首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucagon was acylated at position 12 using conditions favoring reaction with the epsilon-amino group of lysine. The N epsilon-acetyl, N epsilon-hexanoyl, and N epsilon-decanoyl derivatives were prepared and purified. Secondary structure as measured by circular dichroism was lower in all derivatives than in glucagon, both in 95% methanol and in 25 mM sodium dodecyl sulfate at pH 2 and pH 12. N epsilon-Acetyl glucagon was less active than the native hormone in a radioreceptor assay and higher concentrations of this derivative were required to stimulate the adenylate cyclase activity of rat liver plasma membranes. The maximal extent of cyclase activation by this derivative was less than that found with the native hormone. N epsilon-Hexanoyl glucagon and N epsilon-decanoyl glucagon had greater activity than N epsilon-acetyl glucagon in receptor binding as well as in adenylate cyclase activation, although these two derivatives were not as active as the native hormone. N epsilon-hexanoyl glucagon and N epsilon-decanoyl glucagon were more potent in receptor binding than in adenylate cyclase activation. From these results it appears that the positive charge of the epsilon-amino groups may have a specific role in obtaining maximal biological activity, while the acyl groups contribute to the nonspecific hydrophobic interactions between the hormone and its receptor. In addition, a possible relationship between stabilization of the amphipathic helix in solution and the activity of these and other N epsilon-derivatives of glucagon is discussed.  相似文献   

2.
The semi-synthetic approach has been used to obtain new analogs of the peptide hormone glucagon. Using the highly purified 27 amino acid fragment of cyanogen bromide-treated glucagon, we have prepared, by nucleophilic addition to the lactone ring, the following derivatives: CNBr-Gly28-glucagon, CNBr-glucagon hydrazide, CNBr-glucagon n-butylamide and CNBr-glucagon biotinamide. Direct aminolysis of the lactone was successful only with sterically unhindered primary amines. Addition of an amino acid could be accomplished by formation of the peptide hydrazide followed by azide coupling. All these analogs were full agonists with decreased potency relative to the native hormone. Examination of the structure-function relationships of these new C-terminal glucagon derivatives suggests that the hydrophobic side-chain of methionine is important to the binding of glucagon to its receptor and that the C-terminal portion of glucagon is only involved in the binding of the hormone to the receptor and not in the transduction process.  相似文献   

3.
Glucagon and 11 glucagon derivatives were characterized and compared with respect to the cooperativity of their receptor interactions and their ability to elicit a biphasic (activation-inhibition) response from the adenylate cyclase system of rat liver plasma membranes. Slope factors were evaluated from two sets of experimental data, binding to hepatocyte receptors and activation of adenylate cyclase. The results are consistent with noncooperative binding to a single affinity state of the glucagon receptor for all derivatives, irrespective of the modification and the agonist properties of the derivatives. High-dose inhibition of adenylate cyclase activity was observed for native glucagon and all of the derivatives which were examined at high concentrations (greater than 10(-5) M). Partial agonism of some low-affinity glucagon derivatives is not caused by high-dose inhibition. Several mechanisms which might give rise to high-dose inhibition such as receptor cross-linking or multivalent receptor binding are discussed in relationship to the glucagon-receptor interaction. These phenomena indicate that significant differences exist between the glucagon system and the beta-adrenergic system.  相似文献   

4.
Inhibition by glucagon of the calcium pump in liver plasma membranes   总被引:1,自引:0,他引:1  
The ATP-dependent calcium transport in plasma membrane vesicles prepared from rat liver was inhibited by 0.1 to 10 microM glucagon. Inhibition of the high affinity (Ca2+-Mg2+)-ATPase was observed concomitantly. This effect was neither mimicked by cyclic AMP nor by dibutyryl cyclic AMP. A study of the structure-activity relationships of six glucagon derivatives demonstrated the specificity of glucagon action since only one or two analogs markedly altered the (Ca2+-Mg2+)-ATPase activity. The study also demonstrated the total absence of correlation between adenylate cyclase activation and (Ca2+-Mg2+)-ATPase inhibition induced by these glucagon derivatives. The decrease in the maximal velocities induced by glucagon of both calcium transport and (Ca2+-Mg2+)-ATPase activity were related to a reduction in the rate of dephosphorylation of the Ca-dependent phosphorylated intermediate of the enzyme. This phosphorylated intermediate was characterized as a 32P-labeled 110,000-dalton protein which accumulated to 50 to 150% over the basal level in the presence of glucagon. The present results demonstrate a novel aspect of the role of glucagon as a calcium-mobilizing agent.  相似文献   

5.
To study the mechanism of degradation of glucagon with purified insulin-glucagon protease, glucagon was reacted with the enzyme at various times of incubation. The proteolysis was followed by the production of flourescamine-reacting material as well as reaction with dansyl chloride, cleavage by acid hydrolysis, and identification by thin layer chromatography. For quantitative measurement of the degradation products, [14C] dansyl derivatives were produced, identified by autoradiography, and counted. In the degradation products in addition to histidine, the dansyl derivatives of tyrosine, phenylalanine, two leucines, alanine and lysine were identified. For comparison, glucagon was also reacted with chymotrypsin and the degradation products consisted of threonine, serine, two leucines and valine. Thus, insulin-glucagon protease degrades glucagon in a manner distinct from that of chymotrypsin.  相似文献   

6.
The synthesis of monofluorescein, monorhodamine, and mono-4-nitrobenz-2-oxa-1,3-diazole (NBD) derivatives of glucagon is reported. The fluorescent groups were introduced by converting tryptophan-25 to 2-thioltryptophan using thiol-specific fluorescent reagents. All derivatives retained the ability to activate adenylate cyclase when compared to glucagon and thus were considered full agonists. IC50 values of 6.8.10(-9), 1.7.10(-8), 1.8.10(-8) and 5.4.10(-9) M were measured in rat liver membranes for NBD-, fluorescein-, rhodamine-Trp25-glucagon and native glucagon, respectively. From the IC50 values Kd values of 2.16.10(-9), 4.10(-9), 2.10(-9) and 1.72.10(-9) M were calculated for the binding of NBD-, fluorescein-, rhodamine-Trp25-glucagon and native glucagon, respectively. The highest quantum yield (0.18) of the monomer derivatives was obtained with fluorescein-Trp25-glucagon in phosphate-buffered saline (pH 7.4). Difluorescein-glucagon was also prepared by reacting the amino groups of histidine-1 and lysine-12 with fluorescein isothiocyanate and dimer derivatives were prepared using fluorescein-labelled 2-thiolTrp25-glucagon. Difluorescein-glucagon bound only weakly to glucagon receptors and displayed antagonist properties. The dimer derivative formed from two difluorescein-2-thiolTrp25-glucagon molecules had similar poor binding qualities, whereas the dimer formed from difluorescein-2-thiolTrp25-glucagon and 2-thiolTrp25-glucagon exhibited, at low concentrations, properties similar to monofluorescein-glucagon. Both dimer derivatives were only sparingly soluble in aqueous medium. Specific binding of fluorescein-Trp25-glucagon and difluorescein-glucagon to rat hepatocytes was followed using flow cytometry.  相似文献   

7.
Two monoiodinated derivatives of glucagon were prepared by lactoperoxidase catalyzed iodination followed by separation on reverse-phase high-performance liquid chromatography. The purified (Tyr-10) and (Tyr-13)-mono-125I-labeled glucagon isomers were characterized and studied with respect to their binding to the receptors of isolated intact rat hepatocytes. The extent of steady-state binding to cellular receptor sites differed for the two labeled glucagon tracers at 37 degrees C as well as at 15 degrees C with (Tyr-10)-mono-125I-glucagon displaying higher receptor binding. The apparent equilibrium constants, Kd,app at 37 degrees C are 3.6 +/- 0.4 nM (mean +/- S.E. of three independent experiments) for the tyrosine-13-labeled tracer and 5.9 +/- 0.6 nM for the tyrosine-10-labeled glucagon with native glucagon as competitor. Since the observed Kd in the competition assay is a function of the true Kd values of the monoiodinated radioactive glucagon isomers and native glucagon, the dissociation constants were also measured with chemically identical tracer and competitor. Under these conditions, we obtained Kd values of 1.3 +/- 0.2 nM for the tyrosine-10-labeled analog and 2.0 +/- 0.2 nM for the tyrosine-13-labeled glucagon isomers confirming the higher receptor binding affinity of (Try-10)-mono-125I-glucagon. All competition curves fit the mathematical expression for a model of non-cooperative binding to a single class of receptors.  相似文献   

8.
Acetylated derivatives of glucagon have been prepared by reacting this hormone under various conditions with acetic anhydride. They have been chemically characterized by the use of a 14C-labeled reagent, by peptide mapping techniques following hydrolysis by pronase and chymotrypsin, and by spectroscopy. Acetylation in sodium acetate (pH 5.5) results in a full substitution of the alpha-amino group of the N-terminal histidyl residue, but in a partial (about 0.3 acetyl group per residue) substitution of the epsilon-amino group of the lysyl residue 12. The monosubstituted (on the alpha-amino group) and the disubstituted (on both amino groups) acetylated components have been separated by chromatography on DEAE-cellulose and CM-cellulose. Acetylation in sodium bicarbonate (pH 8.0) results in a complete substitution of both amino groups and of the hydroxyl groups of the tyrosyl residues 10 and 13. Complete deacetylation of the O-acetyltyrosyl residues occurs upon treatment with hydroxyl-amine. Mono, di and tetraacetylglucagon are homogeneous when analyzed by disc gel electrophoresis; di and tetrasubstituted derivatives show an increased mobility towards the anode. 125I-labeled derivatives of acetylglucagon show higher distribution coefficients in the aqueous two-phase dextran/poly(ethylene glycol) system than do similar derivatives of glucagon. Acetylation decreases in parallel the ability of glucagon to stimulate the activity of adenylate cyclase and to bind to its receptors in liver cell membranes of the rat. The biological potencies of the mono, di and tetrasubstituted derivates are, respectively, about 10, 1 and 0.1% that of native glucagon. The binding properties of the material dissociated from the acetylglucagon-receptor complex suggest that the reduction in biological activity results from a decrease in the intrinsic affinity of the modified glucagon for the receptors, as well as from the presence of small amounts of residual, unreacted glucagon. Studies with 125I-labeled derivatives of glucagon indicate that acetylation decreases the rate of association and increases the rate of dissociation of the hormone-receptor complex.  相似文献   

9.
Vasoactive intestinal polypeptide (VIP), a peptide hormone that is chemically and biologically related to glucagon and secretin, stimulates the activity of adenylate cyclase in liver and fat cell membranes. Effects of combinations of VIP with glucagon and secretin at concentrations that maximally activate adenylate cyclase suggest that in adipose tissue, the three hormones act on the same enzyme, whereas in liver, VIP and secretin activate a common enzyme that is distinct from that responding to glucagon. Studies with radioiodinated derivatives of VIP and glucagon indicate that these hormones interact with separate receptors. Secretin, which gives a maximal stimulation of adenylate cyclase activity virtually identical to that elicited by VIP, inhibits the binding of the latter to its receptor. However, the apparent affinity of secretin for adenylate cyclase and for the VIP receptor is about two order of magnitude lower than that of VIP. It is suggested that VIP and secretin may activate adenylate cyclase via a common receptor.  相似文献   

10.
Optimized substituent patterns in 4-aryl-pyridine glucagon receptor antagonists were merged to produce highly potent derivatives containing both a 3-[(1R)-hydroxyethyl] and a 2'-hydroxy group. Due to restricted rotation of the phenyl-pyridine bond, these analogues exist as four isomers. A diastereoselective methylcopper reaction was developed to facilitate the synthesis, and single isomers were isolated with activities in the range IC(50)=10-25 nM.  相似文献   

11.
Furan-2-carbohydrazides were found as orally active glucagon receptor antagonists. Starting from the hit compound 5, we successfully determined the structure activity relationships of a series of derivatives obtained by modifying the acidity of the phenol. We identified the ortho-nitrophenol as a good scaffold for glucagon receptor inhibitory activity. Our efforts have led to the discovery of compound 7l as a potent glucagon receptor antagonist with good bioavailability and satisfactory long half-life.  相似文献   

12.
Iodinated derivatives of glucagon containing an average of 1 to 5 g-atoms of 127I per mol have been prepared by reacting the hormone with increasing amounts of iodine monochloride. Their iodoamino acid composition has been determined by ion-exchange chromatography and electrophoresis, following hydrolysis by pronase. Iodination of the two tyrosyl residues occurs first and is nearly complete after addition of a 4-fold molar excess of ICl. Iodination of the single histidyl residue is a later event and does not exceed an average of one atom per residue. Hydrolysis of iodoglucagon by trypsin and subsequent separation of the iodotyrosyl peptides shows that iodine is equally distributed between tyrosyl residues 10 and 13. Crude iodoglucagon containing an average of 1 g-atom of iodine per mol has been resolved into several components of differing iodine content and iodoamino acid composition by chromatography on DEAE-cellulose. Monoiodoglucagon isolated by this procedure shows a single band when analyzed by polyacrylamide gel electrophoresis. Iodoglucagons containing an average of 1 to 4 g-atoms of iodine per mol are more potent than native glucagon in their ability to stimulate adenylate cyclase activity and to bind to glucagon receptors of liver cell membranes of the rat. The maximal increase in biological potency occurring upon iodination is about 5-fold with respect to adenylate cyclase activity, and 2-fold with respect to binding to receptors; tetra and triiodinated derivatives show, respectively, the highest potency. Similar effects occur whether inactivation by liver membranes is inhibited or not, indicating an enhancement in the intrinsic affinity of iodoglucagon for the receptors. Iodination beyong 4 g-atoms per mol slightly decreases the affinity of the hormone for adenylate cyclase and for the receptors. Iodination causes a 2-20 fold decrease in the ability of liver plasma membranes and of blood plasma to inactivate glucagon in vitro; these effects correlate with the degree of iodination. With liver microsomal membranes, a decrease in glucagon inactivation occurs only at iodine contents exceeding 4 g-atoms per mol, and lower degrees of iodination result in opposite effects. Monoiodination causes a 4-6-fold increase in the plasma concentration of glucagon within the first 18 min following a single intrvenous injection of the hormone to rats. More extensive iodination results, in addition, in a marked decrease in the rate of dissappearance of glucagon from the blood. The immunological reactivity of glucagon is little affected by monoidination, but strongly depressed by higher degrees of iodination...  相似文献   

13.
The polypeptide hormone glucagon can react with the nucleophiles; glycinamide, taurine or ethylenediamine in the presence of 1-ethyl-3-(3-dimethylaminopropylcarbodiimide). The number of carboxyl groups which are modified depend on the concentration of guanidine hydrochloride in the reaction media. These results demonstrate an additional property which glucagon possesses in common with larger globular proteins and suggests that the hormone has a specific, folded structure in dilute aqueous solution. In the absence of guanidine hydrochloride only one taurine residue is incorporated into the terminal carboxyl group of the peptide. In 7 M guanidine hydrochloride all four of the carboxyl groups react with glycinamide or taurine while only two and a half residues of ethylenediamine are incorporated. All of these derivatives and glucagon have identical circular dichroism spectra in dilute aqueous solution. The taurine modified derivative has greatly enhanced solubility compared with glucagon but still associates to structures of higher helical content. Both of the taurine derivatives of glucagon have the ability to stimulate the adenyl cyclase of rat liver membranes but at concentrations several fold higher than is needed for the native hormone. It is suggested that each carboxyl group contributes to the binding of the hormone to the specific membrane receptor sites.  相似文献   

14.
We have compared the ability of glucagon and three highly purified derivatives of the hormone to activate hepatic adenylate cyclase (an expression of biological activity of the hormone) and to compete with [125]glucagon for binding to sites specific for glucagon in hepatic plasma membranes. Relative to that of glucagon, biological activity and affinity of [des-Asn-28,Thr-29](homoserine lactone-27)-glucagon, prepared by CNBr treatment of glucagon, were reduced equally by 40- to 50-fold. By contrast, des-His-1-glucagon, prepared by an insoluble Edman reagent and highly purified (less than 0.5% contamination with native glucagon), displayed a 15-fold decrease in affinity but a 50-fold decrease in biological activity relative to that of the native hormone. At maximal stimulating concentrations, des-His-1-glucagon yielded 70% of the activity given by saturating concentrations of glucagon. Thus, des-His-1-glucagon can be classified as a partial weak agonist. Highly purified monoiodoglucagon and native glucagon displayed identical biological activity and affinity for the binding sites. Our findings suggest that the hydrophilic residues at the terminus of the carboxy region of glucagon are involved in the process of recognition at the glucagon receptor but do not participate in the sequence of events leading to activation of adenylate cyclase. The amino-terminal histidyl residue in glucagon plays an important but not obligatory role in the expression of hormone action and contributes to a significant extent in the recognition process.  相似文献   

15.
Summary Examination of glucagon structure-activity relationships and their use for the development of glucagon antagonists (inhibitors) have been hampered until recently by the lack of high purity of semisynthetic glucagon analogs and inadequate study of full dose-response curves for these analogs in sensitive bioassay systems. Recently a number of highly purified glucagon fragments and semi-synthetic analogs have been prepared and their full dose-response activities examined over a wide concentration range using the hepatic membrane adenylate cyclase assay, the hepatic membrane receptor binding assay, and glycogenolytic activity in isolated rat hepatocytes. The results of these studies have enabled us to identify and dissociate the structural (and in some cases conformational) features of glucagon important for binding from those most responsible for biological activity (transduction). Key findings in these studies were the observation that: (1) the C-terminal region of glucagon is primarily of importance for hormone binding to receptors; (2) glucagon1–21 and glucagon1–6 have low potency, but are essentially fully active glucagon derivatives; and (3) highly purified glucagon2–29 ([1-des-histidine]-glucagon), [1-N-carbamoylhistidine]-glucagon and [1-N-carbamoylhistidine, 12-N-carbamoyllysine]-glucagon are all partial agonists.These and other findings led us to synthesize several semisynthetic analogs of glucagon which were found to possess no intrinsic biological activity in the hepatic adenylate cyclase assay system, but which could block the effect of glucagon (competitive inhibitors) in activating adenylate cyclase in this system. Two of these highly purified analogs [1-des-histidine] [2-N-trinitrophenylserine, 12-homoarginine]-glucagon and [1-N-trinitrophenylhistidine, 12-homoarginine]-glucagon were quite potent glucagon antagonists (inhibitors) with pA2 values of 7.41 and 8.16 respectively. The latter compound has also been demonstrated to decrease dramatically blood glucose levels of diabetic animals in vivo. These results demonstrate that glucagon is a major contributor to the hyperglycemia of diabetic animals.Examination of the known and calculated conformational properties of glucagon provide insight into the structural and conformational properties of glucagon and its analogs most responsible for its biological activity. Consideration of these features and the mechanism of glucagon action at the membrane receptor level provide a framework for further developing glucagon analogs for theoretical and therapeutic applications.  相似文献   

16.
Insulin and glucagon were labeled with iodine. The reaction products were analyzed by high-performance liquid chromatography. It is shown that the pH of the reaction medium has a large effect on the position and the degree of iodine substitution as well as on the oxidation of the Met-containing glucagon and, furthermore, that the molar ratio of iodine to polypeptide hormone used during the labeling procedure affects not only the amount of iodine incorporated but also the distribution of iodinated products. The results show that certain iodinated derivatives are separated from each other and from the respective unlabeled polypeptide and thus can be obtained in a pure state.  相似文献   

17.
Insulin and glucagon were labeled with iodine. The reaction products were analyzed by high-performance liquid chromatography. It is shown that the pH of the reaction medium has a large effect on the position and the degree of iodine substitution as well as on the oxidation of the Met-containing glucagon and, furthermore, that the molar ratio of iodine to polypeptide hormone used during the labeling procedure affects not only the amount of iodine incorporated but also the distribution of iodinated products. The results show that certain iodinated derivatives are separated from each other and from the respective unlabeled polypeptide and thus can be obtained in a pure state.  相似文献   

18.
In this study, we determined the ability of four N-terminally modified derivatives of glucagon, [3-Me-His1,Arg12]-, [Phe1,Arg12]-, [D-Ala4,Arg12]-, and [D-Phe4]glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, [3-Me-His1,Arg12]glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. [Phe1,Arg12]glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. [D-Ala4,Arg12]glucagon and [D-Phe4]glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. [D-Ala4,Arg12]glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the [D-Phe4] derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Semisynthetic N epsilon- acetimidoglucagon was prepared from the [des- His1 ]analogue by coupling the N-hydroxysuccinimide ester of N alpha- tBoc - Nimidazole -DNP-L-histidine to the peptide in dimethylformamide in the presence of 1-hydroxybenzotriazole. The deprotected, purified product was chemically identical to N epsilon- acetimidoglucagon and equipotent to N epsilon- acetimidoglucagon and native glucagon in its ability to activate adenylate cyclase and displace [125I] iodoglucagon from rat liver plasma membranes. Semisynthetic [ Phe1 ]-, [ Ala1 ]-, and [des- His1 ] glucagons prepared similarly achieved 85, 55, and 35% of the maximal activity and 22, 2, and 6% of the binding potency of N epsilon- acetimidoglucagon . The biological assays indicate that the amino group is involved to a greater extent in transduction than in binding, but the aromatic nature and hydrogen bonding capability of the imidazole ring of histidine-1 are important for both binding and transduction. In circular dichroism studies, all derivatives exhibited increased helicity in 2-chloroethanol. The [ Phe1 ] analogue although less soluble behaved similarly to native glucagon, while the [ Ala1 ] and [des- His1 ] derivatives exhibited an increased helical content in 0.01 N HCl as a result of an increased propensity of these derivatives to self-associate in the absence of 2-chloroethanol. The unexpected conformational changes throughout the molecule may have relevance for the functional activity.  相似文献   

20.
G F Bryce  J H Jacoby 《Life sciences》1978,22(24):2215-2223
Several commonly used serotonin receptor antagonists were studied for their ability to influence basal plasma insulin and glucagon (using 30K antibody) levels as well as the response of these hormones to a glucose or arginine challenge administered systematically to overnight fasted rats. Cyproheptadine, in contrast to other antagonists employed, induced large increases of insulin, glucagon and glucose, although this hyperinsulinemia was of a smaller magnitude when compared with hormone levels observed during an equivalent hyperglycemia resulting from glucose administration. The pancreatic response to a glucose load (increased insulin and decreased glucagon release) and an arginine load (increased insulin and glucagon release) were prevented by cyproheptadine pretreatment. Basal insulin levels were bot consistently altered by methysergide or cinanserin and were slightly elevated by metergoline. Basal glucagon levels were unaffected by these drugs. These three agents potentiated the insulinotropic effect of an arginine load whereas only metergoline exerted a similar effect on the response to glucose loading. Glucagon release in response to these stimuli was not significantly altered by drug pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号