首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In liver homogenate the biosynthesis ofN-acetylneuraminic acid usingN-acetylglucosamine as precursor can be followed stepwise by applying different chromatographic procedures. In this cell-free system 16 metal ions (Zn2+, Mn2+, La3+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Ce3+, Cd2+, Fe2+, Fe3+, Al3+, Sn2+, Cs+ and Li+) and the selenium compounds, selenium(IV) oxide and sodium selenite, have been checked with respect to their ability to influence a single or possible several steps of the biosynthesis ofN-acetylneuraminic acid. It could be shown that the following enzymes are sensitive to these metal ions (usually applied at a concentration of 1 mmoll–1):N-acetylglucosamine kinase (inhibited by Zn2+ and vandate), UDP-N-acetylglucosamine-2-epimerase (inhibited by zn2+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Cd2+, Fe3+, Cs+, Li+, selenium(IV) oxide and selenite), andN-acetylmannosamine kinase (inhibited by Zn2+, Cu2+, Cd2+, and Co2+). Dose dependent measurements have shown that Zn2+, Cu2+ and selenite are more efficient inhibitors of UDP-N-acetylglucosamine-2-epimerase than vanadate. As for theN-acetylmannosamine kinase inhibition, a decreasing inhibitory effect exists in the following order Zn2+, Cd2+, Co2+ and Cu2+. In contrast, La3+, Al3+ and Mn2+ (1 mmoll–1) did not interfere with the biosynthesis ofN-acetylneuraminic acid. Thus, the conclusion that the inhibitory effect of the metal ions investigated cannot be regarded as simply unspecific is justified.Dedicated to Professor Theodor Günther on the occasion of his 60th birthday  相似文献   

2.
Cu2+ ion determinations were carried out in complex and in inorganic salts-glycerol media, to which increasing amounts of Cu(II) had been added, with the ion-specific Cu(II)-Selectrode. Likewise, complexing capacity of bacterial suspensions was estimated by titration with CuSO4.Copper-sensitive bacteria, e.g.,Klebsiella aerogenes, were inhibited in their growth and survival in the range of 10–8–10–6 M Cu2+ ion concentrations. In copper-buffered complex media, high copper loads could be tolerated, as growth proceeded with most of the copper bound to medium components. In low-complexing mineral salts media, in which high Cu2+ ion concentrations exist at low copper loads, there was competition of Cu2+ for binding sites of the cells. Total allowed copper was then determined by the ratio of copper to biomass.Copper-resistant bacteria could be isolated from a stock solution of CuSO4, containing 100 ppm Cu(II). They were of thePseudomonas type and showed a much higher tolerance towards Cu2+, up to 10–3 M.  相似文献   

3.
An NAD+-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M r 48 000, and pI 3.6. It was optimally active at 45 °C and pH 9–10. It was fully stable at pH 6–7 for 24 h and 30 °C. K m values for d-xylitol and NAD+ were 94 mM and 0.14 mM, respectively. Mn2+ at 10 mM increased XDH activity 2-fold and Cu2+ at 10 mM inhibited activity completely.  相似文献   

4.
Accelerated tree growth under elevatedatmospheric CO2 concentrations may influencenutrient cycling in forests by (i) increasingthe total leaf area, (ii) increasing the supplyof soluble carbohydrate in leaf tissue, and (iii) increasing nutrient-use efficiency. Here wereport the results of intensive sampling andlaboratory analyses of NH 4 + , NO 3 , PO 4 3– , H+, K+, Na+,Ca2+, Mg2+, Cl, SO 4 2– , and dissolved organic carbon (DOC) in throughfallprecipitation during the first 2.5+ years of the DukeUniversity Free-Air CO2 Enrichment (FACE)experiment. After two growing seasons, a largeincrease (i.e., 48%) in throughfall deposition of DOCand significant trends in throughfall volume and inthe deposition of NH 4 + , NO 3 , H+, and K+ can be attributed to the elevatedCO2 treatment. The substantial increase indeposition of DOC is most likely associated withincreased availability of soluble C in plant foliage,whereas accelerated canopy growth may account forsignificant trends toward decreasing throughfallvolume, decreasing deposition of NH 4 + ,NO 3 , and H+, and increasing deposition of K+ under elevated CO2. Despiteconsiderable year-to-year variability, there wereseasonal trends in net deposition of NO 3 ,H+, cations, and DOC associated with plant growthand leaf senescence. The altered chemical fluxes inthroughfall suggest that soil solution chemistry mayalso be substantially altered with continued increasesin atmospheric CO2 concentrations in the future.  相似文献   

5.
A screening for the enzyme L-myo-inositol-1-phosphate synthase [EC 5.5.1.4] has been made first time in both vegetative and reproductive parts of the representative members of pteridophytes: Lycopodium, Selaginella, Equisetum, Polypodium, Dryopteris, and Gleichenia. The enzyme has been partially purified following low-speed centrifugation, streptomycin sulphate precipitation, ammonium sulphate fractionation, chromatography on DEAE-cellulose and gel-filtration through Sephadex G-200, and characterised from the reproductive pinnules of Gleichenia glauca Smith. The enzyme has a pH optimum at 7.5. The Km for glucose-6-P and NAD+ were 0.922 × 10–3 M and 0.9 × 10–4 M, respectively. A basal activity of the enzyme has been recorded in absence of exogenous NAD+. The enzyme activity was augmented with NH4Cl, but heavy metals like Hg2+, Cu2+ and Zn2+ inactivated it.  相似文献   

6.
During exposure to soft water, acidified to pH 4.0, the haemolymph concentrations of Na+, K+, and Cl decreased whereas the Ca2+ concentration fluctuated in Astacus astacus. The haemocyte content of K+ decreased from 9% to 2% of the total haemolymph K+ content after exposure to pH 3.7 for 3 days. Within 14 days, 250 µg Al3+ l–1, as Al2(SO4)3 at pH 5.0, reduced the haemolymph Na+ content in Astacus astacus and Pacifastacus leniusculus, however, the effects were less pronounced than earlier reported for fish. Disturbed ion regulation, mainly depending on low pH, is thought to contribute to the absence of these species in acid waters.  相似文献   

7.
1. 1. Cu2+ at a concentration of 10−4 M, when applied to the external side of the frog skin produces an increase in the short-circuit current (Isc).
2. 2. This effect was studied in skins of Rana temporaria adapted to cold (5°C) and room temperature (20°C), skins of Rana pipiens adapted to cold, and the results compared with those obtained previously with Rana ribibunda.
3. 3. The observed effect is less dependent upon the adaptation to cold than upon the functional state of the skin: skins with low short circuit currents have a bigger response to Cu2+ than skins with high Isc.
4. 4. A species difference cannot be ruled out since skins of Rana ribibunda exhibiting high Isc give good responses to Cu2+.
5. 5. 5,5′-dithiobis(2-nitrobenzoic acid), a sulphydryl-oxidizing reagent, produces an effect similar to that of Cu2+, and dithiothreitol an SH-reducing agent, reverses the effect of this ion.
6. 6. Cu2+ also induces an increase in the unidirectional K+ fluxes and unmasks a net outward potassium flux.
7. 7. The outward K+ flux induced by Cu2+ is sensitive to ouabain.
8. 8. It is concluded that Cu2+ increases the permeability of the external barrier of the frog skin to Na+ and K+, probably by reacting with SH groups.
Abbreviations: DTNB; 5; 5′-dithiobis(2-nitrobenzoic acid)  相似文献   

8.
Summary In the productions of biomass and vitamin B12 using methanol as the sole carbon source, it is necessary to use a medium in which methanol is the growth limiting substrate. Other inorganic salts should be in slight excess so that the yield of cells and the intracellular content of vitamin B12 do not vary. From basic principles of chemostat culture, a medium was optimized for Pseudomonas AM-1 a methanol utilizing bacterium, for the concentrations of various inorganic salts. This was done in a series of chemostat cultures at a dilution rate of 0.1 h–1. Optimum amounts of NH4 +, PO4 3- and Mg2+ were estimated from the minimum concentration of the salt at which methanol became growth limiting. The optimum concentrations of Ca2+, Fe2+, Mn2+, and Zn2+ as a group were determined in the same way. Cu2+, Mo6+, Co2+ and B3+ are required at concentrations of g/l and they were not studied as these very low level can be introduced as contaminants from other salts. The optimum medium composition (in g/l) was as follows: (NH4)2SO4, 1.0; H3PO4, 75×10–3; MgSO4 · 7H2O, 30×10–3; CaCl2 · 2H2O, 3.3×10–3; FeSO4 · 7H2O, 1.3×10–3, MnSO4 · 4H2O, 0.13×10–3; ZnSO4 · 7H2O, 0.13×10–3; CuSO4 · 5H2O, 40×10–6; Na2MoO4, 40×10–6; CoCl2 · 6H2O, 40×10–6; H3BO3, 30×10–6 and methanol 4.  相似文献   

9.
At 10 mM, Cu+ was highly protective against killing of spores of Bacillus megaterium ATCC 19213 by H2O2, while at higher concentrations, from 15–100 mM, killing was augmented. In contrast, Cu2+, Fe2+, Fe3+, Co2+ or Co3+ ions acted only protectively. Cu+ itself was sporicidal in the absence of H2O2 or ascorbate, and its sporicidal action did not depend on generation of highly reactive oxygen species. It appeared that killing involved either inhibition of germination or copper toxicity to germinated cells in that Cu+-inactivated spores did not germinate readily but chemical decoating of the cells prior to plating on a solid medium resulted in reversal of the sporicidal effect. Received 12 July 1996/ Accepted in revised form 03 November 1996  相似文献   

10.
Fomes sclerodermeus produces manganese peroxidase (MnP) and laccase as part of its ligninolytic system. A Doehlert experimental design was applied in order to find the optimum conditions for MnP and laccase production. The factors studied were Cu2+, Mn2+ and asparagine. The present model and data analysis allowed us not only to define optimal media for production of both laccase and MnP, but also to show the combined effects between the factors. MnP was strongly influenced by Mn2+, which acts as an inducer. Under these conditions Cu2+ negatively affected MnP activity. At 13 days of growth 0.75 U ml–1 were produced in the optimized culture medium supplemented with 1 mM MnSO4 and 4 g l–1 asparagine. The laccase titer under optimized conditions reached maximum values at 16 days of growth: 13.5 U ml–1 in the presence of 0.2 mM CuSO4, 0.4 mM MnSO4 and 6 g l–1 asparagine. Mn2+ promoted production of both enzymes. There were important interactions among the nutrients evaluated, the most significant being those between Cu2+ and asparagine.  相似文献   

11.
Summary High levels of glutamine synthetase, detected using both a biosynthetic assay (P i release from ATP) and a -glutamyl transferase assay, are present in aerobically grown N2-fixing cultures of Anabaena cylindrica. The enzyme is soluble, has a pH optimum of 6.5–7.5, with a peak at 7.1–7.2 (biosynthetic activity) or 6.9 (transferase activity), and a temperature optimum at 30°C–40°C. Partially purified preparations are stable in air at 5°C for at least 3 days. Mg2+, Mn2+, Co2+ and Ca2+ support high rates of biosynthetic activity, Zn2+ is less effective and Cu2+ and Ba2+ are ineffective.Enzyme activity is regulated at several levels: possibly by repression and derepression of the enzyme in response to NH4 + level; by variation in the Mn2+: ATP ratio with optimum activity at a 1:1 ratio; by feed-back inhibition which may be of a cumulative type. The consensus of the evidence suggests the absence of a covalent enzyme modification of the type found in E. coli. Glutamine synthetase levels are almost twice as high on a protein basis in the heterocysts as in the vegetative cells. Apparent K m values for whole filaments for NH4 + and glutamate in the biosynthetic reactions are 1 mM and 2 mM respectively.  相似文献   

12.
Accumulation of pertechnetate ions (99TcO4 ) by the cyanobacterial speciesSynechocystis PCC 6803,Synechococcus PCC 6301,Plectonema boryanum,Anabaena variabilis and a redOscillatoria sp. consisted solely of a single rapid energy-independent phase (biosorption); no energy-dependent uptake was detected. Biosorption of TcO4 was concentration-dependent and could be described by a Freundlich adsorption isotherm for each cyanobacterial species examined. Decreasing pH increased the accumulation of TcO4 by all the species as did an increase in external NaCl concentration. Accumulation of TcO4 was also increased inA. variabilis, P. boryanum and the redOscillatoria by an increased external osmotic potential. Concentrations of cations affected TcO4 accumulation; K+ increased accumulation in all the species, Mg2+, Ca2+, Sr2+ and Cs+ increased accumulation inSynechococcus PCC 6301 and Ca2+ increased accumulation by the redOscillatoria. Some anions decreased TcO4 accumulation; CO3 2– inA. variabilis and the redOscillatoria, SO4 2– inSynechocystis PCC 6803, and HCO3 inP. boryanum. The majority of TcO4 accumulated by all the cyanobacteria was easily desorbed, with no difference in the amounts desorbed between desorption agents of different pH or cation concentration.(*author for correspondence)  相似文献   

13.
Biosorption of chromium to fungi   总被引:3,自引:0,他引:3  
Eighteen fungal strains were isolated from water and soil samples and tested for their ability to enrich chromium. The microorganism with the highest enrichment capacity, a zygomycete (Mucor hiemalis MP/92/3/4), was chosen for detailed investigations. Some basic tests such as the pH-dependence, the kinetics of the enrichment and the metal selectivity were carried out with the two most frequent oxidation states of chromium, the trivalent cation (Cr3+) and the hexavalent anion (CrO4 2–). With Cr3+ the enrichment showed a saturation kinetic reaching 70% of the maximum capacity after about 30 min, whereas with CrO4 2– a linear time course with a much lower metal enrichment was observed. The highest level of enrichment for Cr3+ was observed at pH 5.5 (21.4 mg/g dry wt), and for CrO4 2– at pH 1 (4.3 mg/g dry wt). Investigations concerning the metal enrichment selectivity resulted in the following series of decreasing ion uptake: Cr3+ > Cu2+ > Pb2+ > Ag+ > Al3+ > Co2+ > Zn2+ > Ni2+ > Fe2+ > Mo5+ > Cd2+ > 2– > CrO4 2– > VO3–, calculated on a molar basis. Trivalent chromium caused a staining of the outer cell wall region in transmission electron microscopy. The localization of chromium in the stained outer layers of the cell wall could be verified by electron energy loss spectroscopy. The enrichment of Cr3+ by M. hiemalis seemed to be mainly a passive biosorption to the cell wall, whereas for the uptake of CrO4 2– intracellular accumulation as well as biosorption is possible.  相似文献   

14.
Summary The cellular mechanisms responsible for rectal acidification in the desert locust, Schistocerca gregaria, were investigated in isolated recta mounted as flat sheets in modified Ussing chambers. Previous studies conducted in the nominal absence of exogenous CO2 and HCO 3 suggested that the acidification was due to a proton-secretory rather than bicarbonate-reabsorptive mechanism (Thomson, R.B., Speight, J.D., Phillips, J.E. 1988. J. Insect Physiol. 34:829–837). This conclusion was confirmed in the present study by demonstrating that metabolic CO2 could not contribute sufficient HCO 3 to the lumen to account for the rates of rectal acidification observed under the nominally CO2/ HCO 3 -free conditions used in these investigations.Rates of luminal acidification (J H +) were completely unaffected by changes in contraluminal pH, but could be progressively reduced (and eventually abolished) by imposition of either transepithelial pH gradients (lumen acid) or transepithelial electrical gradients (lumen positive). Under short-circuit current conditions, the bulk of J H + was not dependent on Na+, K+, Cl,Mg2+, or Ca2+ and was due to a primary electrogenic proton translocating mechanism located on the apical membrane. A small component (10–16%) of J H + measured under these conditions could be attributed to an apical amiloride-inhibitable Na+/H+ exchange mechanism.This work was supported by operating grants to J.E.P. and postgraduate scholarships to R.B.T. from Natural Sciences & Engineering Research Council, Canada.  相似文献   

15.
Sodium concentrations as low as 2 mM exerted a significant protective effect on the high-pressure inactivation (160–210 MPa) of Rhodotorula rubra at pH 6.5, but not on two other yeasts tested (Shizosaccharomyces pombe and Saccharomyces cerevisiae). A piezoprotective effect of similar magnitude was observed with Li+ (2 and 10 mM), and at elevated pH (8.0–9.0), but no effect was seen with K+, Ca2+, Mg2+, Mn2+, or NH4 +. Intracellular Na+ levels in cells exposed to low concentrations of Na+ or to pH 8.0–9.0 provided evidence for the involvement of a plasma membrane Na+/H+ antiporter and a correlation between intracellular Na+ levels and pressure resistance. The results support the hypothesis that moderate high pressure causes indirect cell death in R. rubra by inducing cytosolic acidification.Communicated by K. Horikoshi  相似文献   

16.
A cyanide-hydrolysing enzyme from Burkholderia cepacia strain C-3 isolated from soil was purified to electrophoretic homogeneity by ammonium sulphate precipitation and column chromatography on HiTrap Q (DEAE-agarose) and phenyl-Sepharose HP. The enzyme was purified 48-fold with a 0.8% yield and a final specific activity of 26.8 u/mg protein. The purified enzyme was observed as a single polypeptide band of molecular mass 38 kDa during both denaturing and non-denaturing gel electrophoresis. Enzymatic activity was optimal at pH 8.0–8.5 and at 30–35 °C. Activity was stimulated by Mo2+, Sn2+, and Zn2+, and inhibited by Al3+, Co2+, Cu2+ and Hg2+. The enzyme was specific for cyanide and thiocyanate with formate and ammonia as the main products from KCN degradation. Its K m and V max values were 1.4 mM and 15.2 u/mg protein, respectively. Apparent substrate inhibition occurred at cyanide concentrations greater than 2 mM.  相似文献   

17.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

18.
Summary Measurements of unidirectional calcium fluxes in stripped intestinal epithelium of the tilapia,Oreochromis mossambicus, in the presence of ouabain or in the absence of sodium indicated that calcium absorption via the fish intestine is sodium dependent. Active Ca2+ transport mechanisms in the enterocyte plasma membrane were analyzed. The maximum capacity of the ATP-dependent Ca2+ pump (V m :0.63 nmol·min–1 mg–1,K m : 27nm Ca2+) is calculated to be 2.17 nmol·min–1·mg–1, correcting for 29% inside-out oriented vesicles in the membrane preparation. The maximum capacity of the Na+/Ca2+ exchanger with high affinity for Ca2+ (V m :7.2 nmol·min–1·mg–1,K m : 181nm Ca2+) is calculated to be 13.6 nmol·min–1·mg–1, correcting for 53% resealed vesicles and assuming symmetrical behavior of the Na+/Ca2+ exchanger. The high affinity for Ca2+ and the sixfold higher capacity of the exchanger compared to the ATPase suggest strongly that the Na+/Ca2+ exchanger will contribute substantially to Ca2+ extrusion in the fish enterocyte. Further evidence for an important contribution of Na+/Ca2+ exchange to Ca2+ extrusion was obtained from studies in which the simultaneous operation of ATP-and Na+-gradient-driven Ca2+ pumps in inside-out vesicles was evaluated. The fish enterocyte appears to present a model for a Ca2+ transporting cell, in which Na+/Ca2+ exchange activity with high affinity for Ca2+ extrudes Ca2+ from the cell.  相似文献   

19.
The interaction of redox-active copper ions with misfolded amyloid β (Aβ) is linked to production of reactive oxygen species (ROS), which has been associated with oxidative stress and neuronal damages in Alzheimer disease. Despite intensive studies, it is still not conclusive how the interaction of Cu+/Cu2+ with Aβ aggregates leads to ROS production even at the in vitro level. In this study, we examined the interaction between Cu+/Cu2+ and Aβ fibrils by solid-state NMR (SSNMR) and other spectroscopic methods. Our photometric studies confirmed the production of ∼60 μm hydrogen peroxide (H2O2) from a solution of 20 μm Cu2+ ions in complex with Aβ(1–40) in fibrils ([Cu2+]/[Aβ] = 0.4) within 2 h of incubation after addition of biological reducing agent ascorbate at the physiological concentration (∼1 mm). Furthermore, SSNMR 1H T1 measurements demonstrated that during ROS production the conversion of paramagnetic Cu2+ into diamagnetic Cu+ occurs while the reactive Cu+ ions remain bound to the amyloid fibrils. The results also suggest that O2 is required for rapid recycling of Cu+ bound to Aβ back to Cu2+, which allows for continuous production of H2O2. Both 13C and 15N SSNMR results show that Cu+ coordinates to Aβ(1–40) fibrils primarily through the side chain Nδ of both His-13 and His-14, suggesting major rearrangements from the Cu2+ coordination via Nϵ in the redox cycle. 13C SSNMR chemical shift analysis suggests that the overall Aβ conformations are largely unaffected by Cu+ binding. These results present crucial site-specific evidence of how the full-length Aβ in amyloid fibrils offers catalytic Cu+ centers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号