首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transforming growth factor-beta (TGF-β) is a multifunctional cytokine with multiple roles in the immune system. To date, it has been difficult to develop a comprehensive picture of the effect of TGF-β on T lymphocytes, because TGF-β not only acts directly on T lymphocytes, but also acts indirectly by regulating the function of antigen-presenting cells. In early studies, it was mostly the inhibitory function of TGF-β that was demonstrated; recently, however TGF-β was recognized as an antiapoptotic survival factor for T lymphocytes. The outcome of the TGF-β effect on T lymphocytes was shown to strongly depend on their stage of differentiation and on the cytokine milieu. TGF-β cannot be classified as a classical Th1 or Th2 cytokine. However, recently the existence of the TGF-β-producing Th3 subset was described which might play an important regulatory role during an immune response. A better understanding of the molecular mechanism of how TGF-β inhibits or stimulates T lymphocytes will help to predict the complex functions of this cytokine.  相似文献   

2.
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (< 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (< 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

3.
Dendritic cells (DCs) represent antigen-presenting cell (APC) populations in lymphoid and nonlymphoid organs which are considered to play key roles in the initiation of antigen-specific T-cell proliferation. According to current knowledge, the net outcome of T-cell immune responses seems to be significantly influenced by the activation stage of antigen-presenting DCs. Several studies have shown that transforming growth factor-beta 1 (TGF-β1) inhibits in vitro activation and maturation of DCs. TGF-β1 inhibits upregulation of critical T-cell costimulatory molecules on the surface of DCs and reduces the antigen-presenting capacity of DCs. Thus, in addition to direct inhibitory effects of TGF-β1 on effector T lymphocytes, inhibitory effects of TGF-β1 at the level of APCs may critically contribute to previously characterized immunosuppressive effects of TGF-β1. In contrast to these negative regulatory effects of TGF-β1 on function and maturation of lymphoid tissue type DCs, certain subpopulations of immature DCs in nonlymphoid tissues are positively regulated by TGF-β1 signaling. In particular, epithelial-associated DC populations seem to critically require TGF-β1 stimulation for development and function. Recent studies established that TGF-β1 stimulation is absolutely required for the development of epithelial Langerhans cells (LCs) in vitro and in vivo. Furthermore, TGF-β1 seems to enhance antigen processing and costimulatory functions of epithelial LCs.  相似文献   

4.
Inflammatory immune responses play an important role in mucosal homeostasis and gut diseases. Nuclear factor κB (NF-κB), central to the proinflammatory cascade, is activated in necrotizing enterocolitis (NEC), a devastating condition of intestinal injury with extensive inflammation in premature infants. TGF-β is a strong immune suppressor and a factor in breast milk, which has been shown to be protective against NEC. In an NEC animal model, oral administration of the isoform TGF-β1 activated the downstream effector Smad2 in intestine and significantly reduced NEC incidence. In addition, TGF-β1 suppressed NF-κB activation, maintained levels of the NF-κB inhibitor IκBα in the intestinal epithelium, and systemically decreased serum levels of IL-6 and IFN-γ. The immature human fetal intestinal epithelial cell line H4 was used as a reductionistic model of the immature enterocyte to investigate mechanism. TGF-β1 pretreatment inhibited the TNF-α-induced IκBα phosphorylation that targets the IκBα protein for degradation and inhibited NF-κB activation. Chromatin immunoprecipitation (ChIP) assays demonstrated decreased NF-κB binding to the promoters of IL-6, IL-8, and IκBα in response to TNF-α with TGF-β1 pretreatment. These TGF-β1 effects appear to be mediated through the canonical Smad pathway as silencing of the TGF-β central mediator Smad4 resulted in loss of the TGF-β1 effects. Thus, TGF-β1 is capable of eliciting anti-inflammatory effects by inhibiting NF-κB specifically in the intestinal epithelium as well as by decreasing systemic IL-6 and IFN-γ levels. Oral administration of TGF-β1 therefore can potentially be used to protect against gastrointestinal diseases.  相似文献   

5.
Defining the mechanisms whereby transforming growth factor-beta (TGF-β) controls physiologic inflammation and the immune response and how it contributes to pathology when it is dysregulated is critical to our ability to manipulate the levels and activity of this potent cytokine for therapeutic benefit. In keeping with its dichotomous nature, recent evidence suggests that overproduction and/or activation contribute to persistent inflammation and that antagonists of TGF-β delivered locally can break the cycle of leukocyte recruitment and fibrotic sequelae. On the other hand, systemic routing of TGF-β can also inhibit inflammatory pathogenesis by multiple mechanisms as exemplified by systemic injections of the protein and by recent gene transfer studies. In addition, enhanced levels of circulating endogenous TGF-β appear to be an instrument of suppression during the development of oral tolerance, cyclosporin treatment, and following administration of retinoic acid. Although treatment of autoimmune and chronic inflammatory diseases is an important goal, the multiplicity of actions of TGF-β and the nearly ubiquitous expression of TGF-β and its receptors dictate a cautious approach to the use of this powerful cytokine as a therapeutic agent.  相似文献   

6.
Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression.  相似文献   

7.
Transforming growth factor-β (TGF-β) has been implicated as having a role in inflammatory responses by inducing cellular infiltration and the release of inflammatory cytokines. In this study, the IEC-6 rat intestinal epithelial cell line was used as a model to assess the effect of TGF-β1 on the expression of various plasma membrane determinants. TGF-β1 induced a dose-dependent increase in the percentage of cells expressing surface secretory component (SC) and class I major histocompatibility (MHC) antigens. However, the expression of class II MHC was unaffected. In contrast, epidermal growth factor had no effect on any of the surface proteins studied. The TGF-β1-enhanced expression of SC was accompanied by an enhanced binding of polymeric, but not monomeric, immunoglobulin A (IgA). Preincubation of the TGF-β1-treated cells with an anti-human β-galactosyltransferase (β-GT) antiserum did not block the binding of the anti-SC antibody, indicating that the TGF-β-induced increase in SC staining was due to SC expression and not the polymeric immunoglobulin-binding enzyme, β-GT. These results indicate that TGF-β1 may be important in immune functions involving intestinal epithelial cells by enhancing the expression of surface class I MHC antigens and SC, a protein responsible for the transport of polymeric IgA into the intestinal lumen.  相似文献   

8.
The transforming growth factor-betas (TGF-βs) are synthesized as precursor proteins that are modified intracellularly prior to secretion. One of the most relevant intracellular modifications is the cleavage of the C-terminal pro-region from the N-terminal portion of the protein. The C-terminal pro-region is referred to as the latency-associated peptide (LAP) while the N-terminal region is called the mature TGF-β or active TGF-β. However, with some exceptions the LAP noncovalently associates with the mature TGF-β prior to secretion. When the mature TGF-β is associated with the LAP it is called L-TGF-β and cannot interact with its receptor and has no biological effect. The TGF-βs and their receptors are very ubiquitously expressed, suggesting that the regulation of TGF-β activity is likely to be complex and multifactorial. However, one of the most important means of controlling the biological effects of TGF-β is the regulation of converting L-TGF-β to active TGF-β. The current literature supports two major mechanisms of activation of L-TGF-β and suggests that the mechanism of activation of L-TGF-β may be varied and context-dependent. For TGF-β to become biologically active the LAP has to be either released from its associations with L-TGF-β or undergo conformational change such that the LAP is not released from the L-TGF-β complex but exposes the TGF-β receptor binding site. Since TGF-β has been associated with the pathogenesis of numerous diseases, the various mechanisms of activation of L-TGF-β in context offer the possibility of controlling TGF-β activity localized to the organ of involvement and to a more specific disease process.  相似文献   

9.
Neuro-endocrine and immune systems closely interact in fish, and their regulation is crucial for the maintenance of good health of cultured fish. We have used the seabream head kidney to study whether stress-related hormones can modulate the immune response. For this purpose, the effects of adrenaline, adrenocorticotropic hormone (ACTH) and cortisol on the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and the anti-inflammatory cytokine TGF-β1 were determined by means of quantitative real-time PCR on isolated head kidney cells. ACTH (150 ng mL−1) caused an acute increase of TNF-α and IL-6 mRNA levels as well as an inhibition of IL-1β expression. The expression of the anti-inflammatory cytokine TGF-β1 was also increased, although in a lower extent. Adrenaline (1 μM) early effects were only clear inhibiting IL-1β expression but not TNF-α, IL-6 or TGF-β1 mRNA levels, while a longer exposure to the hormone inhibited all cytokines. Moreover, cortisol (50 and 100 ng mL−1) reduced the expression of all cytokines in a dose-dependent manner. Bacterial lipopolysaccharide (LPS) stimulated IL-1β expression and inhibited that of the anti-inflammatory TGF-β1, although it was ineffective on TNF-α and IL-6. In addition, adrenaline and cortisol decreased the LPS-stimulated IL-1β expression, further demonstrating their previously reported anti-inflammatory effects. The combination of ACTH and LPS, on the other hand, did not affect LPS-stimulated IL-1β expression but was effective increasing TNF-α expression. Taking all these results in consideration, we conclude that the expression of pro- and anti-inflammatory cytokines in the seabream head kidney is highly influenced by stress-related hormones, thus indicating an important role for the endocrine system in the modulation of the immune response in teleost fish.  相似文献   

10.
11.
TGF-β is a ubiquitous protein that exhibits a broad spectrum of biological activity. The prokaryotic expression and purification of the extracellular domain of the type II TGF-β receptor (TβR-II-ED), without the need for fusion protein cleavage and refolding, is described. The recombinant TβR-II-ED fusion protein bound commercially available TGF-β1 and displayed an affinity of 11.1 nM. In a modified ELISA, receptor binding to TGF-β1 was inhibited by TGF-β3. The technique lends itself to high-throughput screening of combinatorial libraries for the identification of TGF-β agonists and antagonists and this, in turn, may have important therapeutic implications.  相似文献   

12.
13.
The relationships between transforming growth factor-β (TGF-β) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-β can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-β acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-βs make their appearance in the tumor microenvironment and the tumor cells escape from TGF-β-dependent growth arrest. In many cases, this resistance to TGF-β is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-β receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-β-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-β-sensitivity to TGF-β-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment.  相似文献   

14.
15.
We have previously shown that both transforming growth factor-β (TGF-β) and retinoic acid (HA) regulate the expression of cellular retinoic acid binding proteins (CRABP) I and II and TGF-β3 mRNAs in primary cultures of murine embryonic palate mesenchyreal (MEPM) cells. We now describe additional crosstalk between the RA and TGF-β signal transduction pathways—the ability of TGF-β, including the endogenous form(s), to modulate the expression of the nuclear retinoic acid receptor-β (RAR-β). Northern blot hybridization revealed that RA induced the expression of RAR-β mRNA, there being little or no detectable expression in untreated MEPM cells. Induction by 3.3 μM RA was abrogated by simultaneous treatment with TGF-β1 (5 ng/ml). TGF-β1 alone had no effect on RAR. mRNA expression. Determination of RAR-β mRNA half-life by treatment with actinomycin D indicated that TGF-β1 did not alter the stability of RAR-β mRNA. Conditioned medium (CM) from MEPM cells contained little active TGF-β protein; heat treatment of the CM dramatically increased the amount of active TGF-β as assessed by the mink lung epithelial cell bioassay. Furthermore, heat- or acid-activated CM also inhibited CRABP-I and RA-induced RAR-β expression. The effect of heat-activated conditioned medium could be abrogated with panspecific neutralizing antibodies to TGF-β, confirming that endogenous TGF-β is the biologically active factor in heat-activated CM. These results provide evidence for complex interactions between TGF-β and RA in the regulation of gene expression in embryonic palatal cells and suggest a role for endogenous TGF-β in the regulation of expression of genes encoding elements of the RA signal transduction pathway.  相似文献   

16.
In this study we have employed a model system comprising three groups of colon carcinoma cell lines to examine the growth-inhibitory effects of two molecular forms of transforming growth factor-β (TGF-β), TGF-β1 and TGF-β2. Aggressive, poorly differentiated colon carcinoma cells of group I did not respond to growth inhibitory effects of TGF-β1 or TGF-β2, while less aggressive, well-differentiated cells of group III displayed marked sensitivity to both TGF-β1 and TGF-β2 in monolayer culture as well as in soft agarose. One moderately well-differentiated cell line from group II which has intermediate growth characteristics failed to respond to TGF-β1 or TGF-β2, but the growth of two other cell lines in this group was inhibited. TGF-β1 and TGF-β2 were equally potent, 50% growth inhibition for responsive cell lines being observed at a concentration of 1 ng/ml (40 pM). Antiproliferative effects of TGF-β1 and TGF-β2 in responsive cell lines of groups II and III were associated with morphological alterations and enhanced, concentration-dependent secretion of carcinoembryonic antigen. Radiolabeled TGF-β1 bound to all three groups of colon carcinoma cells with high affinity (Kd between 42 and 64 pM). These data indicate for the first time a strong correlation between the degree of differentiation of colon carcinoma cell lines and sensitivity to the antiproliferative and differentiation-promoting effects of TGF-β1 and TGF-β2.  相似文献   

17.
18.
The mouse intestinal helminth Heligmosomoides polygyrus modulates host immune responses by secreting a transforming growth factor (TGF)-β mimic (TGM), to expand the population of Foxp3+ Tregs. TGM comprises five complement control protein (CCP)-like domains, designated D1-D5. Though lacking homology to TGF-β, TGM binds directly to the TGF-β receptors TβRI and TβRII and stimulates the differentiation of naïve T-cells into Tregs. However, the molecular determinants of binding are unclear. Here, we used surface plasmon resonance, isothermal calorimetry, NMR spectroscopy, and mutagenesis to investigate how TGM binds the TGF-β receptors. We demonstrate that binding is modular, with D1-D2 binding to TβRI and D3 binding to TβRII. D1-D2 and D3 were further shown to compete with TGF-β(TβRII)2 and TGF-β for binding to TβRI and TβRII, respectively. The solution structure of TGM-D3 revealed that TGM adopts a CCP-like fold but is also modified to allow the C-terminal strand to diverge, leading to an expansion of the domain and opening potential interaction surfaces. TGM-D3 also incorporates a long structurally ordered hypervariable loop, adding further potential interaction sites. Through NMR shift perturbations and binding studies of TGM-D3 and TβRII variants, TGM-D3 was shown to occupy the same site of TβRII as bound by TGF-β using both a novel interaction surface and the hypervariable loop. These results, together with the identification of other secreted CCP-like proteins with immunomodulatory activity in H. polygyrus, suggest that TGM is part of a larger family of evolutionarily plastic parasite effector molecules that mediate novel interactions with their host.  相似文献   

19.

Background

Immunosuppressant cyclosporine-A induces gingival hyperplasia, which is characterized by increased fibroblast proliferation and overproduction of extracellular matrix components and regulated by transforming growth factor-beta (TGF-β). The TGF-β and Sonic hedgehog (Shh) pathways both mediate cell proliferation. Crosstalk between these pathways in cancer has recently been proposed, but the hierarchical pattern of this crosstalk remains unclear. In normal fibroblasts, a TGF-β-stimulating Shh pattern was observed in induced fibrosis. However, Shh pathway involvement in cyclosporine-enhanced gingival proliferation and the existence of crosstalk with the TGF-β pathway remain unclear.

Methodology/Principal Findings

Cyclosporine enhanced mRNA and protein levels of TGF-β and Shh in human gingival fibroblasts (RT-PCR and western blotting). A TGF-β pathway inhibitor mitigated cyclosporine-enhanced cell proliferation and an Shh pathway inhibitor attenuated cyclosporine-enhanced proliferation in fibroblasts (MTS assay and/or RT-PCR of PCNA). Exogenous TGF-β increased Shh expression; however, exogenous Shh did not alter TGF-β expression. The TGF-β pathway inhibitor mitigated cyclosporine-upregulated Shh expression, but the Shh pathway inhibitor did not alter cyclosporine-upregulated TGF-β expression.

Conclusions/Significance

The TGF-β and Shh pathways mediate cyclosporine-enhanced gingival fibroblast proliferation. Exogenous TGF-β increased Shh expression, and inhibition of TGF-β signaling abrogated the cyclosporine-induced upregulation of Shh expression; however, TGF-β expression appeared unchanged by enhanced or inhibited Shh signaling. This is the first study demonstrating the role of Shh in cyclosporine-enhanced gingival cell proliferation; moreover, it defines a hierarchical crosstalk pattern in which TGF-β regulates Shh in gingival fibroblasts. Understanding the regulation of cyclosporine-related Shh and TGF-β signaling and crosstalk in gingival overgrowth will clarify the mechanism of cyclosporine-induced gingival enlargement and help develop targeted therapeutics for blocking these pathways, which can be applied in pre-clinical and clinical settings.  相似文献   

20.
Transforming growth factor-βs (TGF-β1–3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1–3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号