首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract A current explanation of the mechanism of flooding injury to roots suggests that oxygen deficiency depresses the supply of respirable carbohydrates sufficiently to inhibit fermentation. However, even though it has been shown that phloem transport of assimilate is sharply reduced to anaerobic roots, inhibition of assimilate metabolism has also been suggested to be an important factor. This study examines these hypotheses by relating assimilate supply and metabolic activity in anoxic roots of alfalfa (Medicago sativa L.), a flood-intolerant species, and birdsfoot trefoil (Lotus corniculatus L.), a flood-tolerant plant. Roots were made anoxic (severe O2 deficiency) for 2, 4 or 6 d and shoots were labelled with 14CO2. Assimilate transport to the roots and metabolism to structural components were significantly decreased in both species in response to anoxia. Trefoil exhibited significantly greater 14C incorporation into the residue fraction at 4 d anoxia than did alfalfa, and this was consistent with the greater flooding tolerance of trefoil. When assimilate supply to O2-deficient roots was decreased by shoot shading, shoot fresh weight was reduced by both anoxia and light treatments. Root-soluble sugars were significantly decreased by shading but were greatly increased in response to anoxia. Root starch concentration also increased under anoxia. Root K+ concentration was reduced by anoxia only. The energy status (ATP/ADP) of roots was significantly decreased by shading; however, anoxia reduced the energy status only in unshaded plants. The data indicate that carbohydrate supply to anaerobic roots does not appear to be a limiting factor in the metabolic response of alfalfa roots. Alternatively, metabolism of assimilate in anoxic roots may be an important determinant of survival.  相似文献   

2.
Abstract Field flooding of established alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.) for up to 12 d resulted in a significant increase in alcohol dehydrogenase activity (ADH) and an increase in the Km of ADH in both species. Root concentration of ethanol increased throughout the flooding regime in alfalfa roots. No ethanol was detected in any trefoil root samples. Alfalfa plants which had shoots removed 5 d prior to flooding accumulated significantly higher levels of root ethanol and showed flooding injury sooner, indicating a significant effect of shoots on development of flooding injury. Alfalfa and trefoil plants grown in the greenhouse were flooded and ethanol in the transpiration effluent was trapped and measured. Alfalfa transpired measurable quantities of ethanol which peaked just prior to development of shoot injury symptoms. No ethanol was detected in the transpiration effluent from trefoil shoots. Flooded roots of both alfalfa and trefoil excreted ethanol but alfalfa roots synthesized more total ethanol and retained a larger proportion in the roots than did trefoil. While the ethanol accumulation response in alfalfa and trefoil are consistent with the ethanol ‘self-poisoning’ hypothesis of flooding injury, the very small quantities of ethanol found in these roots still raises questions as to its absolute effect in the plant.  相似文献   

3.
Morphological changes of roots and shoots following oxygen deficiencyin the root medium and after partial pruning of the root systemwere analyzed to obtain easily measurable parameters of theadaptive capacity of the root system against stress. Wheat seedlings(Triticum aestivum L. cv. Hatri) were cultivated on nutrientsolution which was either aerated or flushed with nitrogen,or were cultivated on flooded sand. On the third day after grainswelling in two pruning variants, roots 1–3 or 4–8were excised. Root anaerobiosis retarded longitudinal growth and biomass accumulationof the shoot and the seminal roots, and stimulated the developmentof adventitious roots. Partial removal caused a general compensativegrowth of the remaining roots under aerobic conditions. Root pruning plus anaerobiosis exceeded the compensatory capacityof the seedlings and thus caused a strong delay of elongationand biomass accumulation of both roots and shoots, includingdecrease of the root/shoot ratio. Roots became independent ofendosperm reserves on the seventh day under aerobic conditionsthough caryopses were not completely exhausted at this time.Additionally, oxygen deficiency delayed the reserve exhaustionprocess. Triticum aestivum L. cv Hatri, wheat, roots, growth analysis, morphology, anaerobiosis, strees, root pruning, compensatory capacity, caryopsis  相似文献   

4.
The growth characteristics of threeRumex species were determined under different solution oxygen concentrations in hydroculture. These species all occur in a river foreland ecosystem and they were found to differ in their flood tolerance. The flood-tolerantR. maritimus undR. crispus developed a large number of new, aerenchymatous roots within a short period under low solution oxygen concentrations. Biomass production was not affected. In the flood-intolerantR. thyrsiflorus, however, only few slow-growing new roots were developed and biomass production was significantly reduced at solution oxygen concentrations below 2% (v:v). These different responses could be partly explained by a differential aerenchyma formation in new roots of the flood-tolerant species. Aerenchyma can relieve the oxygen stress of the root systems via internal aeration.The fast development of new roots of the flood-tolerantR. maritimus andR. crispus after the onset of anaerobiosis coincided with the reduction or cessation of growth of the primary roots. Notwithstanding the cessation of growth, however, primary roots of both species were able to recover following restoration of aerobic conditions after a 13-day anaerobic period. However, the roots ofR. thyrsiflorus ceased growing very soon after the onset of anaerobiosis. All had died within 10 days.The balance between the growth rates of the primary and the newly formed root system are discussed and related to the differential tolerance of theRumex species to transient flooding.  相似文献   

5.
Petra R. Moog 《Planta》1998,207(2):189-198
Young Carex extensa Good., C. remota L. and C. pseudocyperus L. plants were subjected to aerobic or anaerobic growth conditions in nutrient solution for 40 d. Root anatomy was studied by serial transsections and longitudinal sections of the root tip. Under both growth conditions, the flooding-intolerant C. extensa developed the typical Carex root pattern, i.e. an intact cortex in the youngest part of the root, but lysogenous aerenchyma in maturing parts. In contrast, flooding-tolerant C. remota from periodically flooded habitats showed a similar root anatomy to C. extensa under aerobic conditions, but a cortex with fine intercellular spaces throughout most of the root under anaerobic conditions. The flooding-tolerant C. pseudocyperus from permanently flooded stands developed an intact cortex over most of the root length under both growth conditions. Fine intercellular spaces on four sides of each cortical cell penetrated into the very tip of the root in this species, connecting the whole root with the lacunae of the leaves and the atmosphere. In both flooding-tolerant species, morphometry showed that even under anaerobic growth conditions and despite the maintenance of a juvenile growth habit, i.e. intact cortical cells, the average root porosities were more than 20% and there was an increase in the contact area between intercellular gas spaces and the surface of cortical cells. While C. remota showed radial oxygen loss along the whole root length, C. pseudocyperus released oxygen to an oxygen-free medium only at the root tip. It is concluded that the maintenance of a juvenile root structure in combination with a system of fine intercellular spaces allows efficient nutrient uptake and plant growth during anaerobiosis in flooding-tolerant Carex species, in contrast to those species which may tolerate periods of anaerobiosis by forming aerenchyma at the cost of decreased nutrient uptake and growth. Received: 10th February 1998 / Accepted: 2nd July 1998  相似文献   

6.
Respiration was measured under anaerobiosis in the roots of two Senecio species: S. aquaticus Hill, which is flood-tolerant, and S. jacobaea L., which is flood-intolerant. NADH-oxidation under anaerobiosis was measured in roots of S. aquaticus, S. jacobaea and S. vulgaris L., which is also flood-intolerant. Protein content of S. aquaticus was about 15% higher under anaerobiosis. At 20°C respiration of the roots of S. aquaticus was 50% inhibited under anaerobiosis, while an almost complete inhibition occurred in the roots of S. jacobaea. The activities of nitrate reductase, glutamate dehydrogenase and lactate dehydrogenase were considerably higher in the roots of S. aquaticus grown under anaerobic conditions than in roots grown under aerobic conditions. In S. jacobaea glutamate dehydrogenase activity was lower and in S. vulgaris nitrate reductase was lower and glutamate dehydrogenase activity was higher in roots grown under anaerobic conditions. The possible role of these enzymes for metabolism under anaerobic conditions by oxidizing a surplus of NADH is discussed. Since oxidative phosphorylation is 50% inhibited under anaerobiosis, ATP has to be generated in a different way. It is argued that maintenance of the ATP-level may be compensated by way of the enzymes mentioned above, in combination with a modified glucose utilization.  相似文献   

7.
The responses of root aerobic respiration to hypoxia in three common Typha species were examined. Typha latifolia L., T. orientalis Presl, and T. angustifolia L. were hydroponically cultivated under both aerobic and hypoxic growth conditions to measure root oxygen consumption rates. Hypoxia significantly enhanced the root aerobic respiration capacity of the two deep-water species, T. orientalis and T. angustifolia, while it did not affect that of the shallow-water species, T. latifolia. T. angustifolia increased its root porosity and root mass ratio, while T. latifolia increased its root diameter under the hypoxic growth conditions. The relative growth rates in biomass of T. orientalis and T. angustifolia were 59 and 39% higher, respectively, under the hypoxic growth conditions than under the aerobic growth conditions. In contrast, that of T. latifolia did not differ between the two conditions. In T. orientalis and T. angustifolia, enhanced root aerobic respiration rates under the hypoxic growth conditions would have increased the nutrient uptake, and thus higher relative growth rates were obtained. For the deep-water species, T. orientalis and T. angustifolia, the root aerobic respiration capacity was enhanced, probably in order to maintain the generation of respiratory energy under hypoxia.  相似文献   

8.
The adenylate energy charge, production of ethanol and lactate, and nitrate reductase activity were determined in order to study the influence of different nitrogen sources on the metabolic responses of roots of Carex pseudocyperus L. and Carex sylvatica HUDS. exposed to anaerobic nutrient solutions. Determination of adenylates was carried out by means of a modified HPLC technique. Total quantity of adenylates was higher in Carex pseudocyperus than in Carex sylvatica under all conditions. In contrast, the adenylate energy charge was only slightly different between the species and decreased more or less in relation to the applied nitrogen source under oxygen deficiency. The adenylate energy charge in roots of plants under nitrate nutrition showed a smaller decrease under anaerobic environmental conditions than plants grown with ammonium or nitrate/ammonium. Roots of nitrate-fed plants showed a lower ethanol and lactate production than ammonium/nitrate- and ammonium-fed plants. Ethanol production was higher in C. pseudocyperus, formation of lactate was lower compared to that in Carex sylvatica. The activity of enzymes involved in fermentation processes (ADH, LDH and PDC) was enhanced significantly after 24 hours of exposure to anaerobic nutrient solutions in roots of both species. The induction of these enzymes was only slightly influenced by different nitrogen supply. In vivo nitrate reductase activity increased almost 3-fold compared to the aerobic treatment in both species and overcompensated loss of NADH reoxidation capacity caused by decrease of ethanol and lactate development. Induction of in vitro nitrate reductase activity was enhanced 313% in C. pseudocyperus and 349% in C. sylvatica under anaerobic environmental conditions and nitrate supply. These results indicate that nitrate may serve as an alternative electron acceptor in anaerobic plant root metabolism and that the nitrate-supported energy charge may be due to an accelerated glycolytic flux resulting from a more effective NADH reoxidation capacity by nitrate reduction plus fermentation than by fermentation alone.Abbreviations ADH alcohol dehydrogenase - AEC adenylate energy charge - DMSO dimethyl sulfoxide - EDTA ethylen diamine tetraacetic acid - HPLC high performance liquid chromatography - LDH lactate dehydrogenase - NRA nitrate reductase activity - PCA perchloric acid - PDC pyruvate decarboxylase - PVP polyvinylpyrrolidone - PVPP polyvinylpolypyrrolidone - TCA trichloroacetic acid, Tris-tris(hydroxymethyl)aminomethane  相似文献   

9.
Summary Under controlled rhizotron conditions, roots of Taxodium distichum L., Quercus lyrata Walt, and Q. falcata var. pagodaefolia Ell. were subjected to low soil redox potentials. Root elongation was inhibited at low soil redox potentials. In T. distichum, redox potentials below +200 mV resulted in a significant inhibition of root elongation. In Q. falcata var. pagodaefolia and Q. lyrata, redox potentials below +350 mV resulted in complete cessation of root growth. Studies on root anatomy indicated that low soil redox potenials resulted in a changed cellular structure in the cortex of T. distichum. However, little change was noted in stress roots of oak species. Alcohol dehydrogenase activity in T. distichum roots was approximately doubled compared to control plants, indicating stimulated alcoholic fermentation. In T. distichum, alcoholic fermentation and anatomical changes contribute to flood tolerance but oak species lack these characteristics.  相似文献   

10.
In order to clarify the induction of alcohol dehydrogenase (ADH) by anaerobiosis in oat (Avena sativa L.), the seedlings were exposed to anaerobiosis and activity of ADH and ADH isozyme profiles were determined. The anaerobiosis increased ADH activities in shoots and roots of the seedlings. By day 2, the activity increased 5 and 4 times in the roots and the shoots, respectively, compared with those under aerobic condition. Based on nondenaturing electrophoresis, ADH isozyme composition analysis revealed six bands consisting of a dimmer enzyme with submits encoded by three different Adh genes. Changes in staining intensity of the isozymes indicated that the increase in ADH activity in oat under anaerobiosis resulted from increased enzyme synthesis.  相似文献   

11.
To elucidate the physiological role of exogenous nitrate under anaerobic conditions, we studied the effect of 10 mM KNO3 on the mitochondrial ultrastructure in rice (Oryza sativa L.) coleoptiles and in wheat (Triticum aestivum L.) roots, detached from four-day-old seedlings, under strict anoxia. In wheat roots, following 6-h-long anoxia in the absence of exogenous nitrate, the mitochondrial membranes were partially degraded and, after 9 h under anoxia, the mitochondrial membranes and the membranes of other organelles were completely destroyed. In rice coleoptiles, the partial membrane degradation was observed only after 24 h and their complete breakdown after 48 h of anaerobiosis. In the presence of exogenous nitrate, no membrane destruction was noticed even after 9 and 48 h of anaerobiosis in wheat roots and rice coleoptiles, respectively. These results indicate that exogenous nitrate exerts protective action as a terminal electron acceptor, alternative to the molecular oxygen. Our findings are compared with the results of other researchers concerning the adverse or favorable nitrate action on plant growth, metabolism, and energy status under anaerobic stress.  相似文献   

12.
During anaerobiosis in darkness the main route for ATP production in plants is through glycolysis in combination with fermentation. We compared the organ-specific anaerobic fermentation of flooding-tolerant rice (Oryza sativa) and sensitive wheat (Triticum aestivum) seedlings. A sensitive laser-based photoacoustic trace gas detection system was used to monitor emission of ethanol and acetaldehyde by roots and shoots of intact seedlings. Dark-incubated rice seedlings released 3 times more acetaldehyde and 14 times more ethanol than wheat seedlings during anaerobiosis. Ninety percent of acetaldehyde originated from shoots of both species. In comparison to wheat shoots, the high ethanol production of rice shoots correlated with larger amounts of soluble carbohydrates, and higher activities of fermentative enzymes. After 24 h of anaerobiosis in darkness rice shoots still contained 30% of aerated ATP level, which enabled seedlings to survive this period. In contrast, ATP content declined almost to zero in wheat shoots and roots, which were irreversibly damaged after a 24-h anaerobic period. When plants were anaerobically and dark incubated for 4 h and subsequently transferred back to aeration, shoots showed a transient peak of acetaldehyde release indicating prompt re-oxidation of ethanol. Post-anoxic acetaldehyde production was lower in rice seedlings than in wheat. This observation accounts for a more effective acetaldehyde detoxification system in rice. Compared to wheat the greater tolerance of rice seedlings to transient anaerobic periods is explained by a faster fermentation rate of their shoots allowing a sufficient ATP production and an efficient suppression of toxic acetaldehyde formation in the early re-aeration period.Angelika Mustroph and Elena I. Boamfa contributed equally to the paper.  相似文献   

13.
The shoots of cultivated tomato (Lycopersicon esculentum cv. T5) wilt if their roots are exposed to chilling temperatures of around 5 °C. Under the same treatment, a chilling‐tolerant congener (Lycopersicon hirsutum LA 1778) maintains shoot turgor. To determine the physiological basis of this differential response, the effect of chilling on both excised roots and roots of intact plants in pressure chambers were investigated. In excised roots and intact plants, root hydraulic conductance declined with temperature to nearly twice the extent expected from the temperature dependence of the viscosity of water, but the response was similar in both species. The species differed markedly, however, in stomatal behaviour: in L. hirsutum, stomatal conductance declined as root temperatures were lowered, whereas the stomata of L. esculentum remained open until the roots reached 5 °C, and the plants became flaccid and suffered damage. Grafted plants with the shoots of one genotype and roots of another indicated that the differential stomatal behaviour during root chilling has distinct shoot and root components.  相似文献   

14.
Experiments were designed to provide information about the physiological basis of flood-tolerance in Senecio species. The oxygen concentration in roots of S. jacobaea L., S. viscosus L. and S. vulgaris L. became almost zero after transplantation to a solution of low oxygen concentration, and it was concluded that the flood-sensitivity of these Senecio species could be due to insufficient oxygen transport from the shoots to the roots. The oxygen concentration in the roots of the flood-tolerant S. congestus (R.Br.) DC., growing in a solution of low oxygen tension, was almost sufficient to maintain oxygen utilization at the rate observed in roots of plants, grown in an air-saturated solution. Oxygen utilization by roots of the flood-tolerant S. aquaticus Hill, growing in a solution of low oxygen tension, was inhibited 50%. However, the oxygen concentration in the roots of this species remained high enough to maintain cytochrome oxidase activity and oxidative phosphorylation at the rate observed in roots from an air-saturated environment. The activity of a second (“alternative”) oxidase must have been drastically reduced. Alternative NADH-oxidizing enzymes, like nitrate reductase which was induced by anaerobiosis in roots of S. aquaticus, might replace the regulatory function of the alternative oxidase. — Thus, in S. aquaticus root porosity and root length contributed to the maintenance of an oxygen concentration which was sufficient for uninhibited cytochrome oxidase activity and oxidative phosphorylation rate in roots growing in a solution of low oxygen tension.  相似文献   

15.
Abstract Aerobically germinated seedlings of rice and Echinochloa were found to survive when placed in an anaerobic environment for 4 d, whereas pea and maize seedlings did not. Although root and shoot growth were inhibited in rice and Echinochloa under anaerobiosis, growth resumed when the seedlings were returned to aerobic conditions. Alcohol dehydrogenase (ADH) activity increased more, and protein synthesis was greater, in the shoots than in the roots under anaerobic conditions. These results suggest that, in anaerobiosis-tolerant species, ADH activity and protein synthesis in the shoots represents or results from metabolic adaptations to low oxygen. These results are discussed in terms of plant establishment and growth in a low-oxygen environment.  相似文献   

16.
Reaumuria vermiculata (L.), a perennial dwarf shrub in the family of Tamaricaceae, is a salt-secreting xero-halophyte found widely in arid areas of Tunisia. In the present study, physiological attributes of R. vermiculata were investigated under salt stress. Four-month-old plants were subjected to various salinity levels (0, 100, 200, 300, 400 or 600 mM NaCl) for 30 days under greenhouse conditions. Results showed that plants grew optimally when treated with standard nutrient solution without NaCl supply. However, increasing osmolality of nutrient solutions caused a significant reduction in biomass production and relative growth rate. This reduction was more pronounced in roots than in shoots. In addition, this species was able to maintain its shoot water content at 30% of the control even when subjected to the highest salt level, whereas root water content seemed to be unaffected by salt. Shoot water potential declined significantly as osmotic potential of watering solutions was lowered and the more negative values were reached at 600 mM NaCl (−3.4 MPa). Concentrations of Na+ and Cl in the shoots of R. vermiculata were markedly increased with increasing osmolality of nutrient solutions, whereas concentration of K+ was not affected by NaCl supply. Salt excretion is an efficient mechanism of Na+ exclusion from the shoots of this species exhibiting high K+/Na+ selectivity ratio over a wide range of NaCl salinity. Proline accumulation in shoots was significantly increased with increase in salt level and may play a role in osmoregulation.  相似文献   

17.
In this study, we investigated the relationship between the seasonality of vegetation cover and that of fine root processes in a man-made forest in northern Belgium. Due to their contrasting foliar development, we expected different seasonal patterns of fine root growth and standing biomass between Pedunculate oak (Quercus robur L.), and Scots pine (Pinus sylvestris L.). Biomass and necromass of fine and small roots were estimated by repeated core sampling in February, April, June, August and October 2003. Measurements showed that Pedunculate oaks maintained more live fine roots in winter than Scots pines. However, Scots pines produced more than twice as much fine roots in spring, such that in summer both species had similar root mass. Scots pine root production started before-, but declined during leaf unfolding. Pedunculate oak roots, in contrast, started elongating only after bud break. For both species, fine root production peaked in JuneJuly, but was more than offset by drought-induced mortality at the end of July and early August. Summer drought in 2003 was exceptionally long and intense, significantly reducing leaf area, killing most new roots, and inhibiting root decomposition, such that the obtained results cannot be typical for this forest.  相似文献   

18.
An efficient protocol for shoot regeneration and genetic transformation was applied to root segments of a new Lotus corniculatus L. cultivar Bokor. The shoots, that regenerated on root segments, were inoculated with Agrobacterium rhizogenes A4M70GUS, and produced hairy roots, which on media with 0.2 mg dm−3 benzylaminopurine, regenerated shoots. After rooting and acclimation, the transformed plants were planted in the experimental field. Their morphological traits were compared to controls. No signs of the rol genes phenotype were present. The transformants were significantly taller than controls, while there were no significant differences in the leaf area. The glucuronidase activity and the presence of uidA gene was demonstrated in transformed plants of T0 and in seedlings of T1 generations. It is concluded that A. rhizogenes could be a vector of choice for the transfer of desirable genes into the bird's foot trefoil genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary A greenhouse study in which 24, 54 and 71 per cent roots of wheat (Triticum aestivum L.) were pruned on the 73rd day from the date of planting (anthesis stage) showed that during a 7-day period following root pruning, total transpiration and leaf water potential were significantly lower (P=0.05) and the stomatal resistance was significantly higher (P=0.05) where 54 and 71 per cent roots were pruned, as compared to no root pruning or 24 per cent root pruning. The leaf relative water content, however, showed no significant differences. Thus about one-fourth root sytem could be reduced without adversely affecting the plant-water status.  相似文献   

20.
Tabebuia cassinoides (Lam.) DC (Bignoniaceae) is a tree species that occurs in swampy areas of the coastal “restinga” in SE Brazil (a coastal sandy plains scrub and forest formation). To elucidate possible adaptive strategies that enable this species to occupy areas subjected to seasonal or perennial waterlogging, metabolic, morphological and growth responses of plants under flooding conditions were studied. The root system of T. cassinoides plants presented elevated amounts of ethanol (10.6 μmol g−1 fresh wt) only in the first 5 d of soil water saturation. The two-fold increase in ethanol production under flooding was corroborated by an increase in ADH activity in the same period. Lactic acid concentrations did not change significantly during four months of flooding treatment. The decrease of alcoholic fermentation under hypoxia was associated with the appearing of new roots. The induction of aerenchyma formation in roots developed under flooding conditions, allowed oxygen transport from the shoot to these organs, thus maintaining an aerobic respiration. We conclude that this characteristic and the capacity to oxidize the rhizosphere are probably responsible for the survival and growth of plants while flooded and for their success in an environment, which restricts the presence of the majority of competing tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号