首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Transfer genes of the IncP plasmid RP4 are grouped in two separate regions, designated Tra1 and Tra2. Tra2 gene products are proposed to be mainly responsible for the formation of mating pairs in conjugating cells. To provide information relevant to understanding the function of Tra2 gene products, the nucleotide sequence of the entire RP4 Tra2 region is presented here. Twelve open reading frames were identified in the Tra2 core region, being essential for intraspecific Escherichia coli matings. Predicted sizes of 11 of the 12 Tra2 polypeptides could be verified by expression in E. coli. Based on hydropathy plot analysis, most of the Tra2 open reading frames encode proteins that may interact with membranes. Interestingly, six of the predicted Tra2 gene products exhibited significant sequence similarities to gene products encoded by the VirB operon of the Agrobacterium Ti plasmid. VirB proteins are thought to function in the formation of a transmembrane structure that mediates the passage of T-DNA molecules from bacteria into plant cells. Because of this analogy and the hydropathy of Tra2 gene products, we assume that the DNA transfer machineries acting in bacterial conjugation and T-DNA transfer are structurally and functionally similar. Therefore, the data presented here, support the hypothesis that Ti vir and IncP tra genes evolved from a common ancestor. This suggestion is favored by previous findings of sequence similarities between the IncP and Ti DNA transfer system.  相似文献   

2.
The conjugation system of the IncP alpha plasmid RK2/RP4 is encoded by transfer regions designated Tra1, Tra2, and Tra3. The Tra1 core region, cloned on plasmid pDG4 delta 22, consists of the origin of transfer (oriT) and 2.6 kilobases of flanking DNA providing IncP alpha plasmid-specific functions that allow pDG4 delta 22 to be mobilized by the heterologous IncP beta plasmid R751. Tn5 insertions in pDG4 delta 22 define a minimal 2.2-kilobase region required for plasmid-specific transfer of oriT. The Tra1 core contains the traJ and traK genes as well as an 18-kilodalton open reading frame downstream of traJ. The traJ and traK genes were shown to be required for transfer by complementation of inserts within these genes. Genetic evidence for the role of the 18-kilodalton open reading frame in transfer was obtained, although this protein has not been detected in cell lysates. These studies indicate that at least three transfer proteins are involved in plasmid-specific interactions at oriT.  相似文献   

3.
The nucleotide sequence of the relaxase operon and the leader operon which are part of the Tra1 region of the promiscuous plasmid RP4 was determined. These two polycistronic operons are transcribed divergently from an intergenic region of about 360 bp containing the transfer origin and six close-packed genes. A seventh gene completely overlaps another one in a different reading frame. Conjugative DNA transfer proceeds unidirectionally from oriT with the leader operon heading the DNA to be transferred. The traI gene of the relaxase operon includes within its 3' terminal region a promoter controlling the 7.2-kb polycistronic primase operon. Comparative sequence analysis of the closely related IncP plasmid R751 revealed a similarity of 74% at the nucleotide sequence level, indicating that RP4 and R751 have evolved from a common ancestor. The gene organization of relaxase- and leader operons is conserved among the two IncP plasmids. The transfer origins and the genes traJ and traK exhibit greater sequence divergence than the other genes of the corresponding operons. This is conceivable, because traJ and traK are specificity determinants, the products of which can only recognize homologous oriT sequences. Surprisingly, the organization of the IncP relaxase operons resembles that of the virD operon of Agrobacterium tumefaciens plasmid pTiA6 that mediates DNA transfer to plant cells by a process analogous to bacterial conjugation. Furthermore, the IncP TraG proteins and the product of the virD4 gene share extended amino acid sequence similarity, suggesting a functional relationship.  相似文献   

4.
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components are essential for Mpf, TraF of Tra1 and 11 Tra2 proteins, TrbB, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -L. The phenotype of defined mutants in each of the Tra2 genes was determined. Each of the genes, except trbK, was found to be essential for RP4-specific plasmid transfer and for mobilization of the IncQ plasmid RSF1010. The latter process did not absolutely require trbF, but a severe reduction of the mobilization frequency occurred in its absence. Transfer proficiency of the mutants was restored by complementation with defined Tra2 segments containing single trb genes. Donor-specific phage propagation showed that traF and each of the genes encoded by Tra2 are involved. Phage PRD1, however, still adsorbed to the trbK mutant strain but not to any of the other mutant strains, suggesting the existence of a plasmid-encoded receptor complex. Strains containing the Tra2 plasmid in concert with traF were found to overexpress trb products as well as extracellular filaments visualized by electron microscopy. Each trb gene and traF are needed for the formation of the pilus-like structures. The trbK gene, which is required for PRD1 propagation and for pilus production but not for DNA transfer on solid media, encodes the RP4 entry-exclusion function. The components of the RP4 Mpf system are discussed in the context of related macromolecule export systems.  相似文献   

5.
L Miele  B Strack  V Kruft  E Lanka 《DNA sequence》1991,2(3):145-162
The primase genes of RP4 are part of the primase operon located within the Tra1 region of this conjugative plasmid. The operon contains a total of seven transfer genes four of which (traA, B, C, D) are described here. Determination of the nucleotide sequence of the primase region confirmed the existence of an overlapping gene arrangement at the DNA primase locus (traC) with in-phase translational initiation signals. The traC gene encodes two acidic and hydrophilic polypeptide chains of 1061 (TraC1) and 746 (TraC2) amino acids corresponding to molecular masses of 116,721 and 81,647 Da. In contrast to RP4 the IncP beta plasmid R751 specifies four large primase gene products (192, 152, 135 and 83 kDa) crossreacting with anti-RP4 DNA primase serum. As shown by deletion analysis at least the 135 and 83 kDa polypeptides are two separate translational products that by analogy with the RP4 primases, arise from in-phase translational initiation sites. Even the smallest primase gene products TraC2 (RP4) and TraC4 (R751) exhibit primase activity. Nucleotide sequencing of the R751 primase region revealed the existence of three in-phase traC translational initiation signals leading to the expression of gene products with molecular masses of 158,950 Da, 134,476 Da, and 80,759 Da. The 192 kDa primase polypeptide is suggested to be a fusion protein resulting from an in frame translational readthrough of the traD UGA stopcodon. Distinct sequence similarities can be detected between the TraC proteins of RP4 and R751 gene products TraC3 and TraC4 and in addition between the TraD proteins of both plasmids. The R751 traC3 gene contains a stretch of 507 bp which is unrelated to RP4 traC or any other RP4 Tra1 gene.  相似文献   

6.
The positions of the trfA and trfB promoters of broad host range IncP plasmid RK2 (identical to RP1, RP4, R68 and R18 ) were identified by RNA polymerase protection studies, and the nucleotide sequences of the promoter regions determined. A mutation within the trfA promoter sequence is associated with loss of kilD activity. In addition a probable promoter region for the kilB locus was identified. The three promoter regions share common palindromic sequences which may serve as sites for the coordinate regulation of replication and kil functions.  相似文献   

7.
A 6.72-kb DNA sequence between the exc gene and the oriT operon within the transfer region of IncI1 plasmid R64 was sequenced and characterized. Three novel transfer genes, trbA, trbB, and trbC, were found in this region, along with the pnd gene responsible for plasmid maintenance. The trbABC genes appear to be organized into an operon located adjacent to the oriT operon in the opposite orientation. The trbA and trbC genes were shown to be indispensable for R64 plasmid transfer, while residual transfer activity was detected in the case of R64 derivatives carrying the trbB++ deletion mutation. The T7 RNA polymerase-promoter system revealed that the trbB gene produced a 43-kDa protein and the trbC gene produced an 85-kDa protein. The nucleotide sequence of the pnd gene is nearly identical to that of plasmid R483, indicating a function in plasmid maintenance. The plasmid stability test indicated that the mini-R64 derivatives with the pnd gene are more stably maintained in Escherichia coli cells under nonselective conditions than the mini-R64 derivatives without the pnd gene. It was also shown that the R64 transfer system itself is involved in plasmid stability to a certain degree. Deletion of the pnd gene from the tra+ mini-R64 derivative did not affect transfer frequency. DNA segments between the exc and trbA genes for IncI1 plasmids R64, Colb-P9, and R144 were compared in terms of their physical and genetic organization.  相似文献   

8.
Plasmid pBS221 was physically mapped for restriction endonucleases EcoRI, BamHI, BglII, HindIII. The regions essential for the plasmid existence and participating in replication (oriV trfA*) and mobilization (mob) were cloned. The tet determinant and oriV trfA* regions were localized on the physical map of the plasmid. A DNA sequence homologous to genes of Tn501 mer operon was detected in this plasmid. The studies on homology of plasmids RP4 (IncP alpha), R751 (IncP beta) and pBS221 plasmid suggest that the latter belongs to the IncP beta subgroup.  相似文献   

9.
The conjugative transfer region 1 (Tra1) of the IncHI1 plasmid R27 was subjected to DNA sequence analysis, mutagenesis, genetic complementation, and an H-pilus-specific phage assay. Analysis of the nucleotide sequence indicated that the Tra1 region contains genes coding for mating pair formation (Mpf) and DNA transfer replication (Dtr) and a coupling protein. Insertional disruptions of 9 of the 14 open reading frames (ORFs) in the Tra1 region resulted in a transfer-deficient phenotype. Conjugative transfer was restored for each transfer mutant by genetic complementation. An intergenic region between traH and trhR was cloned and mobilized by R27, indicating the presence of an origin of transfer (oriT). The five ORFs immediately downstream of the oriT region are involved in H-pilus production, as determined by an H-pilus-specific phage assay. Three of these ORFs encode proteins homologous to Mpf proteins from IncF plasmids. Upstream of the oriT region are four ORFs required for plasmid transfer but not H-pilus production. TraI contains sequence motifs that are characteristic of relaxases from the IncP lineage but share no overall homology to known relaxases. TraJ contains both an Arc repressor motif and a leucine zipper motif. A putative coupling protein, TraG, shares a low level of homology to the TraG family of coupling proteins and contains motifs that are important for DNA transfer. This analysis indicates that the Mpf components of R27 share a common lineage with those of the IncF transfer system, whereas the relaxase of R27 is ancestrally related to that of the IncP transfer system.  相似文献   

10.
11.
12.
Cloning the Tra1 region of RP1   总被引:4,自引:0,他引:4  
J Watson  L Schmidt  N Willetts 《Plasmid》1980,4(2):175-183
The Tra1 region of RP1 from a derivative with Tn7 inserted into the kanamycin resistance determinant was cloned, using EcoRI, into the multicopy vector plasmid pBR325. For one orientation of the cloned fragment the resultant chimeric plasmid was very frequently lost from the cell, but in the other orientation it was much more stable and also compatible with RP1. Complementation by the stable chimeric plasmid, pED800, of a series of RP1 tra mutants showed that the mutations of all those retaining sensitivity to the P-specific phages PRR1, Pf3, and PR4, or only to PR4, mapped in the Tra1 region, while only 2 out of 20 amber mutations leading to full P-specific phage-resistance did so.  相似文献   

13.
The kilB locus (which is unclonable in the absence of korB) of broad-host-range plasmid RK2 (60 kb) lies between the trfA operon (co-ordinates 16.4 to 18.2 kb), which encodes a protein essential for vegetative replication, and the Tra2 block of conjugative transfer genes (co-ordinates 20.0 to 27.0 kb). Promoter probe studies indicated that kilB is transcribed clockwise from a region containing closely spaced divergent promoters, one of which is the trfA promoter. The repression of both promoters by korB suggested that kilB may also play a role in stable maintenance of RK2. We have sequenced the region containing kilB and analysed it by deletion and insertion mutagenesis. Loss of the KilB+ phenotype does not result in decreased stability of mini RK2 plasmids. However insertion in ORFI (kilBI) of the region analysed results in a Tra- phenotype in plasmids which are otherwise competent for transfer, demonstrating that this locus is essential for transfer and is probably the first gene of the Tra2 region. From the kilBI DNA sequence KilBI is predicted to be 34995 Da, in line with M(r) = 36,000 observed by sodium dodecyl sulphate/polyacrylamide gel electrophoresis, and contains a type I ATP-binding motif. The purified product was used to raise antibody which allowed the level of KilBI produced from RK2 to be estimated at approximately 2000 molecules per bacterium. Protein sequence comparisons showed the highest homology score with VirB11, which is essential for the transfer of the Agrobacterium tumefaciens Ti plasmid DNA from bacteria to plant cells. The sequence similarity of both KilBI and VirB11 to a family of protein export functions suggested that KilBI may be involved in assembly of the surface-associated Tra functions. The data presented in this paper provide the first demonstration of coregulation of genes required for vegetative replication and conjugative transfer on a bacterial plasmid.  相似文献   

14.
15.
16.
Escherichia coli cells and Streptomyces mycelia are able to form close contacts in the absence of a conjugative system which might facilitate intergeneric plasmid transfer without the genes required for mating pair formation (Tra2) of the RP4 plasmid. The same Tra2 genes found to be essential for RP4 plasmid transfer, RSF1010 mobilization, and donor-specific phage propagation in E. coli were also required for intergeneric transfer between E. coli and Streptomyces lividans.  相似文献   

17.
Plasmid pTC-F14 is a 14.2-kb plasmid isolated from Acidithiobacillus caldus that has a replicon that is closely related to the promiscuous, broad-host-range IncQ family of plasmids. The region containing the mobilization genes was sequenced and encoded five Mob proteins that were related to those of the DNA processing (Dtr or Tra1) region of IncP plasmids rather than to the three-Mob-protein system of the IncQ group 1 plasmids (e.g., plasmid RSF1010 or R1162). Plasmid pTC-F14 is the second example of an IncQ family plasmid that has five mob genes, the other being pTF-FC2. The minimal region that was essential for mobilization included the mobA, mobB, and mobC genes, as well as the oriT gene. The mobD and mobE genes were nonessential, but together, they enhanced the mobilization frequency by approximately 300-fold. Mobilization of pTC-F14 between Escherichia coli strains by a chromosomally integrated RP4 plasmid was more than 3,500-fold less efficient than the mobilization of pTF-FC2. When both plasmids were coresident in the same E. coli host, pTC-F14 was mobilized at almost the same frequency as pTF-FC2. This enhanced pTC-F14 mobilization frequency was due to the presence of a combination of the pTF-FC2 mobD and mobE gene products, the functions of which are still unknown. Mob protein interaction at the oriT regions was unidirectionally plasmid specific in that a plasmid with the oriT region of pTC-F14 could be mobilized by pTF-FC2 but not vice versa. No evidence for any negative effect on the transfer of one plasmid by the related, potentially competitive plasmid was obtained.  相似文献   

18.
19.
Transfer-defective mutants of the 10.4-kb Tra 2/Tra 3 region of RP1 were identified by their ability to be complemented by clones carrying all or part of this region. The respective mutations occurred in six cistrons whose order (traA, B, E, R, P, Q) and location were determined by deletion and insertion mapping. The cistrons occupy a minimum of 5.5 kb with the most distal, traA, spanning the 28.0-kb map position and traR the KpnI site at map position 24.1 kb. Each cistron is expressed independently, as Tn5 or Tn504 insertions in any one cistron do not affect the other five. The phenotypes controlled by each cistron suggest that all contribute to pilus biosynthesis/function while three (traB, R, and P) also contribute to surface exclusion. Given the occurrence of tra cistrons in the "silent" region between Tra 2 and Tra 3 we propose that the epithet "Tra 2" should be used to describe this entire region.  相似文献   

20.
Abstract The broad-host-range IncP plasmid RP1 could not be transferred by conjugation from Escherichia coli to Pseudomonas fluorescens strain CHA0. However, this conjugative transfer was possible with RP1 derivatives which had large deletions extending from the primase gene towards the Tra-2 region, thus lacking the kanamycin resistance gene and IS 21 . Such RP1 deletion derivatives permitted IncP cosmid mobilization to P. fluorescens CHA0 and could be used as vectors for transposon mutagenesis with a newly constructed Tn 5 derivative (carrying kanamycin and mercury resistance determinants) in strain CHA0 and another P. fluorescens soil isolate, strain S9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号