首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Summary Total renal ischemia for various time intervals (0–50) min) resulted in the rapid and duration-dependent redistribution of polarized membrane lipids and proteins in renal proximal tubule cells. Following only 15 min of ischemia, apical membrane enrichment of NaK-ATPase, normally a basolateral membrane (BLM) enzyme, had increased (1.6±0.6vs. 2.9±1.2,P<0.01). In vivo histochemical localization of NaK-ATPase showed reaction product throughout the apical microvillar region. PTH-stimulatable adenylate cyclase, another BLM protein, was also found in ischemic but not control apical membrane fractions. One dimensional SDS-PAGE showed four bands, present in control BLM and ischemic apical membranes, which could not be found in control apical membrane fractions. Immunohistochemical localization of leucine aminopeptidase (LAP) showed the enzyme was limited to the apical domain in control cells. Following ischemic injury (50 min), LAP staining could be seen within the cell and along the BLM. Following 24 hr of reperfusion, the BLM distribution of LAP was further enhanced. With cellular recovery from ischemic injury (5 days), LAP was again only visualized in the apical membrane. Duration-dependent alterations in apical and BLM lipids were also observed. Apical sphingomyelin and phosphatidylserine and the cholesterol-tophospholipid ratio decreased rapidly while apical phosphatidylcholine and phosphatidylinositol increased. Taken together, these results indicate renal ischemia causes rapid duration-dependent reversible loss of surface membrane polarity in proximal tubule cells.  相似文献   

2.
Summary In order to permit future characterization and possible isolation of the Na+–H+ exchanger from the apical membrane of proximal tubular cells, studies were performed to solubilize and reconstitute this transporter. Rabbit brush border membranes were prepared by a magnesium aggregation method, solubilized with the detergent octyl glucoside, and reconstituted into artificial phospholipid vesicles. In the presence of a pH gradient (pHin 6.0, pHout 8.0), the uptake of 1mm 22Na+ into the proteoliposomes was five- to sevenfold higher than into liposomes. Amiloride (2mm) inhibited proton gradient-stimulated uptake of sodium by 50%. As compared to proton gradient conditions, the uptake of sodium was lower in the absence of a pH gradient but was significantly higher when the outside and inside pH was 6.0 than 8.0. TheK a for sodium in reconstituted proteoliposomes studied under pH gradient conditions was 4mm. The uptake of sodium in proteoliposomes prepared from heat-denatured membrane proteins was significantly decreased. These studies demonstrate that proteoliposomes prepared from octyl glucoside-solubilized brush border membrane proteins and asolectin exhibit proton gradient-stimulated, amiloride-inhibitable, electroneutral uptake of sodium. The ability to solubilize and reconstitute the Na+–H+ exchanger from the apical membrane of the proximal tubule will be of value in isolating and characterizing this transporter.  相似文献   

3.
Renal tubule acidification was studied in thyroparathyroidectomized rats which had the parathyroids reimplanted into cervical muscle tissue, by stopped-flow microperfusion using ion-exchange resin microelectrodes. Hypothyroid rats had decreased rates of proximal and late distal bicarbonate reabsorption. This reduction occurred in the absence of changes in pH gradients, and was due mostly to decreases in acidification half-times, that is, of the rate of bicarbonate exit from the tubule lumen. H+ back-flux from the lumen measured during luminal perfusion with solutions at pH 6 (below stationary pH) was decreased in proximal tubule of hypothyroid rats, showing that the acidification defect was not due to an increased H+ shunt across the epithelium. These data indicate that in hypothyroid rats the proximal tubule luminal density of Na+/H+ exchangers or their turnover is decreased in the absence of alterations in the driving force (H+ and Na+ gradients across the luminal membrane) for H+ secretion. The effect observed in distal tubule may be due to action on Na+/H+ exchangers that are present also on this site, or to an impairment of the action of other H+ transporters such as H+-ATPases, including the provision of energy for them.This paper is dedicated to Prof. Carlos Chagas Filho, founder of the Institute of Biophysics, on the occasion of its 50th anniversary.  相似文献   

4.
Reabsorption of monovalent ions in the kidney is essential for adaptation to freshwater and seawater in teleosts. To assess a possible role of Na+/H+ exchanger 3 (NHE3) in renal osmoregulation, we first identified a partial sequence of cDNA encoding NHE3 from the Japanese eel kidney. For comparison, we also identified cDNAs encoding kidney specific Na+–K+–2Cl? cotransporter 2 (NKCC2α) and Na+–Cl? cotransporter (NCCα). In eels acclimated to a wide range of salinities from deionized freshwater to full-strength seawater, the expression of NHE3 in the kidney was the highest in eel acclimated to full-strength seawater. Meanwhile, the NCCα expression exhibited a tendency to increase as the environmental salinity decreased, whereas the NKCC2α expression was not significantly different among the experimental groups. Immunohistochemical studies showed that NHE3 was localized to the apical membrane of epithelial cells composing the second segments of the proximal renal tubule in seawater-acclimated eel. Meanwhile, the apical membranes of epithelial cells in the distal renal tubule and collecting duct showed more intense immunoreactions of NKCC2α and NCCα, respectively, in freshwater eel than in seawater eel. These findings suggest that renal monovalent-ion reabsorption is mainly mediated by NKCC2α and NCCα in freshwater eel and by NHE3 in seawater eel.  相似文献   

5.
Summary Intracellular Ca2+ has been suggested to play an important role in the regulation of epithelial Na+ transport. Previous studies showed that preincubation of toad urinary bladder, a tight epithelium, in Ca2+-free medium enhanced Na+ uptake by the subsequently isolated apical membrane vesicles, suggesting the downregulation of Na+ entry across the apical membrane by intracellular Ca2+. In the present study, we have examined the effect of Ca2+-free preincubation on apical membrane Na+ transport in a leaky epithelium, i.e., brush border membrane (BBM) of rabbit renal proximal tubule. In contrast to toad urinary bladder, it was found that BBM vesicles derived from proximal tubules incubated in 1mm Ca2+ medium exhibited higher Na+ uptake than those derived from proximal tubules incubated in Ca2+-free EGTA medium. Such effect of Ca2+ in the preincubation medium was temperature dependent and could not be replaced by another divalent cation, Ba2+ (1mm). Ca2+ in the preincubation medium did not affect Na+-dependent BBM glucose uptake, and its effect on BBM Na+ uptake was pH gradient dependent and amiloride (10–3 m) sensitive, suggesting the involvement of Na+/H+ antiport system. Addition of verapamil (10–4 m) to 1mm Ca2+ preincubation medium abolished while ionomycin (10–6 m) potentiated the effect of Ca2+ to increase BBM Na+ uptake, suggesting that the effect of Ca2+ in the preincubation medium is likely to be mediated by Ca2+-dependent cellular pathways and not due to a direct effect of extracellular Ca2+ on BBM. Neither the proximal tubule content of cAMP nor the inhibitory effect of 8, bromo-cAMP (0.1mm) on BBM Na+ uptake was affected by the presence of Ca2+ in the preincubation medium, suggesting that Ca2+ in the preincubation medium did not increase BBM Na+ uptake by removing the inhibitory effect of cAMP. Addition of calmodulin inhibitor, trifluoperazine (10–4 m) to 1mm Ca2+ preincubation medium did not prevent the increase in BBM Na+ uptake. The effect of Ca2+ was, however, abolished when protein kinase C in the proximal tubule was downregulated by prolonged (24 hr) incubation with phorbol 12-myristate 13-acetate (10–6 m). In summary, these results show the Ca2+ dependency of Na+ transport by renal BBM, possibly through stimulation of Na+/H+ exchanger by protein kinase C.  相似文献   

6.
7.
Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.  相似文献   

8.
In different species and tissues, a great variety of hormones modulate Na+,K+-ATPase activity in a short-term fashion. Such regulation involves the activation of distinct intracellular signaling networks that are often hormone- and tissue-specific. This minireview focuses on our own experimental observations obtained by studying the regulation of the rodent proximal tubule Na+,K+-ATPase. We discuss evidence that hormones responsible for regulating kidney proximal tubule sodium reabsorption may not affect the intrinsic catalytic activity of the Na+,K+-ATPase, but rather the number of active units within the plasma membrane due to shuttling Na+,K+-ATPase molecules between intracellular compartments and the plasma membrane. These processes are mediated by different isoforms of protein kinase C and depend largely on variations in intracellular sodium concentrations.  相似文献   

9.
Summary Studies were performed to determine if the Na+–H+ exchanger, solubilized from renal brush border membranes from the rabbit and assayed in reconstituted artificial proteoliposomes, could be regulated by cAMP-dependent protein kinase. Octyl glucoside solubilized renal apical membrane proteins from the rabbit kidney were phosphorylated by incubation with ATP and highly purified catalytic subunit of cAMP-dependent kinase.22Na+ uptake was determined subsequently after reconstitution of the proteins into proteoliposomes. cAMP-dependent protein kinase resulted in sustained protein phosphorylation and a concentration-dependent decrease in the amiloride-sensitive component of pH gradient-stimulated sodium uptake. The inhibitory effect of cAMP-dependent protein kinase demonstrated an absolute requirement for ATP and was blocked by the specific protein inhibitor of this kinase. cAMP-dependent protein kinase also inhibited22Na+ uptake in the absence of a pH gradient (pHin 6.0. pHout 6.0) and the inhibitory effect was blocked by the specific inhibitor of the kinase. Solubilized membrane proteins exhibited little endogenous protein kinase or protein phosphatase activity.These studies indicate that Na+–H+ exchange activity of proteoliposomes reconstituted with proteins from renal brush border membranes is inhibited by phosphorylation of selected proteins by cAMP-dependent protein kinase. These findings also indicate that the regulatory components of the Na+–H+ exchanger remain active during the process of solubilization and reconstitution of renal apical membrane proteins.  相似文献   

10.
Summary The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.  相似文献   

11.

Background

Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na+/K+-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na+/K+-ATPase expression and activity in rats injected with Bothrops alternatus snake venom.

Methods

Male Wistar rats were injected with venom (0.8 mg/kg, i.v.) and renal function was assessed 6, 24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na+/K+-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively.

Results

Venom caused lobulation of the capillary tufts, dilation of Bowman's capsular space, F-actin disruption in Bowman's capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na+/K+-ATPase α1 subunit were increased 6 h post-venom, whereas Na+/K+-ATPase activity increased 6 h and 24 h post-venom.

Conclusions

Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na+/K+-ATPase expression and activity in the early phase of renal damage.

General significance

Enhanced Na+/K+-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage.  相似文献   

12.
Summary The pH-stat technique has been used to measure H+ fluxes in gastric mucosa and urinary bladder in vitro while keeping mucosal pH constant. We now report application of this method in renal tubules. We perfused proximal tubules with double-barreled micropipettes, blocked luminal fluid columns with oil and used a double-barreled Sb/reference microelectrode to measure pH, and Sb or 1n HC1-filled microelectrodes to inject OH or H+ ions into the tubule lumen. By varying current injection, pH was kept constant at adjustable levels by an electronic clamping circuit. We could thus obtain ratios of current (nA) to pH change (apparent H+-ion conductance). These ratios were reduced after luminal 10–4 m acetazolamide, during injection of OH, but they increased during injection of H+. The point-like injection source causes pH to fall off with distance from the injecting electrode tip even in oil-blocked segments. Therefore, a method analogous to cable analysis was used to obtain H+ fluxes per cm2 epithelium. The relation betweenJ H + and pH gradient showed saturation kinetics of H fluxes, both during OH and H+ injection. This kinetic behavior is compatible with inhibition ofJ H by luminal H+. It is also compatible with dependence on Na+ and H+ gradients of a saturable Na/H exchanger. H+-ion back-flux into the tubule lumen also showed saturation kinetics. This suggests that H+ flow is mediated by a membrane component, most likely the Na+–H+ exchanger.  相似文献   

13.
In the rabbit as well as the rat, a Na+/H+ exchanger is expressed in the apical membrane of both the proximal and distal tubules of the renal cortex. Whereas the isoform derived from the proximal tubule has been extensively studied, little information is available concerning the distal luminal membrane isoform. To better characterize the latter isoform, we purified rabbit proximal and distal tubules, and examined the ethylpropylamiloride (EIPA)-sensitive 22Na uptake by the luminal membrane vesicles from the two segments. The presence of 100 μm EIPA in the membrane suspension decreased the 15 sec Na+ uptake to 75.70 ± 4.70% and 50.30 ± 2.23% of the control values in vesicles from proximal and distal tubules, respectively. The effect of EIPA on 35 mm Na+ uptake was concentration dependent, with a IC50 of 700 μm and 75 μm for the proximal and distal luminal membranes. Whereas the proximal tubule membrane isoform was insensitive to cimetidine and clonidine up to a concentration of 2 mm, the 35 mm Na+ uptake by the distal membrane was strongly inhibited by cimetidine (IC50 700 μm) and modestly inhibited by clonidine (IC50 1.6 mm). The incubation of proximal tubule suspensions with 1 mm (Bu2) cAMP decreased the 15-sec EIPA-sensitive Na+ uptake by the brush border membranes to 24.1 ± 2.38% of the control values. Unexpectedly, the same treatment of distal tubules enhanced this uptake by 46.5 ± 10.3%. Finally, incubation of tubule suspensions with 100 nm phorbol 12-myristate 13-acetate (PMA) decreased the exchanger activity to 58.6 ± 3.04% and 79.7 ± 3.21% of the control values in the proximal and distal luminal membranes, respectively. In conclusion, the high sensitivity of the distal luminal membrane exchanger to various inhibitors, and its stimulation by cAMP-dependent protein kinase A, indicate that this isoform differs from that of the proximal tubule and probably corresponds to isoform 1. Received: 6 March 1998/Revised: 6 July 1998  相似文献   

14.
Summary The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (K m =10–4 m,V max=379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9±1.1 to 25.7±4.4 nmol O2/min/mg,P<0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10–4 m), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+, K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1mm) and reduced glutathione (1mm) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+, K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.  相似文献   

15.
Summary A membrane fraction, rich in brush border membranes, was prepared from renal proximal tubules of the spiny dogfish,Squalus acanthias, and the sodium-proton exchange mechanism in these membrane vesicles was investigated by both a rapid filtration technique and the fluorescence quenching of acridine organe.22Na+ uptake was stimulated by an outwardly directed H+ gradient, and was inhibited by amiloride at a single inhibitory site with an apparentK i of approximately 1.7×10–5 M. In the presence of an H i + >H o + gradient, the of the Na+/H+ exchanger were 9.7±0.8 mM and 48.0±12.0 nmol·mg protein–1·min–1, respectively. The uptake of Na+ was electroneutral in the presence of a H+ gradient, indicating a stoichiometry of 1. In the fluorescence studies, quenching of acridine orange occurred in the presence of an outwardly directed Na+ gradient which was inhibited by amiloride. Thus, an electroneutral Na+/H+ exchanger with properties similar to those found in the mammalian kidney is also present in the spiny dogfish and may contribute to the urinary acidification of this marine animal.  相似文献   

16.
The purpose of the present study was to determine the effect of angiotensin II (A-II) on membrane expression of Na+/H+ exchange isoforms NHE3 and NHE2 in the rat renal cortex. A-II (500 ng/kg per min) was chronically infused into the Sprague-Dawley rats by miniosmotic pump for 7 days. Arterial pressure and circulating plasma A-II level were significantly increased in A-II rats as compared to control rats. pH-dependent uptake of 22Na+ study in the presence of 50 μM HOE-694 revealed that Na+ uptake mediated by NHE3 was increased ∼88% in the brush border membrane from renal cortex of A-II-treated rats. Western blotting showed that A-II increased NHE3 immunoreactive protein levels in the brush border membrane of the proximal tubules by 31%. Northern blotting revealed that A-II increased NHE3 mRNA abundance in the renal cortex by 42%. A-II treatment did not alter brush border NHE2 protein abundance in the renal proximal tubules. In conclusion, chronic A-II treatment increases NHE3-mediated Na+ uptake by stimulating NHE3 mRNA and protein content.  相似文献   

17.
Epithelial cell polarity is essential for the establishment and maintenance of morphological and functional asymmetries that underlie normal renal structure and function and are brought about by the appropriate delivery of growth factor receptors and ion and fluid transporters and channels to apical or basolateral cell membranes. The fundamental process of cellular polarization is established early during development and is controlled by sets of evolutionarily conserved proteins that integrate intrinsic and extrinsic polarity cues. Specialized structural domains between adjacent cells and cells with their matrix, termed adherens junctions (AJ) and focal adhesions (FA), respectively, are formed that contain specific components of multi-molecular complexes acting as sites to recruit proteins and to activate intracellular mechano-transduction pathways. Regulation of these processes results in tight spatio-temporal control of renal tubule growth and lumen diameter. Abnormalities in macromolecular polarization complexes lead to a variety of diseases in different organs, a common example of which is Polycystic Kidney Disease (PKD), where epithelial cysts replace normal renal tubules. Membrane protein polarity defects in Autosomal Dominant (AD) PKD include the mis-polarization of normally basolateral membrane proteins to apical, lumenal membranes, such as epidermal growth factor (EGFR/ErbB) receptors and Na+K+-ATPase-α1 subunit; mis-polarization of normally apical membrane proteins to basolateral membranes, including the Na+K+2Cl (NKCC1) symporter; and the failure to traffic and insert proteins into membranes resulting in their intracellular accumulation, such as E-cadherin and the β1 subunit of Na+K+-ATPase. Abnormalities in structural AJ, FA and polarity complexes in ADPKD epithelia include loss of E-cadherin, and focal adhesion kinase (FAK), MALS-3, Crb and Dlg complexes as well as disruptions in Rab/sec and syntaxin trafficking and membrane docking pathways. Since proper polarization of epithelial cells lining renal tubules is essential for normal kidney development and differentiation to prevent abnormal cystic dilation, interventions to reverse polarity defects to normal would offer therapeutic opportunities for PKD. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

18.
Renal and small intestinal (re-)absorption contribute to overall phosphate(Pi)-homeostasis. In both epithelia, apical sodium (Na+)/Pi-cotransport across the luminal (brush border) memi brane is rate limiting and the target for physiological/pathophysiological alterations. Three different Na/Pi-cotransporters have been identified: (i) type I cotransporter(s) - present in the proximal tubule - also show anion channel function and may play a role in secretion of organic anions; in the brain, it may serve vesicular glutamate uptake functions; (ii) type II cotransporter(s) seem to serve rather specific epithelial functions; in the renal proximal tubule (type IIa)and in the small intestine (type IIb), isoform determines Na+-dependent transcellular Pi-movements; (iii) type III cotransporters are expressed in many different cells/tissues where they could serve housekeeping functions. In the small intestine, alterations in Pi-absorption and, thus, apical expression of IIb protein are mostly in response to longer term (days) situations (altered Pi-intake, levels of 1.25 (OH2) vitamin D3, growth, etc), whereas in renal proximal tubule, in addition, hormonal effects (e.g. Parathyroid Hormone, PTH) acutely control (minutes/hours) the expression of the IIa cotransporter. The type II Na/Pi-cotransporters operate (as functional monomers) in a 3 Na+:1 Pi stoichiometry, including transfer of negatively charged (-1) empty carriers and electroneutral transfers of partially loaded carriers (1 Na+, slippage)and of the fully loaded carriers (3 Na+, 1 Pi). By a chimera (IIa/IIb) approach, and by site-directed mutagenesis (including cysteine-scanning), specific sequences have been identified contributing to either apical expression, PTH-induced membrane retrieval, Na+-interaction or specific pH-dependence of the IIa and IIb cotransporters. For the COOH-terminal tail of the IIa Na/Pi -cotransporter, several interacting PDZ-domain proteins have been identified which may contribute to either its apical expression (NaPi-Cap1) or to its subapical/lysosomal traffic (NaPi-Cap2).  相似文献   

19.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway.  相似文献   

20.
Summary The apical surface of the retinal pigment epithelium (RPE) faces the neural retina whereas its basal surface faces the choroid. Taurine, which is necessary for normal vision, is released from the retina following light exposure and is actively transported from retina to choroid by the RPE. In these experiments, we have studied the effects of taurine on the electrical properties of the isolated RPE of the bullfrog, with a particular focus on the effects of taurine on the apical Na+–K+ pump.Acute exposure of the apical, but not basal, membrane of the RPE to taurine decreased the normally apical positive transepithelial potential (TEP). This TEP decrease was generated by a depolarization of the RPE apical membrane and did not occur when the apical bath contained sodium-free medium. With continued taurine exposure, the initial TEP decrease was sometimes followed by a recovery of the TEP toward baseline. This recovery was abolished by strophanthidin or ouabain, indicating involvement of the apical Na+–K+ pump.To further explore the effects of taurine on the Na+–K+ pump, barium was used to block apical K+ conductance and unmask a stimulation of the pump that is produced by increasing apical [K+] 0 . Under these conditions, increasing [K+] 0 hyperpolarized the apical membrane and increased TEP. Taurine reversibly doubled these responses, but did not change total epithelial resistance or the ratio of apical-to-basal membrane resistance, and ouabain abolished these responses.Collectively, these findings indicate the presence of an electrogenic Na+/taurine cotransport mechanism in the apical membrane of the bullfrog RPE. They also provide direct evidence that taurine produces a sodium-dependent increase in electrogenic pumping by the apical Na+–K+ pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号