首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although having highly similar primary to tertiary structures, the different guanidino kinases exhibit distinct quaternary structures: monomer, dimer or octamer. However, no evidence for communication between subunits has yet been provided, and reasons for these different levels of quaternary complexity that can be observed from invertebrate to mammalian guanidino kinases remain elusive. Muscle creatine kinase is a dimer and disruption of the interface between subunits has been shown to give rise to destabilized monomers with slight residual activity; this low activity could, however, be due to a fraction of protein molecules present as dimer. CK monomer/monomer interface involves electrostatic interactions and increasing salt concentrations unfold and inactivate this enzyme. NaCl and guanidine hydrochloride show a synergistic unfolding effect and, whatever the respective concentrations of these compounds, inactivation is associated with a dissociation of the dimer. Using an interface mutant (W210Y), protein concentration dependence of the NaCl-induced unfolding profile indicates that the active dimer is in equilibrium with an inactive monomeric state. Although highly similar to muscle CK, horse shoe crab (Limulus polyphemus) arginine kinase (AK) is enzymatically active as a monomer. Indeed, high ionic strengths that can monomerize and inactivate CK, have no effect on AK enzymatic activity or on its structure as judged from intrinsic fluorescence data. Our results indicate that expression of muscle creatine kinase catalytic activity is dependent on its dimeric state which is required for a proper stabilization of the monomers.  相似文献   

2.
In creatine kinases (CKs), the amino acid residue-96 is a strictly conserved arginine. This residue is not directly associated with substrate binding, but it is located close to the binding site of the substrate creatine. On the other hand, the residue-96 is known to be involved in expression in the substrate specificity of various other phosphagen (guanidino) kinases, since each enzyme has a specific residue at this position: arginine kinase (Tyr), glycocyamine kinase (Ile), taurocyamine kinase (His) and lombricine kinase (Lys). To gain a greater understanding of the role of residue-96 in CKs, we replaced this residue in zebra fish Danio rerio cytoplasmic CK with other 19 amino acids, and expressed these constructs in Escherichia coli. All the twenty recombinant enzymes, including the wild-type, were obtained as soluble form, and their activities were determined in the forward direction. Compared with the activity of wild-type, the R96K mutant showed significant activity (8.3% to the wild-type), but 10 mutants (R96Y, A, S, E, H, T, F, C, V and N) showed a weak activity (0.056–1.0%). In the remaining mutants (R96Q, G, M, P, L, W, D and I), the activity was less than 0.05%. Our mutagenesis studies indicated that Arg-96 in Danio CK can be substituted for partially by Lys, but other replacements caused remarkable loss of activity. From careful inspection of the crystal structures (transition state analog complex (TSAC) and open state) of Torpedo cytoplasmic CK, we found that the side chain of R96 forms hydrogen bonds with A339 and D340 only in the TSAC structure. Based on the assumption that CKs consist of four dynamic domains (domains 1–3, and fixed domain), the above hydrogen bonds act to link putative domains 1 and 3 in TSAC structure. We suggest that residue-96 in CK and equivalent residues in other phosphagen kinases, which are structurally similar, have dual roles: (1) one involves in distinguishing guanidino substrates, and (2) the other plays a key role in organizing the hydrogen-bond network around residue-96 which offers an appropriate active center for the high catalytic turnover. The mode of development of the network appears to be unique each phosphagen kinase, reflecting evolution of each enzyme.  相似文献   

3.
Arginine kinase (AK) is a member of the guanidino kinase family that plays an important role in buffering ATP concentration in cells with high and fluctuating energy demands. The AK specifically catalyzes the reversible phosphoryl transfer between ATP and arginine. We have determined the crystal structure of AK from the horseshoe crab (Limulus polyphemus) in its open (substrate-free) form. The final model has been refined at 2.35 A with a final R of 22.3% (R(free) = 23.7%). The structure of the open form is compared to the previously determined structure of the transition state analog complex in the closed form. Classically, the protein would be considered two domain, but dynamic domain (DynDom) analysis shows that most of the differences between the two structures can be considered as the motion between four rigid groups of nonsequential residues. ATP binds near a cluster of positively charged residues of a fixed dynamic domain. The other three dynamic domains close the active site with separate hinge rotations relative to the fixed domain. Several residues of key importance for the induced motion are conserved within the phosphagen kinase family, including creatine kinase. Substantial conformational changes are induced in different parts of the enzyme as intimate interactions are formed with both substrates. Thus, although induced fit occurs in a number of phosphoryl transfer enzymes, the conformational changes in phosphagen kinases appear to be more complicated than in prior examples.  相似文献   

4.
Creatine kinase (CK) is part of a conserved family of ATP:guanidino phosphotransferases whose members play important roles in intracellular energy flow. Previously characterized members of this family are approximately 80-kDa dimers of two related 40-kDa subunits. We have cloned a gene from the parasitic trematode Schistosoma mansoni which has substantial amino acid sequence similarities to CK. Like the genes for vertebrate CKs, this gene is developmentally regulated; mRNA levels are high in the infective cercarial stage but rapidly decrease upon transformation to the parasitic schistosomulum stage. In contrast to members of the guanidino phosphotransferase family characterized previously, however, the schistosome gene appears to be a direct fusion of two CK-like domains that encode a single 74-kDa polypeptide. Correlative evidence from enzyme assays of crude parasite homogenates suggests that the cloned gene is a creatine kinase. This represents the first molecular cloning of an invertebrate ATP:guanidino phosphotransferase.  相似文献   

5.
It is known that mitochondrial creatine kinase (MtCK) in mammals is always expressed in conjunction with one of the cytosolic forms of creatine kinase (CK), either muscle-type (MM-CK) or brain-type (BB-CK) in tissues of high, sudden energy demand. The two creatine kinase (CK) isoforms were detected in herring (Clupea harengus) skeletal muscle: cytosolic CK and mitochondrial CK (MtCK) that displayed the different electrophoretic mobility. These isoforms differ in molecular weight and some biochemical properties. Isolation and purification procedures allowed to obtain purified enzymes with specific activity of the 206 μmol/min/mg for cytosolic CK and 240 μmol/min/mg for MtCK. Native Mrs of the cytosolic CK and MtCK determined by gel permeation chromatography were 86.000 and 345.000, respectively. The results indicate that one of isoforms found in herring skeletal muscle is a cytosolic dimer and the other one, is a mitochondrial octamer. Octamerization of MtCK is not an advanced feature and also exists in fish. These values correspond well with published values for MtCKs and cytosolic CK isoforms from higher vertebrate classes and even from lower invertebrates.  相似文献   

6.
Sequence homology and structure predictions of the creatine kinase isoenzymes   总被引:13,自引:0,他引:13  
Comparisons of the protein sequences and gene structures of the known creatine kinase isoenzymes and other guanidino kinases revealed high homology and were used to determine the evolutionary relationships of the various guamidino kinases. A CK framework is defined, consisting of the most conserved sequence blocks, and diagnostic boxes are identified which are characteristic for anyone creatine kinase isoenzyme (e.g. for vertebrate B-CK) and which may serve to distinguish this isoenzyme from all others (e.g. from M-CKs and Mi-CKs). Comparison of the guanidino kinases by near-UV and far-UV circular dichroism further indicates pronounced conservation of secondary structure as well as of aromatic amino acids that are involved in catalysis.Abbreviations GuaK guanidino kinase - CK creatine kinase - B-and M-CK brain and muscle cytosolic CK isoenzyme - Mi-CK mitochondrial CK isoenzyme - ArgK arginine kinase - Cr creatine - PCr phosphorylcreatine - PArg phosphorylarginine  相似文献   

7.
The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2α, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2β, noncatalytic subunit of CK2). CK2α belongs to the superfamily of eukaryotic protein kinases (EPKs). To function as regulatory key components, EPKs normally exist in inactive ground states and are activated only upon specific signals. Typically, this activation is accompanied by large conformational changes in helix αC and in the activation segment, leading to a characteristic arrangement of catalytic key elements. For CK2α, however, no strict physiological control of activity is known. Accordingly, CK2α was found so far exclusively in the characteristic conformation of active EPKs, which is, in this case, additionally stabilized by a unique intramolecular contact between the N-terminal segment on one side, and helix αC and the activation segment on the other side. We report here the structure of a C-terminally truncated variant of human CK2α in which the enzyme adopts a decidedly inactive conformation for the first time. In this CK2α structure, those regulatory key regions still are in their active positions. Yet the glycine-rich ATP-binding loop, which is normally part of the canonical anti-parallel β-sheet, has collapsed into the ATP-binding site so that ATP is excluded from binding; specifically, the side chain of Arg47 occupies the ribose region of the ATP site and Tyr50, the space required by the triphospho moiety. We discuss some factors that may support or disfavor this inactive conformation, among them coordination of small molecules at a remote cavity at the CK2α/CK2β interaction region and binding of a CK2β dimer. The latter stabilizes the glycine-rich loop in the extended active conformation known from the majority of CK2α structures. Thus, the novel inactive conformation for the first time provides a structural basis for the stimulatory impact of CK2β on CK2α.  相似文献   

8.
CK2alpha is the catalytic subunit of protein kinase CK2, an acidophilic and constitutively active eukaryotic Ser/Thr kinase involved in cell proliferation. A crystal structure, at 2.1 A resolution, of recombinant maize CK2alpha (rmCK2alpha) in the presence of ATP and Mg2+, shows the enzyme in an active conformation stabilized by interactions of the N-terminal region with the activation segment and with a cluster of basic residues known as the substrate recognition site. The close interaction between the N-terminal region and the activation segment is unique among known protein kinase structures and probably contributes to the constitutively active nature of CK2. The active centre is occupied by a partially disordered ATP molecule with the adenine base attached to a novel binding site of low specificity. This finding explains the observation that CK2, unlike other protein kinases, can use both ATP and GTP as phosphorylating agents.  相似文献   

9.
Phosphagen kinases constitute a large family of enzymes catalyzing the reversible phosphorylation of guanidino acceptor compounds. These guanidino substrates differ substantially in size and chemical properties. In spite of the appearance of X-ray crystal structures for two members of this family, creatine kinase (CK) and arginine kinase (AK), the structural correlates of substrate specificity remain to be fully elucidated. We have determined the cDNA and deduced amino acid sequences for lombricine (guanidinethylphosphoserine) kinase (LK) from the echiuroid worm Urechis caupo and expressed the cDNA in Escherichia coli. The recombinant protein was purified by affinity chromatography and showed high capacity for phosphorylation of lombricine. Phosphagen kinases consist of a small, N-terminal domain and a much larger domain connected by a linker sequence. A key event in catalysis in CK and AK, and certainly all other phosphagen kinases, is a large conformational change involving involving a rotation of the two domains and the movement of two highly conserved flexible loops (one located in the small domain; the other located in the large domain of these enzymes) which clamp down on the substrates. Multiple sequence alignments of Urechis LK with the only other LK sequence available and CK, AK and glycocyamine kinase sequences, confirm the importance of the small flexible loop located in the N-terminal domain of phosphagen kinases as one component of the structural determinants of guanidine specificity. The role of the other flexible loop in the large domain in terms of substrate specificity remains questionable.  相似文献   

10.
Creatine kinase (CK) catalyzes the reversible conversion of creatine and ATP to phosphocreatine and ADP, thereby helping maintain energy homeostasis in the cell. Here we report the first X-ray structure of CK bound to a transition-state analogue complex (CK-TSAC). Cocrystallization of the enzyme from Torpedo californica (TcCK) with ADP-Mg(2+), nitrate, and creatine yielded a homodimer, one monomer of which was liganded to a TSAC complex while the second monomer was bound to ADP-Mg(2+) alone. The structures of both monomers were determined to 2.1 A resolution. The creatine is located with the guanidino nitrogen cis to the methyl group positioned to perform in-line attack at the gamma-phosphate of ATP-Mg(2+), while the ADP-Mg(2+) is in a conformation similar to that found in the TSAC-bound structure of the homologue arginine kinase (AK). Three ligands to Mg(2+) are contributed by ADP and nitrate and three by ordered water molecules. The most striking difference between the substrate-bound and TSAC-bound structures is the movement of two loops, comprising residues 60-70 and residues 323-332. In the TSAC-bound structure, both loops move into the active site, resulting in the positioning of two hydrophobic residues (one from each loop), Ile69 and Val325, near the methyl group of creatine. This apparently provides a specificity pocket for optimal creatine binding as this interaction is missing in the AK structure. In addition, the active site of the transition-state analogue complex is completely occluded from solvent, unlike the ADP-Mg(2+)-bound monomer and the unliganded structures reported previously.  相似文献   

11.
Arginine kinase (AK) from the horseshoe crab Limulus polyphemus was expressed in Escherichia coli. The bulk of expressed protein resided in insoluble inclusion bodies. However, approximately 3 mg enzyme protein/l culture was present as active soluble AK. The AK-containing expression vector construct was subjected to site-directed mutagenesis via a polymerase chain reaction-based megaprimer protocol. The AK reactive cysteine peptide was engineered so that it was identical to the corresponding peptide sequence of creatine kinase, another member of the guanidino kinase enzyme family. The resulting expressed protein had a considerably reduced specific activity but was still specific for arginine/arginine phosphate. No catalytic activity was observed with other guanidine substrates (creatine, glycocyamine, taurocyamine, lombricine). The reactive cysteine peptide, characteristic of all guanidino kinases, very likely plays a minimal role in determining guanidine specificity.  相似文献   

12.
The creatine kinase (CK) system is essential for cellular energetics in tissues or cells with high and fluctuating energy requirements. Creatine itself is known to protect cells from stress-induced injury. By using an siRNA approach to silence the CK isoenzymes in human keratinocyte HaCaT cells, expressing low levels of cytoplasmic CK and high levels of mitochondrial CK, as well as HeLa cancer cells, expressing high levels of cytoplasmic CK and low levels of mitochondrial CK, we successfully lowered the respective CK expression levels and studied the effects of either abolishing cytosolic brain-type BB-CK or ubiquitous mitochondrial uMi-CK in these cells. In both cell lines, targeting the dominant CK isoform by the respective siRNAs had the strongest effect on overall CK activity. However, irrespective of the expression level in both cell lines, inhibition of the mitochondrial CK isoform generally caused the strongest decline in cell viability and cell proliferation. These findings are congruent with electron microscopic data showing substantial alteration of mitochondrial morphology as well as mitochondrial membrane topology after targeting uMi-CK in both cell lines. Only for the rate of apoptosis, it was the least expressed CK present in each of the cell lines whose inhibition led to the highest proportion of apoptotic cells, i.e., downregulation of uMi-CK in case of HeLaS3 and BB-CK in case of HaCaT cells. We conclude from these data that a major phenotype is linked to reduction of mitochondrial CK alone or in combination with cytosolic CK, and that this effect is independent of the relative expression levels of Mi-CK in the cell type considered. The mitochondrial CK isoform appears to play the most crucial role in maintaining cell viability by stabilizing contact sites between inner and outer mitochondrial membranes and maintaining local metabolite channeling, thus avoiding transition pore opening which eventually results in activation of caspase cell-death pathways.  相似文献   

13.
Creatine kinase (CK; E.C. 2.7.3.2) is an important enzyme that catalyzes the reversible transfer of a phosphoryl group from ATP to creatine in energy homeostasis. The brain-type cytosolic isoform of creatine kinase (BB-CK), which is found mainly in the brain and retina, is a key enzyme in brain energy metabolism, because high-energy phosphates are transferred through the creatine kinase/phosphocreatine shuttle system. The recombinant human BB-CK protein was overexpressed as a soluble form in Escherichia coli and crystallized at 22 degrees C using PEG 4000 as a precipitant. Native X-ray diffraction data were collected to 2.2 A resolution using synchrotron radiation. The crystals belonged to the tetragonal space group P43212, with cell parameters of a=b=97.963, c= 164.312 A, and alpha=beta=gamma=90 degrees. The asymmetric unit contained two molecules of CK, giving a crystal volume per protein mass (Vm) of 1.80 A3 Da-1 and a solvent content of 31.6%.  相似文献   

14.
Abstract

The effects of components of the transition state analog (creatine, MgADP, planar anion) on the kinetics and conformation of creatine kinase isozyme BB from monkey brain was studied. From analysis of the reaction time course using the pH stat assay, it was shown that during accumulation of the reaction products (ADP and creatine phosphate), among several anions added, nitrate proved the most effective in inhibiting catalytic activity. Maximum inhibition (77%) was achieved with 50 mM nitrate. The Km for ATP was 0.48 mM and in the presence of 2.5 mM nitrate, 2.2 mM; for ATP in the presence of the dead-end complex, creatine and ADP, the apparent Km was 2.0 mM and theK wasO.16mM; in the presence of the transition state analog, MgADP + NO3” + creatine, the K was estimated to be 0.04 mM.

Ultraviolet difference spectra of creatine kinase revealed significant differences only in the presence of the complete mixture of the components of the transition state analog. Comparison of gel nitration elution profiles for creatine kinase in the absence and presence of the complete mixture of components of the transition state analog did not reveal any differences in elution volume. Addition of components of the transition state analog to creatine kinase resulted in only a marginal change in intrinsic fluorescence. The presence of the components of the transition state analog increased the rate of reactivity of the enzyme with trinitrobenzenesulfonic acid from k = 6.06 ±0.05M?1min to 6.96 ± 0.11 M?1min?1.

This study provides evidence that, like the muscle isozyme of creatine kinase, the brain form is effectively inhibited by the transition state analog. However, the inhibition is accompanied by small changes in the overall conformation of the protein. This adds to the evidence that the functional differences of the isozymic forms of creatine kinase cannot be attributed to differences in kinetic properties.  相似文献   

15.
Phosphagen kinases catalyze the reversible transfer of a phosphate between ATP and guanidino substrates, a reaction that is central to cellular energy homeostasis. Members of this conserved family include creatine and arginine kinases and have similar reaction mechanisms, but they have distinct specificities for different guanidino substrates. There has not been a full structural rationalization of specificity, but two loops have been implicated repeatedly. A small domain loop is of length that complements the size of the guanidino substrate, and is located where it could mediate a lock-and-key mechanism. The second loop contacts the substrate with a valine in the methyl-substituted guanidinium of creatine, and with a glutamate in the unsubstituted arginine substrate, leading to the proposal of a discriminating hydrophobic/hydrophilic minipocket. In the present work, chimeric mutants were constructed with creatine kinase loop elements inserted into arginine kinase. Contrary to the prior rationalizations of specificity, most had measurable arginine kinase activity but no creatine kinase activity or enhanced phosphocreatine binding. Guided by structure, additional mutations were introduced in each loop, recovering arginine kinase activities as high as 15% and 64% of wild type, respectively, even though little activity would be expected in the constructs if the implicated sites had dominant roles in specificity. An atomic structure of the mismatched complex of arginine kinase with creatine and ADP indicates that specificity can also be mediated by an active site that allows substrate prealignment that is optimal for reactivity only with cognate substrates and not with close homologs that bind but do not react.  相似文献   

16.
17.
Bong SM  Moon JH  Nam KH  Lee KS  Chi YM  Hwang KY 《FEBS letters》2008,582(28):3959-3965
Creatine kinase is a member of the phosphagen kinase family, which catalyzes the reversible phosphoryl transfer reaction that occurs between ATP and creatine to produce ADP and phosphocreatine. Here, three structural aspects of human-brain-type-creatine-kinase (hBB-CK) were identified by X-ray crystallography: the ligand-free-form at 2.2 Å; the ADP-Mg2+, nitrate, and creatine complex (transition-state-analogue complex; TSAC); and the ADP-Mg2+-complex at 2.0 Å. The structures of ligand-bound hBB-CK revealed two different monomeric states in a single homodimer. One monomer is a closed form, either bound to TSAC or the ADP-Mg2+-complex, and the second monomer is an unliganded open form. These structural studies provide a detailed mechanism indicating that the binding of ADP-Mg2+ alone may trigger conformational changes in hBB-CK that were not observed with muscle-type-CK.  相似文献   

18.
Fluorescence emission intensity changes with two different excitation wavelengths were used to measure the unfolding rate constants of different domains of muscle type creatine kinase (CK-MM) according to the heterogeneity of aromatic amino acid distributions in the crystal structure of CK-MM. The results were compared with those of brain type creatine kinase (CK-BB) and dithio-bis(succinimidyl propionate) cross-linked CK-MM. CK-BB differed greatly in its distribution of aromatic amino acids in each domain and the unfolding process of cross-linked CK-MM was not accompanied by the dissociation of the dimer. The N-terminal domain of CK-MM was shown to be well protected by subunit interaction during the unfolding of CK-MM in 4 M urea. Dissociating the CK dimer in high urea concentration (6 M) eliminated the subunit protection. Subunit interactions are also important in preserving secondary structure and forming contracted conformation at low urea concentration.  相似文献   

19.
Creatine kinase (CK) isoenzymes are essential for storing, buffering and intracellular transport of “energy-rich” phosphate compounds in tissues with fluctuating high energy demand such as muscle, brain and other tissues and cells where CK is expressed. In brain and many non-muscle cells, ubiquitous cytosolic “brain-type” BB-CK and ubiquitous mitochondrial CK (uMtCK) act as components of a phosphocreatine shuttle to maintain cellular energy pools and distribute energy flux. To date, still relatively little is known about direct coupling of functional dimeric BB-CK with other partner proteins or enzymes that are important for cell function. Using a global yeast two-hybrid (Y2H) screen with monomeric B-CK as bait and a representative brain cDNA library to search for interaction partners of B-CK with proteins of the brain, we repeatedly identified the cis-Golgi Matrix protein (GM130) as recurrent interacting partner of B-CK. Since HeLa cells also express both BB-CK and GM130, we subsequently used this cellular model system to verify and characterize the BB-CK-GM130 complex by GST-pulldown experiments, as well as by in vivo co-localization studies with confocal microscopy. Using dividing HeLa cells, we report here for the first time that GM130 and BB-CK co-localize specifically in a transient fashion during early prophase of mitosis, when GM130 plays an important role in Golgi fragmentation that starts also at early prophase. These data may shed new light on BB-CK function for energy provision for Golgi-fragmentation that is initiated by cell signalling cascades in the early phases of mitosis.  相似文献   

20.
The recently determined structure of octameric mitochondrial creatine kinase has provided new insights into the functioning of this enzyme and its role in channelling energy from the mitochondria to the cytoplasm. Creatine kinase, a member of the family of guanidino kinases, is structurally similar to glutamine synthetase, suggesting a possible evolutionary link between both protein families  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号