首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogenic activity of anti-CD3 mouse monoclonal antibodies (mAb) in cultures of human peripheral blood mononuclear cells (PBMC) depends on the ability of the mAb to interact with CD3 molecules on the T cells, and with Fc receptors (FcR) on monocytes. Two types of FcR with distinct specificity for murine (m) IgG subclasses are involved: a 72-kDa receptor (FcRI) binds mIgG2a and a 40-kDa receptor (FcRII) binds mIgG1. In this study we examined the mitogenic activity of mIgG3 anti-CD3 mAb RIV9. In cultures of human PBMC, the mAb induced T cell proliferation and interleukin 2 production. We found that subjects, unresponsive to mIgG2a anti-CD3 (e.g., OKT3), were also RIV9 nonresponders. In contrast, nonresponders to mIgG1 anti-CD3 (e.g., anti-Leu4) had a normal response to RIV9. Our results therefore suggested that anti-CD3 mAb of the mIgG2a and mIgG3 subclass bind to the same monocytic FcR. Human monomeric IgG, which has been shown to bind to FcRI only, blocked T cell proliferation induced by mIgG2a and mIgG3 anti-CD3, but had no effect on T cell proliferation induced by mIgG1 anti-CD3. In contrast, a mAb (IV.3) to FcRII, which blocks ligand binding of the receptor, blocked the mitogenic activity of mIgG1 anti-CD3 antibodies, but had no effect on T cell proliferation induced by mIgG3 anti-CD3 or by mIgG2a anti-CD3. Binding of RIV9 to FcR of responder monocytes could be demonstrated in immunofluorescence. Monocytes from the RIV9 nonresponder subjects however were unable to bind the Fc portion of this antibody. The binding of fluorescein (FITC)-conjugated mIgG3 or FITC-conjugated mIgG2a to responder monocytes could be inhibited by human monomeric IgG and by mIgG2a and mIgG3, but not by the mAb to FcRII. The results demonstrate that mIgG3 binds to FcRI on human monocytes and that this binding is needed for the mitogenic activity of mIgG3 anti-CD3.  相似文献   

2.
It has previously been demonstrated that about 30% of healthy Caucasian subjects are "nonresponders" in assays of the mitogenic activity of monoclonal mouse IgG1 (mIgG1) anti-CD3 antibodies (e.g., anti-Leu 4 and UCHT-1), and that this unresponsiveness is due to lack of monocyte helper function. In an immunofluorescence assay with fluorescence-activated cell sorter analysis, we studied the binding of phycoerythrin-conjugated anti-Leu 4 to monocytes from responders and nonresponders. Interaction was observed with monocytes from responders only, and was blocked by a murine monoclonal antibody (IV.3) directed to an epitope on the 40-kDa low affinity Fc receptor (FcRII). This indicates that the interaction represents binding of the Fc part of phycoerythrin-conjugated anti-Leu 4 to FcRII on responder monocytes. Indirect immunofluorescence with antibody IV.3 demonstrated, however, that monocytes from both responders and nonresponders express similar levels of FcRII. Thus, nonresponder monocytes apparently express a variant FcRII which is unable to bind the Fc part of mIgG1 antibodies. The anti-FcRII antibody completely blocked anti-Leu 4-induced (but not OKT3 (mIgG2a)-induced) T cell proliferation in cultures of peripheral blood mononuclear cells from responders. The results provide direct evidence that monocytes from anti-Leu 4 responders, but not monocytes from anti-Leu 4 non-responders, are able to bind the Fc part of mIgG1 to FcRII, and that this interaction with FcRII is essential for the mitogenic activity of mIgG1 anti-CD3 antibodies.  相似文献   

3.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

4.
Distribution of FcR II, FcRIII, and FcR alpha on murine splenic B cells was examined by using FITC-labeled heat-aggregated IgG of each subclass and IgA. Almost 60 to 80% of B cells expressed both FcRII and FcRIII. However, FcR alpha was expressed on only a small proportion (6%) of B cells that co-expressed FcRII. By inhibition assays with the use of cold IgG of each subclass and IgA in addition to anti-FcRII mAb (2.4G2), it was found that IgG1, IgG2a, and IgG2b utilized the same receptor (FcRII), whereas IgG3 and IgA bound only to their unique receptors, FcRIII and FcR alpha, respectively. Immune complexes IC prepared by IgG1, IgG2a, IgG2b, and IgA anti-TNP mAb with TNP-coupled SRBC inhibited the polyclonal Ig secretion and proliferative responses of B cells stimulated with either IL-4 or LPS. The inhibition of B cell activation was associated with the blockade of the membrane depolarization. Moreover, IC prepared by these antibodies caused production of suppressive B cell factor (SBF) as is the case with rabbit IgG antibody to SRBC, and SBF thus prepared regulated antibody responses in an isotype-nonspecific manner. In contrast, no inhibition for these responses or production of SBF was attained by the IC of IgG3 antibody. We concluded that FcRII and FcR alpha mediates a suppressive signal for B cells by acting on the initial step of activation, whereas FcRIII lacks this activity.  相似文献   

5.
CD28 is an antigen of 44 kDa which is expressed on the membrane of the majority of human T cells. The present study examines the functional effects of an anti-CD28 monoclonal antibody (mAb 9.3) on T cell activation induced with immobilized anti-CD3 mAb OKT3 or with mitogens, in the absence of accessory cells. To this end, we used blood resting T cells that were completely depleted of accessory cells (monocytes, B cells, and natural killer cells), and consequently did not respond to recombinant interleukin-2 (rIL-2), to immobilized OKT3, to PHA, or to Con A. Addition of mAb 9.3 to the cultures enhanced IL-2 receptor expression (Tac antigen) on PHA- or immobilized OKT3-stimulated T cells and induced IL-2 receptors on Con A-stimulated T cells. Moreover, addition of mAb 9.3 to cultures of T cells stimulated with PHA, Con A, or immobilized OKT3 resulted in IL-2 production. Soluble mAb 9.3 was a sufficient helper signal for T cell proliferation in response to PHA or immobilized OKT3. Crosslinking of mAb 9.3 by culture on anti-mouse IgG-coated plates enhanced the helper effect and was an essential requirement for the induction of T cell proliferation in response to Con A. No other anti-T cell mAb (anti-CD2, -CD4, -CD5, -CD7, -CD8) was found to provide a complete accessory signal for PHA or Con A stimulation of purified T cells. T cell proliferation induced by the combination of PHA and mAb 9.3 was strongly inhibited by the anti-IL-2 receptor mAb anti-Tac. In conclusion, mAb 9.3 can provide a signal bypassing monocyte requirement in T cell activation with immobilized OKT3, PHA, and Con A, resulting in an autocrine IL-2-dependent pathway of proliferation.  相似文献   

6.
Three classes of FcR have been defined on human myeloid cells by their reactivity with mAb; FcRI (mAb 32); FcRII (mAb IV3); and FcRIII (mAb 3G8). We have quantitated the expression of each FcR on human myeloid leukemia cells and cell lines (KG-1, HL-60, U937, and K562). Detailed analysis of FcR surface expression is provided for the U937 cell line after exposure to CSF and cytokines. Increased expression of FcRI and FcRII occurred at 72 h in cells exposed to GCT or Mo cell line-conditioned medium as well as to medium from PHA-treated mononuclear cells. The augmentation of FcRII required protein synthesis and was diminished by a neutralizing antibody to granulocyte-macrophage CSF. We also show that fractions containing natural granulocyte CSF or granulocyte-macrophage CSF as well as r-granulocyte and r-granulocyte-macrophage CSF are capable of inducing FcRII on these cells, whereas other cytokines such as IL-1 and IL-2, TNF-alpha, INF-gamma and macrophages CSF failed to do so.  相似文献   

7.
Human monocytes and U937 cells bear two distinct Fc receptors for IgG   总被引:33,自引:0,他引:33  
Several convergent lines of evidence have led us to propose that human monocytes and the related cell line U937 possess a second class of IgG Fc receptor (FcR) in addition to the 72-Kd high affinity FcR previously described. IgG affinity purification from detergent lysates of surface radiolabeled U937 cells has yielded both a 40-Kd IgG-binding membrane protein (p40) and the 72-Kd FcR protein. By the same procedure, only the p40 was isolated from the erythroblast cell line K562 and from the B cell lines, Daudi and Raji. Serologic cross-reactivity between the 40-Kd FcR on U937 and Daudi cells was demonstrated using a goat anti-FcR antiserum. A murine (m) monoclonal antibody, raised against the FcR of K562 cells, precipitated the 40-Kd FcR from lysates of U937 and K562 cells but not from Daudi or Raji cells. This antibody, referred to as anti-p40 (IV.3), selectively inhibited the binding of murine IgG1-coated erythrocytes to U937 cells, whereas monomeric human IgG selectively inhibited binding of human anti-Rh(D)-coated erythrocytes to U937 cells. Both Daudi and U937 cells mediated mIgG1 anti-T3 (Leu-4)-induced stimulation of T lymphocytes. In contrast, mIgG2a anti-T3 (OKT3)-induced stimulation was supported effectively by U937 cells but only modestly by Daudi cells. Intact IgG or Fab fragments of anti-p40 (IV.3) blocked mIgG1 anti-T3 (Leu-4) stimulation but not mIgG2a anti-T3 (OKT3) stimulation of T cells; monomeric human IgG blocked only OKT3-induced stimulation. The simplest interpretation of these results is that human monocytes and U937 cells bear two classes of IgG FcR, one of 72 Kd and the other, as described above, of 40 Kd. We propose that the 72-Kd FcR mediates rosette formation with red cells coated by human anti-Rh IgG as well as T cell stimulation by mIgG2a anti-T3 (OKT3) and that the 40-Kd FcR mediates rosette formation with erythrocytes bearing mIgG1 as well as T cell stimulation by mIgG1 anti-T3 (Leu-4). Furthermore, we suggest that these two FcR are the human homologues of the murine macrophage FcRI (binding mIgG2a) and FcRII (binding mIgG2b/1).  相似文献   

8.
9.
Expression of CD5 regulates responsiveness to IL-1   总被引:1,自引:0,他引:1  
The role of the CD5 surface molecule in T cell responsiveness to IL-1 was examined. A CD5-mutant Jurkat cell line was generated from a CD5+ parent cell line. This CD5- mutant subclone was infected with a defective retrovirus containing the CD5 cDNA and/or the neo gene encoding G418 resistance. The CD5+ wild type Jurkat produced IL-2 in response to anti-CD3 mAb, OKT3, cross-linked to a solid surface. IL-2 production was enhanced by co-culture with IL-1 or anti-CD5 Mab. Neither the CD5- mutant nor the CD5- G418-resistant infectant responded to anti-CD5 mAb or to IL-1. Responsiveness to IL-1 was restored by cell surface expression of CD5 in the CD5+ infectant. Both the CD5+ wild type Jurkat and the CD5+ infectant responded equivalently to purified IL-1, IL-1 alpha and rIL-1 beta. Optimal concentrations of IL-1 and anti-CD5 mAb had an additive effect on the enhancement of IL-2 production stimulated with cross-linked anti-CD3 mAb suggesting that IL-1 and CD5 act through distinct, complementary pathways to augment T cell activation. The correlation of CD5 expression and specific binding of rIL-1 beta was examined in these cell lines. Both the specific binding (at 4 degrees C) and subsequent internalization (at 37 degrees C) of 125I labeled rIL-1 beta was equivalent in the CD5+ infectant and the CD5+ wild type Jurkat cell, whereas specific binding of 125I-labeled rIL-1 beta was markedly decreased in the CD5-G418-resistant infectant. These observations strongly suggest that cell surface expression of CD5 regulates binding of and responsiveness to IL-1.  相似文献   

10.
We developed a culture system for the rapid generation of CD4+ T cells that have both helper and killer functions. CD4+ T cells isolated from human PBL did not proliferate or develop significant cytotoxicity when treated with rIL-2 because of the lack of p75 IL-2R expression. However, culture of isolated CD4+ T cells with immobilized anti-CD3 mAb plus rIL-2 resulted in a marked proliferation (500-fold increase in 14 days) of CD4+ T cells. The proliferating CD4+ T cells produced IL-2 (92 U/ml) and showed strong cytotoxicity against OKT3 hybridoma cells and Daudi, K562, and U937 tumor cells in an anti-CD3 mAb-dependent manner. The CD4+ T cells contained significant amounts of cytolytic granule-related proteins such as serine esterase and perforin. Activated CD4+ helper/killer cells can be generated from both healthy donors and tumor patients and can be propagated in vitro for 14 to 35 days by biweekly restimulation with immobilized anti-CD3 mAb plus rIL-2. This culture yielded about 20,000-fold increase in cell number after a 21-day culture. Bispecific antibody containing anti-CD3 and anti-glioma Fab components enhanced the cytotoxicity of activated CD4+ helper/killer cells against IMR32 glioma cells. Moreover, the activated CD4+ helper/killer cells showed both helper and antitumor activity in vivo and prevented growth of anti-CD3 hybridoma cells in nude mice whether or not IL-2 was administered. These results indicate that anti-CD3 mAb plus IL-2-activated CD4+ helper/killer cells may provide an effective strategy for adoptive tumor immunotherapy of cancer.  相似文献   

11.
The CD44 molecule, also known as Hermes lymphocyte homing receptor, human Pgp-1, and extracellular matrix receptor III, has been shown to play a role in T cell adhesion and activation. Specifically, anti-CD44 mAb block binding of lymphocytes to high endothelial venules, inhibit T cell-E rosetting, and augment T cell proliferation induced by the CD2 or CD3-TCR pathways. We have characterized an anti-CD44 mAb (212.3) which immunoprecipitates a 90-kDa protein and is specific for CD44 as shown by peptide mapping and antibody competition studies. Interestingly, our studies with 212.3 demonstrate that this CD44-specific mAb completely inhibits T cell proliferation stimulated by the anti-CD3 mAb, OKT3. Inhibition is not a result of reduced cell viability, but is associated with 1) inhibition of IL-2 production, 2) inhibition of IL-2R expression, and 3) inhibition of OKT3-mediated increases in intracellular Ca2+ levels. In addition, 212.3 does not inhibit proliferation by the T cell mitogens PHA or PWM nor does it inhibit proliferation in a mixed lymphocyte reaction. Similar to other anti-CD44 mAb, 212.3 also augments T cell proliferation induced by mAb directed against the T11(2) and T11(3) epitopes of CD2. Thus, these studies describe a novel CD44-specific mAb (212.3) that inhibits T cell activation by OKT3 by blocking early signal transduction. Furthermore, these studies suggest that "receptor cross-talk" between the CD3-TCR complex and CD44 may regulate T cell activation.  相似文献   

12.
A study was carried out on cord blood T cell activation via the CD2-mediated pathway. Despite similar percentages of circulating CD3+ and CD2+ cells in adult and cord blood, the proliferation of cord PBMC to the anti-CD3 mAb and cord T cells to anti-CD2 mAb were defective. The T cell CD3-surface structure was normally able to control CD2-mediated activation, as its modulation by a non-mitogenic anti-CD3 mAb blocked cord PBMC proliferation induced by anti-CD2 mAb. CD2-stimulated cord T cells did not proliferate and did not produce a significant amount of IL-2 in culture, although they expressed the IL-2R. This observation was confirmed by the optimal proliferation of CD2-induced cord T cells when rIL-2 was added. Despite the alternative T cell activation pathway is monocyte-independent in adults, the defective cord T cell activation via the CD2 molecule could also be bypassed by the addition of PMA, small amounts of either autologous or allogeneic adult and cord AC or simply rIL-1 alone. Our findings provide evidence for an intrinsic functional defect in cord CD2-mediated T cell activation, which is linked to an impaired increase of free cytoplasmic calcium, as confirmed by the effectiveness of calcium ionophore A23187 in restoring a good CD2-induced cord T cell proliferation and by measurement of cellular calcium uptake after activation via the CD2 molecule. The characteristics of cord T cells revealed by this study recall the thymocyte functional pattern and may represent functional expression of the previously described phenotypic immaturity of cord T cells.  相似文献   

13.
Human alveolar macrophage have three distinct receptors for IgG: FcRI, FcRII, and FcRIII. In order to compare the ability of these receptors to mediate target cell lysis, three different assay systems were examined. First, we studied lysis of chicken E (CE) opsonized with heteroantibodies, which are synthetic antibodies composed of Fab fragments with anti-FcR activity covalently linked to Fab fragments with anti-CE activity. We found alveolar macrophage readily lysed heteroantibody-opsonized CE via each of the three FcR classes (FcRI, 20 +/- 5%; FcRII, 27 +/- 7%; and FcRIII, 13 +/- 13%, p less than 0.05). Non-FcR-dependent lysis of anti-beta 2-microglobulin x anti-CE heteroantibody-opsonized CE was not detected. Second, lysis of hybridoma cell lines bearing anti-FcR antibodies on their cell surface was examined to assess killing of "tumor-like" target cells. Whereas peripheral blood monocytes and lymphocytes were able to lyse hybridoma cell lines bearing surface anti-FcR mAb, alveolar macrophages were not. Third, activity of alveolar macrophage FcR was examined in a conventional antibody-dependent cellular cytotoxicity assay by using O+ (R1,R2) human RBC opsonized with human anti-D and anti-CD serum as target cells. We found lysis of anti-D and anti-CD opsonized human RBC was mediated exclusively via FcRI. No activity of FcRII or FcRIII was detected in these latter assays even if performed under conditions that impair FcRI activity. Thus, all three FcR present on alveolar macrophage mediate lysis of heteroantibody-opsonized CE; in contrast, with the use of a conventional antibody-dependent cellular cytotoxicity assay, only FcRI activity was detected. We were unable to demonstrate lysis of anti-FcR-bearing hybridoma cell lines by alveolar macrophages.  相似文献   

14.
Monoclonal antibodies (mAb's) recognizing the CD3 T-cell differentiation antigen induced the generation of suppressor cells. These cells inhibited (1) proliferative responses of human peripheral blood mononuclear cells (PBMC) to PHA and allogeneic cells in mixed leukocyte culture; (2) proliferative responses of purified E-rosette-negative cells to Staphylococcus aureus Cowans I; and (3) de novo immunoglobulin synthesis and secretion in the pokeweed mitogen (PWM)-induced differentiation system. Monoclonal antibodies recognizing other T-cell differentiation antigens (anti-Leu 2a, anti-Leu 3a, and anti-Leu 5) did not induce the generation of suppressor cells, even at very high antibody concentrations. Statistically significant differences were not observed in the ability of the OKT3 and anti-Leu 4 mAb's to induce suppressor cells. Monocytes were not required for the generation of anti-CD3-induced suppressor cells. F(ab')2 fragments of the OKT3 mAb's were equally effective when compared with intact antibody molecules in inducing suppressor cells, although they did not induce proliferative responses. Proliferation was not required for the induction of suppressor cells. Irradiation (2500 rad) of PBMC before incubation with the anti-CD3 mAb did not affect the generation of suppressor cells. Furthermore, anti-CD3-induced suppressor cells were radioresistant. Addition of recombinant IL-2 to the cultures of responding cells and suppressor cells did not reverse the suppression. In vitro treatment of anti-CD3-induced suppressor cells with either the OKT4 mAb plus complement or the OKT8 mAb plus complement partially decreased the suppression of proliferative responses of PBMC to PHA or allogeneic cells in mixed lymphocytes culture. However, treatment with both OKT4 and OKT8 mAb's plus complement or the OKT11 mAb plus complement completely abolished the suppression. These results suggest that the suppressor cells are of the T11+T4+T8- and T11+T4-T8+ phenotypes. In other experiments, T4+T8- and T8+T4- cells were isolated from PBMC treated for 48 hr with anti-CD3 mAbs. Both these two populations significantly inhibited proliferative responses of autologous PBMC to PHA and de novo immunoglobulin synthesis and secretion by mixtures of purified T4 and B cells from normal donors, in the PWM-induced differentiation system. These results demonstrate that anti-CD3-induced suppressor cells are of the T4 or T8 phenotype. Treatment of purified T4+T8- and T8+T4- cells with anti-CD3 mAb's resulted in the generation of suppressor cells, suggesting that the precursors of the anti-CD3-induced suppressor cells can belong to either of these two populations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Although both IL-2 and IL-4 can promote the growth of activated T cells, IL-4 appears to selectively promote the growth of those helper/inducer and cytolytic T cells which have been activated via their CD3/TCR complex. The present study examines the participation of CD28 and certain other T cell-surface molecules in inducing T cell responsiveness to IL-4. Purified small high density T cells were cultured in the absence of accessory cells with various soluble anti-human T cell mAb with or without soluble anti-CD3 mAb and their responsiveness to IL-4 was studied. None of the soluble anti-T cell mAb alone was able to induce T cell proliferation in response to IL-4. A combination of soluble anti-CD3 with anti-CD28 mAb but not with mAb directed at the CD2, CD5, CD7, CD11a/CD18, or class I MHC molecules induced T cell proliferation in response to IL-4. Anti-CD2 and anti-CD5 mAb enhanced and anti-CD18 mAb inhibited this anti-CD3 + anti-CD28 mAb-induced T cell response to IL-4. In addition, anti-CD2 in combination with anti-CD3 and anti-CD28 mAb induced modest levels of T cell proliferation even in the absence of exogenous cytokines. IL-1, IL-6, and TNF were each unable to replace either anti-CD3 or anti-CD28 mAb in the induction of T cell responsiveness to IL-4, but both IL-1 and TNF enhanced this response. The anti-CD3 + anti-CD28 mAb-induced response to IL-4 was exhibited only by cells within the CD4+CD29+CD45R- memory T subpopulation, and not by CD8+ or CD4+CD45R+ naive T cells. When individually cross-linked with goat anti-mouse IgG antibody immobilized on plastic surface, only anti-CD3 and anti-CD28 mAb were able to induce T cell proliferation. These results indicate that the CD3 and CD28 molecules play a crucial role in inducing T cell responsiveness to IL-4 and that the CD2, CD5, and CD11a/CD18 molecules influence this process.  相似文献   

16.
We investigated the lysis of fresh human solid tumor cells by peripheral blood T lymphocytes in the presence of lectins and anti-CD3 monoclonal antibodies (mAb). Addition of certain lectins (Con A, PHA, or WGA) directly into the 4-hr 51Cr-release assay caused significant lysis of (P less than 0.001) noncultured solid tumor targets by enriched populations of granular lymphocytes (GL). Significant levels (P at least less than 0.001) of Con A- or PHA-dependent solid tumor lysis by GL-enriched lymphocytes were observed in 32 of 39 donors (82%) and 14 of 20 donors (70%), respectively. In contrast, the addition of other lectins (PNA, PWM, or LPS) or anti-CD3 mAb did not cause cytotoxicity. The levels of Con A-dependent lysis were comparable to those of interleukin 2 (IL-2)-induced lysis by Leu 11b+ natural killer (NK) cells. The presence of lectins at the effector phase, but not of recombinant IL-2 (rIL-2), was required for the lysis of solid tumor targets. Both Con A-dependent and rIL-2-induced lysis were totally inhibited by treatment of the effector cells with the lysosomotropic agent L-leucine methyl ester (LeuOMe). Effector cells responsible for Con A-dependent lysis of solid tumors expressed T3 (CD3), T8 (CD8), and Leu 7 antigens, but lacked T4 (CD4) and Leu 11 (CD16) antigens as determined by both negative and positive cell selection studies. Con A-dependent lysis was inhibited at the effector phase by anti-CD3 (OKT3 or anti-Leu 4) or anti-CD2 (OKT11) mAb. On the basis of their phenotype (Leu 7+ CD3+ CD8+ CD16-), we hypothesize that these effector cells may contain a population of cytotoxic T cells (CTL) generated in vivo against autologous modified cells that can lyse fresh solid tumor target cells under conditions where the recognition requirements for the CTL are bypassed by lectin approximation.  相似文献   

17.
Interleukin 2 up-regulates its own production   总被引:2,自引:0,他引:2  
It has been previously reported that a combination pair of anti-CD2 monoclonal antibodies (mAb) T11(2)+T11(3) induces a strong proliferation of T cells, which does not require the involvement of accessory cells and exogenous interleukin 2 (IL-2). More recently, we have shown that the requirement for optimal T cell proliferation depends on the combination pairs of anti-CD2 mAb used. Among them, anti-GT2+T11(1) mAb do not allow optimal proliferation of TA4 helper cloned T cells due, at least in part, to a low level of IL-2 production. This observation offered us the opportunity to study the effect of IL-2 on its own production. We show here that stimulation of cloned TA4 cells with anti-GT2+T11(1) mAb induces only a marginal level of IL-2 production. By contrast, significantly higher levels of IL-2 activity are detected in the culture supernatant of TA4 cells preincubated with recombinant IL-2 (rIL-2) before stimulation with anti-GT2+T11(1) mAb. This effect is dose-dependent over a wide range (5 to 50 IU/ml) of rIL-2 concentrations added during preincubation time. In addition, it is not due to carryover of rIL-2 bound during the preincubation time, or to lesser IL-2 consumption by these cells, or to increasing numbers of IL-2-producing cells induced by exogenous IL-2. Moreover, the observation was confirmed with IL-2 mRNA. Although neither rIL-2 nor anti-GT2+T11(1) mAb alone could induce a significant production of IL-2, rIL-2 appears to up-regulate its own production when the TA4 cells are activated by the anti-CD2 mAb-mediated second signal.  相似文献   

18.
Promotion of human T lymphocyte proliferation by IL-4   总被引:6,自引:0,他引:6  
The capacity of human rIL-4 to support the proliferation of mitogen-stimulated T cells directly as well as by increasing IL-2 production or enhancing IL-2 responsiveness was investigated. IL-4 augmented proliferation of T cells stimulated with PHA, Con A, immobilized mAb to the CD3 molecular complex (OKT3), or PMA. IL-4 increased the number of mitogen-stimulated cells entering the cell cycle as well as enhancing ongoing proliferation of mitogen-activated lymphoblasts. Facilitation of initial activation by IL-4 was not inhibited by mAb to the p55 component of the IL-2R, anti-Tac, and, therefore, was not dependent on endogenous IL-2 activity. However, IL-4-mediated enhancement of ongoing T cell proliferation stimulated by PHA or OKT3 was partially but not completely blocked by anti-Tac. Analysis of the supernatants from PHA-stimulated T cell cultures indicated that IL-4 increased the production of IL-2 by mitogen-activated cells. Moreover, IL-4 increased the amount of IL-2 mRNA that accumulated in mitogen-stimulated T cells. In addition, IL-4 markedly augmented IL-2R expression by PHA-stimulated T cells. Although IL-4 promoted ongoing DNA synthesis of mitogen-stimulated T cells in an IL-2-dependent manner, it was also able to sustain their proliferation directly. Thus, IL-4 supported proliferation of PMA-activated T cells in a manner that was not inhibited by anti-Tac. Furthermore, IL-4 could augment proliferation and IL-2R expression of T cells stimulated with PHA in the presence of cyclosporin A, which blocks endogenous cytokine production or anti-Tac. Finally, IL-4 was noted to enhance proliferation of both CD4+ and CD8+ T cell subsets. The results indicate that IL-4 enhances proliferation of mitogen-activated human T cells by a number of mechanisms, including the direct promotion of cell cycle entry and subsequent DNA synthesis, enhanced production of IL-2, and increased responsiveness to IL-2 in part by up-regulation of IL-2R expression.  相似文献   

19.
Human monocytes can be triggered to antibody-dependent cell-mediated cytotoxicity (ADCC) by murine antibodies. In this study, a series of H chain isotype switch variant antibodies against glycophorin A on human RBC was used to study the influence of isotype on the induction of ADCC. Furthermore, it was studied whether the functional heterogeneity in responsiveness to IgG1 and IgG2b anti-CD3 antibodies, as found among different donors in T cell proliferation induction experiments, was reflected in ADCC. Whereas IgG2a induced ADCC to the same extent in monocytes from all donors, IgG1 showed a heterogeneous pattern, which corresponded to the heterogeneity in T cell proliferation studies. IgG1 anti-CD3 nonresponder monocytes could, however, be induced to ADCC by IgG1 antiglycophorin, although they needed a much higher antibody density on the target cell than did responder monocytes. IgG2b antiglycophorin at a high density induced ADCC in monocytes from all donors irrespective of responsiveness to IgG2b anti-CD3, whereas IgE and IgA antiglycophorin were barely effective in monocytes from all donors. By specific blocking with mAb, the FcR that were involved in ADCC directed by the various isotypes were characterized. ADCC by IgG2a was predominantly mediated by FcRI and could be specifically enhanced by culturing the monocytes with rIFN-gamma. ADCC by IgG1 was predominantly mediated through FcRII in both anti-CD3 responder and nonresponder monocytes. FcRII was also involved in ADCC by IgG2b, although other receptors seemed to contribute significantly to ADCC. When FcRII or FcRI were blocked, IgG1 and IgG2a could also functionally interact with FcRI and FcRII, respectively, provided that the target cells were sensitized to a high degree. These findings indicate that FcRI and both forms of FcRII can mediate cytotoxicity and that the specificity of human FcR for murine isotypes is relative.  相似文献   

20.
Although resting B cells are poor accessory cells for signals transmitted through the TCR/CD3 complex, we report that these B cells can support T cell proliferation when T cell activating signals are delivered through CD2. This was first suggested when leucine methyl ester treatment of PBMC abolished proliferation induced by anti-CD3, but not by the accessory cell-dependent anti-CD2 mAb combination, GT2 and OKT11. Then we demonstrated that unstimulated, resting B cells could support the proliferation of both CD4+ and CD8+ T cells. Aggregated IgG inhibited proliferation, suggesting that anti-CD2 mAb bound to T cells were cross-linked by attachment to B cell FcR. Two lines of evidence suggested that lymphocyte function-associated Ag-1/intercellular adhesion molecule-1 interaction was crucial for anti-CD2-induced proliferation. First, proliferation was blocked by mAb against these adhesion molecules. Second, intercellular adhesion molecule-1 expression rapidly increased on resting B cells after the addition of anti-CD2, but not anti-CD3. This was of interest because fixed monocytes, but not fixed B cells, were able to support the proliferative response. In contrast to lymphocyte function-associated Ag-1/intercellular adhesion molecule-1, CD28/B7 interaction was not required for anti-CD2-induced proliferation, although ligation of these molecules provided important costimulatory signals for stimulation by anti-CD3. Finally, neutralizing antibodies against IL-1 alpha, IL-1 beta, and IL-6 showed only modest inhibitory effects on T cell proliferation. The addition of IL-1 and/or IL-6 to T cells failed to substitute for accessory cells and were only partially effective with fixed B cells. Further evidence of a linkage between CD2 and CD45 isoforms was obtained. Anti-CD45RA, but not anti-CD45RO, potentiated anti-CD2-induced T cell proliferation. These studies have revealed a novel role for resting B cells as accessory cells and have documented costimulatory signals that are important for this effect. Because Ag-presentation by resting B cells to T cells generally leads to T cell nonresponsiveness, it is possible that this tolerogenic signal may be converted to an activation signal if there is concurrent perturbation of CD2 on T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号