and an enlarged Region E that prevented the transition of cholesterol from its liquid crystalline phase to solid crystals and stones. Eight weeks of beta-muricholic acid and UDCA administration produced complete gallstone dissolution rates of 100% and 60% compared with the chow (10%). We conclude that beta-muricholic acid is more effective than UDCA in treating or preventing diet-induced or experimental cholesterol gallstones in mice.  相似文献   

2.
Fatty acid bile acid conjugates (FABACs) prevent and dissolve cholesterol gallstones and prevent diet induced fatty liver, in mice. The present studies aimed to test their hypocholesterolemic effects in mice. Gallstone susceptible (C57L/J) mice, on high fat (HFD) or regular diet (RD), were treated with the conjugate of cholic acid with arachidic acid (FABAC; Aramchol). FABAC reduced the elevated plasma cholesterol levels induced by the HFD. In C57L/J mice, FABAC reduced plasma cholesterol by 50% (p < 0.001). In mice fed HFD, hepatic cholesterol synthesis was reduced, whereas CYP7A1 activity and expression were increased by FABAC. The ratio of fecal bile acids/neutral sterols was increased, as was the total fecal sterol excretion. In conclusion, FABACs markedly reduce elevated plasma cholesterol in mice by reducing the hepatic synthesis of cholesterol, in conjunction with an increase of its catabolism and excretion from the body.  相似文献   

3.
The objective of the present study was to investigate the cholesterol-reducing effect of medium-chain fatty acids (MCFAs) completed by elevated excretion of fecal neutral steroids and/or bile acids. Blood and liver lipid profiles, fecal neutral steroids, bile acids, and mRNA and protein expression of the genes relevant to cholesterol homeostasis were measured and analyzed in C57BL/6J mice fed a cholesterol-rich diet with 2% caprylic acid or capric acid for 12 weeks. Blood total cholesterol and low-density lipoprotein cholesterol (LDL-c) levels were reduced significantly as compared to diet with palmitic acid or stearic acid. Caprylic acid promoted the excretion of fecal neutral steroids, especially cholesterol. The excretion of fecal bile acids, mainly in the form of cholic acid was enhanced and accompanied by elevated expression of mRNA and the protein of hepatic cholesterol 7α-hydroxylase (CYP7A1). These results indicate that MCFAs can reduce blood cholesterol by promoting the excretion of fecal cholesterol and cholic acid.  相似文献   

4.
Modified fungal product 4-O-methylascochlorin (MAC) is an experimental agent affecting lipid and carbohydrate metabolism in mammals. The hypocholesterolemic properties of MAC were studied using rats fed on a standard laboratory diet. Because of the insolubility in water, reproducibility of the hypocholesterolemic activity had usually been poor for rats fed ad libitum. The difficulty was overcome by controlled reverse-phase feeding; MAC significantly lowered serum total cholesterol (s-TC) in rats only when given by gastric intubation soon after diet intake.

MAC increased fecal excretion of neutral and acidic sterols and also increased biliary flow accompanying increments in biliary cholesterol, bile acids and phospholipids. A much larger increase in neutral sterols was characteristic for MAC. However, intestinal absorption of cholesterol and cholic acid was unaffected by MAC. Three mechanisms therefore seemed to be working in hypocholesterolemic activity: (a) withdrawal of hepatic cholesterol into bile, (b) a larger fecal loss of sterols following increment of biliary sterols and (c) enhanced bile acid synthesis compensating the larger fecal loss. A negative sterol balance often leads to an increase in hepatic cholesterogenesis. However, cholesterogenesis, as judged from incorporation of the precursors, was unchanged by MAC.  相似文献   

5.
We studied bile acid and cholesterol metabolism in insulin-dependent diabetes utilizing genetically modified mice unable to synthesize cholic acid (Cyp8b1-/-). Diabetes was induced in Cyp8b1-/- and wild type animals (Cyp8b1+/+) by alloxan, and the mice were fed normal or cholesterol-enriched diet for 10 weeks. The serum levels of cholesterol were strongly increased in diabetic Cyp8b1+/+ mice fed cholesterol, while diabetic Cyp8b1-/- mice did not show any aberrations regardless of the diet. Diabetic cholesterol-fed Cyp8b1+/+ mice had much higher biliary cholesterol and cholesterol saturation index than all other groups, their bile contained a large number of cholesterol crystals, and their canalicular cholesterol transporter Abcg5/g8 mRNA levels were much higher. Cyp7a1 mRNA levels were similar in all diabetic mice but higher compared to non-diabetic animals. The results indicate a critical role for cholic acid for the development of hypercholesterolemia and gallstones in our animal model.  相似文献   

6.
Beta-Cyclodextrin (BCD), a cyclic oligosaccharide that binds cholesterol and bile acids in vitro, has been previously shown to be an effective plasma cholesterol lowering agent in hamsters and domestic pigs. This study examined the effects of BCD as compared with cholestyramine on cholesterol and bile acid metabolism in the LPN hamster model model for cholesterol gallstones. The incidence of cholesterol gallstones was 65% in LPN hamsters fed the lithogenic diet, but decreased linearly with increasing amounts of BCD in the diet to be nil at a dose of 10% BCD. In gallbladder bile, cholesterol, phospholipid and chenodeoxycholate concentrations, hydrophobic and lithogenic indices were all significantly decreased by 10% BCD. Increases in bile acid synthesis (+110%), sterol 27-hydroxylase activity (+106%), and biliary cholate secretion (+140%) were also observed, whereas the biliary secretion of chenodeoxycholate decreased (-43%). The fecal output of chenodeoxycholate and cholate (plus derivatives) was increased by +147 and +64%, respectively, suggesting that BCD reduced the chenodeoxycholate intestinal absorption preferentially. Dietary cholestyramine decreased biliary bile acid concentration and secretion, but dramatically increased the fecal excretion of chenodeoxycholate and cholate plus their derivatives (+328 and +1940%, respectively). In contrast to BCD, the resin increased the lithogenic index in bile, induced black gallstones in 34% of hamsters, and stimulated markedly the activities of HMG-CoA reductase (+670%), sterol 27-hydroxylase (+310%), and cholesterol 7alpha-hydroxylase (+390%). Thus, beta-cyclodextrin (BCD) prevented cholesterol gallstone formation by decreasing specifically the reabsorption of chenodeoxycholate, stimulating its biosynthesis and favoring its fecal elimination. BCD had a milder effect on lipid metabolism than cholestyramine and does not predispose animals to black gallstones as cholestyramine does in this animal model.  相似文献   

7.
Neomycin augments colon tumorigenesis in 1,2 - dimethylhydrazine treated rats fed polyunsaturated fat diet and decreases fecal cholic acid excretion, while it inhibits tumorigenesis with increased cholic acid and decreased deoxycholic acid excretions in rats fed high cholesterol diet. Participation of other fecal bile acids seems to be insignificant in relation to colon carcinogenesis.  相似文献   

8.
Niemann-Pick C1-like 1 (NPC1L1) facilitates the uptake of sterols into the enterocyte and is the target of the novel cholesterol absorption inhibitor, ezetimibe. These studies used the Golden Syrian hamster as a model to delineate the changes in the relative mRNA expression of NPC1L1 and other proteins that regulate sterol homeostasis in the enterocyte during and following cessation of ezetimibe treatment and also to address the clinically important question of whether the marked inhibition of cholesterol absorption alters biliary lipid composition. In hamsters fed a low-cholesterol, low-fat basal diet, the abundance of mRNA for NPC1L1 in the small intestine far exceeded that in other regions of the gastrointestinal tract, liver, and gallbladder. In the first study, female hamsters were fed the basal diet containing ezetimibe at doses up to 2.0 mg.day(-1).kg body wt(-1). At this dose, cholesterol absorption fell by 82%, fecal neutral sterol excretion increased by 5.3-fold, and hepatic and intestinal cholesterol synthesis increased more than twofold, but there were no significant changes in either fecal bile acid excretion or biliary lipid composition. The ezetimibe-induced changes in intestinal cholesterol handling were reversed when treatment was withdrawn. In a second study, male hamsters were given a diet enriched in cholesterol and safflower oil without or with ezetimibe. The lipid-rich diet raised the absolute and relative cholesterol levels in bile more than fourfold. This increase was largely prevented by ezetimibe. These data are consistent with the recent finding that ezetimibe treatment significantly reduced biliary cholesterol saturation in patients with gallstones.  相似文献   

9.
Cholesterol gallstones occur rarely in childhood and adolescence and increase linearly with age in both genders. To explore whether aging per se increases cholesterol saturation of bile and gallstone prevalence, and to investigate age-related changes in hepatic and biliary lipid metabolism, we studied gallstone-susceptible C57L mice and resistant AKR mice of both genders fed 8 weeks with a lithogenic diet containing 1% cholesterol, 0.5% cholic acid, and 15% butter fat starting at (young adult) 8, (older adult) 36, and (aged) 50-weeks-of-age. After the 8-week feeding, gallstone prevalence, gallbladder size, biliary lipid secretion rate, and HMG-CoA reductase activity were significantly greater but cholesterol 7alpha-hydroxylase activity was lower in C57L mice of both genders compared with AKR mice. Increasing age augmented biliary secretion and intestinal absorption of cholesterol, reduced hepatic synthesis and biliary secretion of bile salts, and decreased gallbladder contractility, all of which increased susceptibility to cholesterol cholelithiasis in C57L mice. We conclude that aging per se is an independent risk factor for cholesterol gallstone formation. Because aging increases significantly biliary cholesterol hypersecretion and gallstone prevalence in C57L mice carrying Lith genes, it is highly like that Longevity (aging) genes can enhance lithogenesis of Lith (gallstone) genes.  相似文献   

10.
This study examined the effects of Lactobacillus acidophilus ATCC 43121 (LAB) on cholesterol metabolism in hypercholesterolemia-induced rats. Four treatment groups of rats (n = 9) were fed experimental diets: normal diet, normal diet+LAB (2 x 10(6) CFU/day), hypercholesterol diet (0.5% cholesterol, w/w), and hypercholesterol diet + LAB. Body weight, feed intake, and feed efficiency did not differ among the four groups. Supplementation with LAB reduced total serum cholesterol (25%) and VLDL + IDL + LDL cholesterol (42%) in hypercholesterol diet groups, although hepatic tissue cholesterol and lipid contents were not changed. In the normal diet group, cholesterol synthesis (HMG-CoA reductase expression), absorption (LDL receptor expression), and excretion via bile acids (cholesterol 7 alpha-hydroxylase expression) were increased by supplementation with LAB, and increased cholesterol absorption and decreased excretion were found in the hypercholesterol diet group. Total fecal acid sterols excretion was increased by supplementation with LAB. With proportional changes in both normal and hypercholesterol diet groups, primary bile acids (cholic and chenodeoxycholic acids) were reduced, and secondary bile acids (deoxycholic and lithocholic acids) were increased. Fecal neutral sterol excretion was not changed by LAB. In this experiment, the increase in insoluble bile acid (lithocholic acid) reduced blood cholesterol level in rats fed hypercholesterol diets supplemented with LAB. Thus, in the rat, L. acidophilus ATCC 43121 is more likely to affect deconjugation and dehydroxylation during cholesterol metabolism than the assimilation of cholesterol into cell membranes.  相似文献   

11.
The effects of cholestyramine feeding on biliary ursodeoxycholic acid, fecal excretion of bile acids and neutral sterols on cholesterol 7α-hydroxylase and hepatic HMG-CoA reductase were examined in the guinea pig. In the bile there was a 57% decrease in the concentration of ursodeoxycholic acid while an increase was observed in the concentration of chenodeoxycholic acid. Cholestyramine feeding for ten days resulted in a decrease in plasma cholesterol levels and an increase in both hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities. The fecal excretion of both bile acids and neutral sterols was significantly increased.  相似文献   

12.
A comprehensive study of cholesterol, bile acid, and lipoprotein metabolism was undertaken in two strains of hamster that differed markedly in their response to a sucrose-rich/low fat diet. Under basal conditions, hamsters from the LPN strain differed from Janvier hamsters by a lower cholesterolemia, a higher postprandial insulinemia, a more active cholesterogenesis in both liver [3- to 4-fold higher 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR) activity and mRNA] and small intestine, and a lower hepatic acyl-coenzyme A:cholesterol acyltransferase activity. Cholesterol saturation indices in the gallbladder bile were similar for both strains, but the lipid concentration was 2-fold higher in LPN than in Janvier hamsters. LPN hamsters had a lower capacity to transform cholesterol into bile acids, shown by the smaller fraction of endogenous cholesterol converted into bile acids prior to fecal excretion (0.34 vs. 0.77). In LPN hamsters, the activities of cholesterol 7alpha-hydroxylase (C7OHase) and sterol 27-hydroxylase (S27OHase), the two rate-limiting enzymes of bile acid synthesis, were disproportionably lower (by 2-fold) to that of HMG-CoAR. When fed a sucrose-rich diet, plasma lipids increased, dietary cholesterol absorption improved, hepatic activities of HMG-CoA reductase, C7Ohase, and S27OHase were reduced, and intestinal S27OHase was inhibited in both strains. Despite a similar increase in the biliary hydrophobicity index due to the bile acid enrichment in chenodeoxycholic acid and derivatives, only LPN hamsters had an increased lithogenic index and developed cholesterol gallstones (75% incidence), whereas Janvier hamsters formed pigment gallstones (79% incidence).These studies indicate that LPN hamsters have a genetic predisposition to sucrose-induced cholesterol gallstone formation related to differences in cholesterol and bile acid metabolism.  相似文献   

13.
A report on the effects of primary bile acid ingestion alone or in combination with plant sterols on serum cholesterol levels, biliary lipid secretion, and bile acid metabolism. Biliary bile acid and cholesterol secretion were measured in four patients with type IIa hypercholesterolemia before and after randomized treatment periods. During these periods either a bile acid mixture (cholic-chenodeoxycholic 2:1, a proportion similar to that endogenously synthesized in health), at a level of 20 mg/kg, or the same mixture plus sitosterols, 200 mg/kg, was fed. Serum cholesterol and the cholesterol saturation of fasting-state bile was also measured. Pretreatment biliary lipid secretion was within normal limits. Bile acid kinetic measurements were also recorded before treatment and showed that cholic acid synthesis was disproportionately decreased relative to that of chenodeoxycholic acid, a finding previously reported by others. Administration of the bile acid mixture increased biliary bile acid secretion in 3 of 4 patients, but did not influence biliary cholesterol secretion. The combination of sitosterol-bile acid, however, caused a relative decrease in cholesterol secretion in bile, and fasting-state bile became unsaturated in all patients. No change in fecal neutral sterol excretion occurred during the beta-sitosterol-bile acid regimen, suggesting that simultaneous bile acid feeding blocks the compensatory increase in cholesterol synthesis known to be induced by beta-sitosterol feeding in hypercholesterolemic patients. Serum cholesterol levels also fell modestly during the sitosterol-bile acid regimen, the decrease averaging 15%. We conclude that the abnormally low rate of bile acid synthesis in patients with type IIa hyperlipoproteinemia does not influence biliary lipid secretion; that increasing the input of the two primary bile acids into the enterohepatic circulation does not increase biliary cholesterol secretion or lower serum cholesterol levels in such patients; and that the usual increase in cholesterol synthesis induced by beta-sitosterol feeding does not occur if bile acids are administered simultaneously.  相似文献   

14.
The effects of bile duct ligation on bile acid and cholesterol metabolism were examined in male Wistar strain rats. Quantitative and qualitative changes of bile acids and cholesterol in serum and urine occurred; beta-muricholic acid predominantly increased in serum and urine and the ratio of urinary cholic acid and beta-muricholic acid changed from about 5:3 on day 1 to about 1:8 on day 5 under biliary obstruction. The form of the increased urinary bile acids was mainly taurine-conjugated and partly sulfated. Under conditions of bile duct ligation on day 5, 14C-labeled 3 beta-hydroxy-5-cholenoic, lithocholic, and chenodeoxycholic acids were intragastrically administered to the rats after pretreatment with antibiotics and the metabolites of these three acids were investigated. 3 beta-Hydroxy-5-cholenoic acid was most efficiently converted to beta-muricholic acid. The present study strongly suggested the presence of an alternative metabolic pathway induced by bile duct ligation, which caused the change in composition of urinary bile acids, and especially the marked increase in beta-muricholic acid formation. A possible alternative pathway for bile acid biosynthesis under biliary obstruction in rats is postulated.  相似文献   

15.
A study was conducted in hamsters to determine if group B soyasaponins improve plasma cholesterol status by increasing the excretion of fecal bile acids and neutral sterols, to identify group B soyasaponin metabolites, and to investigate the relationship between a fecal group B soyasaponin metabolite and plasma lipids. Twenty female golden Syrian hamsters, 11-12 weeks old and 85-125 g, were randomly assigned to a control diet or a similar diet containing group B soyasaponins (containing no isoflavones), 2.2 mmol/kg, for 4 weeks. Hamsters fed group B soyasaponins had significantly lower plasma total cholesterol (by 20%), non-high-density lipoprotein (HDL) cholesterol (by 33%), and triglycerides (by 18%) compared with those fed casein (P < 0.05). The ratio of total cholesterol to HDL cholesterol was significantly lower (by 13%) in hamsters fed group B soyasaponins than in those fed casein (P < 0.05). The excretion of fecal bile acids and neutral sterols was significantly greater (by 105% and 85%, respectively) in soyasaponin-fed hamsters compared with those fed casein (P < 0.05). Compared with casein, group B soyasaponins lowered plasma total cholesterol levels and non-HDL cholesterol levels by a mechanism involving greater excretion of fecal bile acids and neutral sterols. Hamsters fed group B soyasaponins statistically clustered into two fecal soyasaponin metabolite-excretion phenotypes: high excreters (n = 3) and low excreters (n = 7). When high and low producers of this soyasaponin metabolite were compared for plasma cholesterol status, the high producers showed a significantly lower total-cholesterol-to-HDL-cholesterol ratio compared with the low producers (1.38 +/- 0.7 vs. 1.59 +/- 0.13; P < 0.03). Greater production of group B soyasaponin metabolite in hamsters was associated with better plasma cholesterol status, suggesting that gut microbial variation in soyasaponin metabolism may influence the health effects of group B soyasaponins.  相似文献   

16.
To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of β-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of β-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, β-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, β-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine–glycine conjugation, β-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by ?75% and ?44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with β-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. β-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% β-cyclodextrin and 19-times with 1% cholestyramine compared to control. β-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of β-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol excretion is most likely the primary mechanism responsible for the lipid-lowering action of β-cyclodextrin. In contrast, other mechanisms involving the alterations in the biliary bile acid profile or repressed hepatic lipogenesis, e.g., VLDL production, appear to be involved in the hypolipidemic effect of resistant starch.  相似文献   

17.
Six African green monkeys were labeled intravenously with [1,2-(3)H]cholesterol while consuming a cholesterol-free liquid formula diet. The plasma cholesterol specific activity was compared with the specific activity of the biliary cholesterol and bile acids and with the fecal neutral steroids in order to determine whether the traditional isotopic balance method was valid for the calculation of endogenous cholesterol excretion. The specific activity of biliary cholesterol and bile acids averaged 10-15% lower than plasma cholesterol specific activity. Fecal cholesterol and coprostanone specific activities were similar to that of the biliary cholesterol, but the specific activity of fecal coprostanol was approximately 25% lower. This suggests that biliary cholesterol and bile acids were derived from a pool of hepatic cholesterol that did not completely equilibrate with the whole body exchangeable cholesterol pool. In addition, there was further reduction in the specific activity of coprostanol, the major fecal neutral steroid, presumably by cholesterol synthesized in the lower intestine and preferentially converted to coprostanol. As a result, the traditional isotopic balance procedure underestimated endogenous neutral steroid excretion by 46% and bile acid excretion by 31% in African green monkeys fed the cholesterol-free diet. Within 7 days after the addition of 1 mg cholesterol/kcal to the diet, the specific activities of plasma and biliary cholesterol and biliary bile acids were identical and there was no difference in the specific activities of the individual fecal neutral steroids. Thus, the traditional isotopic balance procedure (DPM fecal neutral steroids + bile acids/specific activity [DPM/mg] plasma cholesterol) can be used for calculation of endogenous cholesterol excretion in cholesterol-fed animals during the nonsteady state when plasma cholesterol concentrations are rapidly increasing, as well as after a new steady state has been achieved.-Henderson, G. R., and R. W. St. Clair. Sources of error in the isotopic cholesterol balance method in African green monkeys consuming a cholesterol-free diet.  相似文献   

18.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.  相似文献   

19.
Gallbladder mucins play a critical role in the pathogenesis of cholesterol gallstones because of their ability to bind biliary lipids and accelerate cholesterol crystallization. Mucin secretion and accumulation in the gallbladder is determined by multiple mucin genes. To study whether mucin gene 1 (Muc1) influences susceptibility to cholesterol cholelithiasis, we investigated male Muc1-deficient (Muc1(-/-)) and wild-type mice fed a lithogenic diet containing 1% cholesterol and 0.5% cholic acid for 56 days. Gene expression of the gallbladder Muc1 and Muc5ac was significantly reduced in Muc1(-/-) mice in response to the lithogenic diet. Muc3 and Muc4 levels were upregulated and were similar between Muc1(-/-) and wild-type mice. Little or no Muc2 and Muc5b mRNAs were detected. Muc1(-/-) mice displayed significant decreases in total mucin secretion and accumulation in the gallbladder as well as retardation of crystallization, growth, and agglomeration of cholesterol monohydrate crystals. At 56 days of feeding, gallstone prevalence was decreased by 40% in Muc1(-/-) mice. However, cholesterol saturation indices of gallbladder bile, hepatic secretion of biliary lipids, and gallbladder size were comparable in Muc1(-/-) and wild-type mice. We conclude that decreased gallstone formation in mice with disrupted Muc1 gene results from reduced mucin secretion and accumulation in the gallbladder.  相似文献   

20.
Y Ayaki  Y Ogura  S Kitayama  S Endo  M Ogura 《Steroids》1983,41(4):509-520
Some difference in functional pool of cholesterol acting as the precursor of bile acids is pointed out between cholic acid and chenodeoxycholic acid. In order to elucidate this problem further, some experiments were performed with rats equilibrated with [7(n)-3H, 4-(14)C] cholesterol by subcutaneous implantation. The bile duct was cannulated in one series of experiments and ligated in another. After the operation 14C-specific radioactivity of serum cholesterol fell, but reached practically a new equilibrium within three days. 14C-Specific radioactivity of serum cholesterol as well as of biliary bile acids in bile-fistula rats and urinary bile acids in bile duct-ligated rats was determined during a three days-period in the new equilibrated state. The results were as follows: (1) 14C-Specific radioactivity of cholic acid and chenodeoxycholic acid in bile was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was clearly lower than that of chenodeoxycholic acid. (2) 14C-Specific radioactivity of cholic acid and beta-muricholic acid in urine was lower than that of serum cholesterol, and 14C-specific radioactivity of cholic acid was lower than that of beta-muricholic acid. (3) Biliary as well as urinary beta-muricholic acid lost tritium label at 7-position entirely during the course of formation from [7(n)-3H, 4-(14)C]cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号