首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local rates of recombination positively correlate with DNA sequence diversity in many species. To test whether this relationship stems from mutagenicity of meiotic recombination, studies often look for a similar association between local rates of recombination and sequence "divergence" between species. Because recombination is mutagenic in yeast, I evaluate this assay by testing whether noncoding DNA sequence divergence between Saccharomyces species is related to measures of meiotic double-strand DNA breaks or crossover rates derived from Saccharomyces cerevisiae. Contrary to expectation, I find that sequence divergence is either uncorrelated or negatively correlated with rates of both double-strand break and crossover. Several caveats are mentioned, but these results suggest that mutagenesis from meiotic recombination is not the primary driver of sequence divergence between Saccharomyces species. This study demonstrates that the association between interspecies nucleotide divergence and local recombination rates is not always a reliable indicator of recombination's mutagenicity.  相似文献   

2.
During homologous recombination (HR), a heteroduplex DNA is formed as a consequence of strand invasion. When the two homologous strands differ in sequence, a mismatch is generated. Earlier studies showed that mismatched heteroduplex often triggers abortion of recombination and that a pivotal component of this pathway is the mismatch repair Msh2 protein. In this study, we analysed the roles of AtMSH2 in suppression of recombination in Arabidopsis. We report that AtMSH2 has a broad range of anti-recombination effects: it suppresses recombination between divergent direct repeats in somatic cells or between homologues from different ecotypes during meiosis. This is the first example of a plant gene that affects HR as a function of sequence divergence and that has an anti-recombination meiotic effect. We discuss the implications of these results for plant improvement by gene transfer across species.  相似文献   

3.
Several DNA-damage detection and repair mechanisms have evolved to repair double-strand breaks induced by mutagens. Later in evolutionary history, DNA single- and double-strand cuts made possible immune diversity by V(D)J recombination and recombination at meiosis. Such cuts are induced endogenously and are highly regulated and controlled. In meiosis, DNA cuts are essential for the initiation of homologous recombination, and for the formation of joint molecule and crossovers. Many proteins that function during somatic DNA-damage detection and repair are also active during homologous recombination. However, their meiotic functions may be altered from their somatic roles through localization, posttranslational modifications and/or interactions with meiosis-specific proteins. Presumably, somatic repair functions and meiotic recombination diverged during evolution, resulting in adaptations specific to sexual reproduction. (c) 2005 Wiley Periodicals, Inc.  相似文献   

4.
Chen W  Jinks-Robertson S 《Genetics》1999,151(4):1299-1313
Nonidentical recombination substrates recombine less efficiently than do identical substrates in yeast, and much of this inhibition can be attributed to action of the mismatch repair (MMR) machinery. In this study an intron-based inverted repeat assay system has been used to directly compare the rates of mitotic and meiotic recombination between pairs of 350-bp substrates varying from 82% to 100% in sequence identity. The recombination rate data indicate that sequence divergence impacts mitotic and meiotic recombination similarly, although subtle differences are evident. In addition to assessing recombination rates as a function of sequence divergence, the endpoints of mitotic and meiotic recombination events involving 94%-identical substrates were determined by DNA sequencing. The endpoint analysis indicates that the extent of meiotic heteroduplex DNA formed in a MMR-defective strain is 65% longer than that formed in a wild-type strain. These data are consistent with a model in which the MMR machinery interferes with the formation and/or extension of heteroduplex intermediates during recombination.  相似文献   

5.
Jensen LE  Jauert PA  Kirkpatrick DT 《Genetics》2005,170(3):1033-1043
During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplex DNA is formed when single-stranded DNAs from two homologs anneal as a consequence of strand invasion. If the two DNA strands differ in sequence, a mismatch will be generated. Mismatches in heteroduplex DNA are recognized and repaired efficiently by meiotic DNA mismatch repair systems. Components of two meiotic systems, mismatch repair (MMR) and large loop repair (LLR), have been identified previously, but the substrate range of these repair systems has never been defined. To determine the substrates for the MMR and LLR repair pathways, we constructed insertion mutations at HIS4 that form loops of varying sizes when complexed with wild-type HIS4 sequence during meiotic heteroduplex DNA formation. We compared the frequency of repair during meiosis in wild-type diploids and in diploids lacking components of either MMR or LLR. We find that the LLR pathway does not act on single-stranded DNA loops of <16 nucleotides in length. We also find that the MMR pathway can act on loops up to 17, but not >19, nucleotides in length, indicating that the two pathways overlap slightly in their substrate range during meiosis. Our data reveal differences in mitotic and meiotic MMR and LLR; these may be due to alterations in the functioning of each complex or result from subtle sequence context influences on repair of the various mismatches examined.  相似文献   

6.
Human recombination rates vary along the chromosomes as well as between the two sexes. There is growing evidence that epigenetic factors may have an important influence on recombination rates, as well as on crossover position. Using both public database analysis and wet-bench approaches, we revisited the relationship between increased rates of meiotic recombination and genome imprinting. We constructed metric linkage disequilibrium (LD) maps for all human chromosomal regions known to contain one or more imprinted genes. We show that imprinted regions contain significantly more LD units (LDU) and have significantly more haplotype blocks of smaller sizes than flanking nonimprinted regions. There is also an excess of hot-spots of recombination at imprinted regions, and this is likely to do with the presence of imprinted genes, per se. These findings indicate that imprinted chromosomal regions are historical "hot-spots" of recombination. We also demonstrate, by direct segregation analysis at the 11p15.5 imprinted region, that there is remarkable agreement between sites of meiotic recombination and steps in LD maps. Although the increase in LDU/Megabase at imprinted regions is not associated with any significant enrichment for any particular sequence class, major sequence determinants of recombination rates seem to differ between imprinted and control regions. Interestingly, fine-mapping of recombination events within the most male meiosis-specific recombination hot-spot of Chromosome 11p15.5 indicates that many events may occur within or directly adjacent to regions that are differentially methylated in somatic cells. Taken together, these findings support the involvement of a combination of specific DNA sequences and epigenetic factors as major determinants of hot-spots of recombination at imprinted chromosomal regions.  相似文献   

7.
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.  相似文献   

8.
A synthetic RBCSB gene cluster was transformed into Arabidopsis in order to simultaneously evaluate the frequency and character of somatic illegitimate recombination, homologous recombination, and targeted gene replacement events associated with T-DNA-mediated transformation. The most frequent type of recombination event observed was illegitimate integration of the T-DNA without activation of the silent ΔRBCS1B: LUC transgene. Sixteen luc+ (firefly luciferase positive) T1 plants were isolated. Six of these were due to illegitimate recombination events resulting in a gene trapping effect. Nine resulted from homologous recombination between paralogous RBCSB sequences associated with T-DNA integration. The frequency of somatic homologous recombination associated with T-DNA integration was almost 200 times higher than previously reported rates of meiotic homologous recombination with the same genes. The distribution of (somatic homologous) recombination resolution sites generally fits a fractional interval length model. However, a small region adjacent to an indel showed a significant over-representation of resolution sites, suggesting that DNA mismatch recognition may also play an important role in the positioning of somatic resolution sites. The frequency of somatic resolution within exon-2 was significantly different from that previously observed during meiotic recombination. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
陈成  董爱武  苏伟 《植物学报》2018,53(1):42-50
HIRA是组蛋白H3.3的特异分子伴侣, 在组蛋白H3.3掺入染色质的过程中发挥重要作用。研究表明, HIRA在哺乳动物胚胎发育和DNA损伤修复过程中不可或缺。而目前人们对于植物中HIRA同源基因功能的研究相对较少。该研究主要关注拟南芥(Arabidopsis thaliana) AtHIRA基因在植物体细胞同源重组以及减数分裂同源重组过程中的功能。将体细胞同源重组和减数分裂同源重组报告系统分别导入野生型和hira-1突变体后统计同源重组频率, 结果表明在正常生长条件下及在伯莱霉素(bleomycin)或UV-C处理条件下, hira-1突变体体细胞的分子内和分子间同源重组频率均低于野生型。而在正常生长条件下, 野生型与hira-1突变体花粉母细胞间的减数分裂同源重组频率没有明显差异, hira-1突变体的DNA损伤水平与野生型接近。qRT-PCR结果表明, DNA损伤修复相关基因RAD51RAD54hira-1突变体中的表达水平均高于野生型。此外, 盐胁迫处理实验表明, hira-1突变体对于高盐胁迫更加敏感。综上, AtHIRA在拟南芥体细胞同源重组及盐胁迫响应过程中发挥了一定作用。  相似文献   

10.
Chromosomal rearrangements can result from crossing over during ectopic homologous recombination between dispersed repetitive DNA. We have previously shown that meiotic ectopic recombination between artificially dispersed ade6 heteroalleles in the fission yeast Schizosaccharomyces pombe frequently results in chromosomal rearrangements. The same recombination substrates have been studied in mitotic recombination. Ectopic recombination rates in haploids were approximately 1-4 x 10(-6) recombinants per cell generation, similar to allelic recombination rates in diploids. In contrast, ectopic recombination rates in heterozygous diploids were 2.5-70 times lower than allelic recombination or ectopic recombination in haploids. These results suggest that diploid-specific factors inhibit ectopic recombination. Very few crossovers occurred in ade6 mitotic recombination, either allelic or ectopic. Allelic intragenic recombination was associated with 2% crossing over, and ectopic recombination between multiple different pairing partners showed 1-7% crossing over. These results contrast sharply with the 35-65% crossovers associated with meiotic ade6 recombination and suggest either differential control of resolution of recombination intermediates or alternative pathways of recombination in mitosis and meiosis.  相似文献   

11.
While it has long been possible to study the process of recombination in yeast and other single-celled organisms, it has been difficult to distinguish between pathways of meiotic and mitotic recombination in multicellular eukaryotes. The experimental system described here bridges the historically separated fields of Genetic Recombination and DNA Repair in Drosophila. It is now feasible to study the repair of unique double-strand breaks induced in the Drosophila genome by the excision of a P-transposable element or by cleavage at an introduced endonuclease recognition sequence. This repair can be studied in both somatic cells and mitotically dividing germ cells. The repair of these breaks occurs mainly by copying sequence from a template located anywhere in the karyoplasm, and occurs in both male and female flies. This system, which was the first of its kind in metazoan organisms, is now being used for gene targeting in Drosophila. This review summarizes results that provide new insights into the process of gap repair in Drosophila and outline some recent experiments that demonstrate the power of the gene targeting technique. BioEssays 20: 317-327, 1998.© 1998 John Wiley & Sons, Inc.  相似文献   

12.
Homologous recombination is key to the maintenance of genome integrity and the creation of genetic diversity. At the mechanistic level, recombination involves the invasion of a homologous DNA template by broken DNA ends, repair of the break and exchange of genetic information between the two DNA molecules. Invasion of the template in eukaryotic cells is catalysed by the RAD51 and DMC1 recombinases, assisted by a number of accessory proteins, including the RAD51 paralogues. Eukaryotic genomes encode a variable number of RAD51 paralogues, ranging from two in yeast to five in animals and plants. The RAD51 paralogues form at least two distinct protein complexes, believed to play roles in the assembly and stabilization of the RAD51‐DNA nucleofilament. Somatic recombination assays and immunocytology confirm that the three ‘non‐meiotic’ paralogues of Arabidopsis, RAD51B, RAD51D and XRCC2, are involved in somatic homologous recombination, and that they are not required for the formation of radioinduced RAD51 foci. Given the presence of all five proteins in meiotic cells, the apparent absence of a meiotic role for RAD51B, RAD51D and XRCC2 is surprising, and perhaps simply the result of a more subtle meiotic phenotype in the mutants. Analysis of meiotic recombination confirms this, showing that the absence of XRCC2, and to a lesser extent RAD51B, but not RAD51D, increases rates of meiotic crossing over. The roles of RAD51B and XRCC2 in recombination are thus not limited to mitotic cells.  相似文献   

13.
In the meiotic prophase, programmed DNA double-strand breaks (DSB) are introduced along chromosomes to promote homolog pairing and recombination. Although meiotic DSBs usually occur in nucleosome-depleted, accessible regions of chromatin, their repair by homologous recombination takes place in a nucleosomal environment. Nucleosomes may represent an obstacle for the recombination machinery and their timely eviction and reincorporation into chromatin may influence the outcome of recombination, for instance by stabilizing recombination intermediates. Here we show in budding yeast that nucleosomes flanking a meiotic DSB are transiently lost during recombination, and that specific histone H3 chaperones, CAF-1 and Hir, are mobilized at meiotic DSBs. However, the absence of these chaperones has no effect on meiotic recombination, suggesting that timely histone reincorporation following their eviction has no influence on the recombination outcome, or that redundant pathways are activated. This study is the first example of the involvement of histone H3 chaperones at naturally occurring, developmentally programmed DNA double-strand breaks.  相似文献   

14.
Recombination intermediates, such as double Holliday junctions, can be resolved by nucleases or dissolved by the combined action of a DNA helicase and a topoisomerase. In eukaryotes, dissolution is mediated by the RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RecQ-mediated genome instability 1 (RMI1). Throughout eukaryotes, the RTR complex is involved in DNA repair and in the suppression of homologous recombination (HR) in somatic cells. Surprisingly, Arabidopsis thaliana mutants of topoisomerase 3α and RMI1 are also sterile due to extensive chromosome breakage in meiosis I, indicating that both proteins are essential for meiotic recombination in plants. AtRMI1 harbours an N-terminal DUF1767 domain and two oligosaccharide binding (OB)-fold domains. To define specific roles for these individual domains, we performed complementation experiments on Atrmi1 mutants with an AtRMI1 full-length open reading frame (ORF) or deletion constructs lacking specific domains. We show that the DUF1767 domain and the OB-fold domain 1 are both essential for the function of AtRMI1 in DNA cross-link repair as well as meiotic recombination, but partially dispensable for somatic HR suppression. The OB-fold domain 2 is not necessary for either somatic or meiotic HR, but it seems to have a minor function in DNA cross-link repair.  相似文献   

15.
An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control   总被引:13,自引:0,他引:13  
Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophila Rad51 gene, whose sequence among the five known Drosophila Rad51-like genes is most closely related to the Rad51 homologs of human and yeast. DmRad51/spnA null mutants are viable but oogenesis is disrupted by the activation of a meiotic recombination checkpoint. We show that the meiotic phenotypes result from an inability to effectively repair DSBs. Our study further demonstrates that in Drosophila the Rad51-dependent homologous recombination pathway is not essential for DNA repair in the soma, unless exposed to DNA damaging agents. We therefore propose that under normal conditions a second, Rad51-independent, repair pathway prevents the lethal effects of DNA damage.  相似文献   

16.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity, because failure to repair them can lead to genome rearrangements or chromosome loss. They can arise at unpredictable locations as a consequence of DNA damage during both the mitotic and the meiotic cell cycle or in a programmed manner during meiosis. Cellular response to accidental or programmed DSBs involves highly conserved surveillance mechanisms, called DNA damage checkpoint and recombination checkpoint, which coordinate DSB repair with mitotic or meiotic cell cycle progression, respectively. Although these protective signal-transduction pathways share several upstream components, activation of the recombination checkpoint requires meiosis-specific proteins. These proteins are structural components of the meiotic chromosomes, indicating that the system monitoring programmed meiotic DSBs is an integral part of the chromosome structure formed during meiosis.  相似文献   

17.
Yoo S  McKee BD 《DNA Repair》2005,4(2):231-242
Rad51 is a crucial enzyme in DNA repair, mediating the strand invasion and strand exchange steps of homologous recombination (HR). Mutations in the Drosophila Rad51 gene (spn-A) disrupt somatic as well as meiotic double-strand break (DSB) repair, similar to fungal Rad51 genes. However, the sterility of spn-A mutant females prevented a thorough analysis of the role of Rad51 in meiosis. In this study, we generated transgenic animals that express spn-A dsRNA under control of an inducible promoter, and examined the effects of inhibiting expression of spn-A on DNA repair, meiotic recombination and meiotic chromosome pairing and segregation. We found that depletion of spn-A mRNA had no effect on the viability of non-mutagen-treated transgenic animals but greatly reduced the survival of larvae that were exposed to the radiomimetic drug MMS, in agreement with the MMS and X-ray sensitivity of spn-A mutant animals. We also found that increases in dose of spn-A gene enhanced larval resistance to MMS exposure, suggesting that at high damage levels, Rad51 protein levels may be limiting for DNA repair. spn-A RNAi strongly stimulated X-X nondisjunction and decreased recombination along the X in female meiosis, consistent with a requirement of Rad51 in meiotic recombination. However, neither RNAi directed against the spn-A mRNA nor homozygosity for a spn-A null mutation had any effect on male fertility or on X-Y segregation in male meiosis, indicating that Rad51 likely plays no role in male meiotic chromosome pairing. Our results support a central role for Rad51 in HR in both somatic and meiotic DSB repair, but indicate that Rad51 in Drosophila is dispensable for meiotic chromosome pairing. Our results also provide the first demonstration that RNAi can be used to inhibit the functions of meiotic genes in Drosophila.  相似文献   

18.
Mammalian spermatogenesis is a complex process that involves spatiotemporal regulation of gene expression and meiotic recombination, both of which require the modulation of chromatin structure. Proteins important for chromatin regulation during spermatogenesis remain poorly understood. Here we addressed the role of BRG1, the catalytic subunit of the mammalian Swi/Snf-like BAF chromatin-remodeling complex, during spermatogenesis in mice. BRG1 expression is dynamically regulated in the male germline, being weakly detectable in spermatogonia, highly expressed in pachytene spermatocytes, and turned off in maturing round spermatids. This expression pattern overlaps that of Brm, the Brg1 homolog. While Brm knockout males are known to be fertile, germline-specific Brg1 deletion completely arrests spermatogenesis at the midpachytene stage, which is associated with spermatocyte apoptosis and apparently also with impaired homologous recombination and meiotic sex chromosome inactivation. However, Brg1 is dispensable for gammaH2AX formation during meiotic recombination, contrary to its reported role in DNA repair in somatic cells. Our study reveals the essential role of Brg1 in meiosis and underscores the differences in the mechanisms of DNA repair between germ cells and somatic cells.  相似文献   

19.
Ensuring balanced distribution of chromosomes in gametes, meiotic recombination is essential for fertility in most sexually reproducing organisms. The repair of the programmed DNA double strand breaks that initiate meiotic recombination requires two DNA strand-exchange proteins, RAD51 and DMC1, to search for and invade an intact DNA molecule on the homologous chromosome. DMC1 is meiosis-specific, while RAD51 is essential for both mitotic and meiotic homologous recombination. DMC1 is the main catalytically active strand-exchange protein during meiosis, while this activity of RAD51 is downregulated. RAD51 is however an essential cofactor in meiosis, supporting the function of DMC1. This work presents a study of the mechanism(s) involved in this and our results point to DMC1 being, at least, a major actor in the meiotic suppression of the RAD51 strand-exchange activity in plants. Ectopic expression of DMC1 in somatic cells renders plants hypersensitive to DNA damage and specifically impairs RAD51-dependent homologous recombination. DNA damage-induced RAD51 focus formation in somatic cells is not however suppressed by ectopic expression of DMC1. Interestingly, DMC1 also forms damage-induced foci in these cells and we further show that the ability of DMC1 to prevent RAD51-mediated recombination is associated with local assembly of DMC1 at DNA breaks. In support of our hypothesis, expression of a dominant negative DMC1 protein in meiosis impairs RAD51-mediated DSB repair. We propose that DMC1 acts to prevent RAD51-mediated recombination in Arabidopsis and that this down-regulation requires local assembly of DMC1 nucleofilaments.  相似文献   

20.
The long interstitial telomeric repeat sequence (ITRS) blocks located in the pericentromeric chromosomal regions of most of Chinese hamster chromosomes behave as hot spots for spontaneous and induced chromosome breakage and recombination. The DBD-FISH (DNA breakage detection-fluorescence in situ hybridization) procedure demonstrated that these ITRS are extremely sensitive to alkaline unwinding, being enriched in constitutive alkali-labile sites (ALS). To determine whether this chromatin modification occurs in other genomes with large ITRS that are not phylogenetically related to mammalian species, the grasshopper Pyrgomorpha conica was analyzed. We chose this species because, with conventional FISH, their chromosomes yield extremely small telomeric signals when probed with the (TTAGG)n polynucleotide, but large ITRS blocks as part of their pericentromeric constitutive heterochromatin. A high density of constitutive ALS was evidenced in the ITRS when intact meiotic cells or somatic cells were subjected to the DBD-FISH technique and probed with the specific telomeric DNA. DBD-FISH with simultaneous hybridization using telomeric and whole genome DNA probes showed that the ITRS tend to colocalize with areas of stronger signal from the whole genome probe. Nevertheless, the signal from the whole genome was more widespread than that from the ITRS, thus providing evidence that a high frequency of constitutive ALS was present in more than one DNA sequence type. Furthermore, stretched DNA fibers processed with DBD-FISH, revealed a distribution of telomeric sequences alternating interspersed with other possible highly repetitive DNA sequences. The abundance of ALS varied from one meiotic stage to another. Interestingly, most of the breakage and meiotic recombination in males takes place close to the constitutive heterochromatin, particularly enriched in ALS. These results provide further evidence of a particular, and possible universal, chromatin structure enriched in constitutive ALS at constitutive heterochromatic regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号