首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stand growth and developmental processes were investigated in Pinus densiflora Siebold et Zucc. stands of different ages in the central eastern region of Korea. Stands were inventoried and five trees per stand were sampled for stem analysis, age estimation, and growth analysis. More than 80% of sampled trees in a stand were established within 3–5 years, and most stands had a single cohort structure. The initial growth of pine seedlings was slow, but the height growth accelerated beyond 2–3 m height, 5–10 years after establishment. Linear growth was maintained until 10–12 m height, at which suppressed trees fell behind and might die out. The young stand was composed of pure pines, while few pine seedlings and saplings were found in the understory of older stands. The peak of diameter growth rate occurred around 5–15 years after tree establishment, implying that competition begins during that period. The pine stand development follows four stages: (1) the young stage when the growth rate increases and peaks; (2) the height competition stage when trees focus on height growth for light while maintaining a narrow DBH and height distribution; (3) the differentiation stage when suppressed trees die out, and the DBH distribution becomes wider; and (4) the mature stage when stands have a multi-canopy structure with a wide DBH and height distribution, while the understory is dominated by other tree species. The changes in growth rates and stand structure through forest development would be implemented to predict alterations of above-ground carbon sequestration rates.  相似文献   

2.
The effects of mixing tree species on tree growth and stand production have been abundantly studied, mostly looking at tree species diversity effects while controlling for stand density and structure. Regarding the shift towards managing forests as complex adaptive systems, we also need insight into the effects of structural diversity. Strict forest reserves, left for spontaneous development, offer unique opportunities for studying the effects of diversity in tree species and stand structure. We used data from repeated inventories in ten forest reserves in the Netherlands and northern Belgium to study the growth of pine and oak. We investigated whether the diversity of a tree's local neighbourhood (i.e., species and structural diversity) is important in explaining its basal area growth. For the subcanopy oak trees, we found a negative effect of the tree species richness of the local neighbours, which – in the studied forests – was closely related to the share of shade-casting tree species in the neighbourhood. The growth of the taller oak trees was positively affected by the height diversity of the neighbour trees. Pine tree growth showed no relation with neighbourhood diversity. Tree growth decreased with neighbourhood density for both species (although no significant relationship was found for the small pines). We found no overall diversity-growth relationship in the studied uneven-aged mature forests; the relationship depended on tree species identity and the aspect of diversity considered (species vs. structural diversity).  相似文献   

3.
Eleven stands of Scots pine (Pinus sylvestris L.) from the city of Ekaterinburg and its surroundings were sampled and analyzed using dendrochronological methods to detect the effects of climate, biotic and anthropogenic factors on the annual growth of trees. Tree-ring chronologies were developed for six sites within the city and for five control sites. All chronologies were highly and positively correlated before the 1940s. However, after this period, there was a significant decrease in the correlation among chronologies from urban and rural sites. Divergence lasted about 20 years. This firstly has an anthropogenic cause, mainly due to the evacuation in 1941 of more than 60 industrial factories to Sverdlovsk (now Ekaterinburg), which generated a significant increase in air pollution. Environmental pollution seems to negatively affect tree growth. In the early 1950s, trees in the region also suffered from severe droughts. The results of climate and historical data analysis suggest that the trees on urban sites were weakened by both climate and air pollution factors, which led to a massive nun moth (Lymantria monacha L.) infestation of trees. Defoliation led to a drastic reduction in tree-ring width and, in some cases, to the complete loss of annual rings. The recovery period lasted 10–15 years on average. Rural populations were much less affected by the insect outbreak. After urban populations of pine recovered in the 1960s, radial growth of urban and rural populations became synchronized again.  相似文献   

4.
For a better understanding of forest ecology, tree-ring studies can provide information on climate sensitivity, tree growth patterns and population age structure that can inform about stand dynamics such as recruitment of new individuals, and other interspecific interactions related to competition and facilitation. Little is known about the ecology of the recently identified high Andean tree species Polylepis rodolfo-vasquezii. Here, we analyzed the relationship between tree size and age of two P. rodolfo-vasquezii forest stands located in the central Peruvian Andes at 11°S in latitude, and compared their growth patterns and climate sensitivity. We measured the height and diameter of each individual tree and collected tree core samples of living trees and cross sections of dead standing trees to generate two centennial tree-ring chronology at Toldopampa (1825–2015 CE) and at Pomamanta (1824–2014 CE) sites. The dendrochronological dates were evaluated by 14C analysis using the bomb-pulse methods analyzing a total of 9 calendar years that confirm the annual periodicity of this tree species. At the Toldopampa stand most trees ranged from 70 to 80 years old, with a 190-year old individual, being an older and better preserve forest than Pomamanta, with younger trees, probably because more human disturbances due to closer village proximity. No significant relationships were found between tree age and size in the oldest stand alerting that tree diameter should not be used as a metric for estimating tree ages as a general rule. The distinct growth patterns and the size-age relationship observed at the two forests may reflect distinct histories regarding human activities such as fire and logging. Nevertheless, both the Toldopampa and the Pomamanta tree-ring width chronologies exhibited common growth patterns and shared a similar positive response to temperature of the current growing season. Overall, our study confirmed the annual radial growth periodicity in P. rodofolfo-vasquezii trees using an independent method such as 14C analyses and a strong climate sensitivity of this tree species. These findings encourage the development of an extensive P. rodolfo-vasquezii tree-ring network for ecological and paleoclimate studies in the tropical Andes in South America.  相似文献   

5.
Evergreen broadleaved forests (EBLF), the zonal forest ecosystem of the subtropical zone in east China, have been degraded from recent anthropogenic disturbance. Understanding the role of past disturbances in EBLFs would be helpful to the restoration of degraded EBLFs. We used dendroecological techniques to reconstruct the disturbance history of a secondary EBLF dominated by Schima superba and Castanopsis carlesii in Tiantong National Forest Park (29°48′N, 121°47′E), Zhejiang Province, East China. The disturbances were inferred from tree-ring growth release and long-term establishment patterns obtained from 91 overstory trees. The initial growth rates of these trees were compared to trees originating in the understory to evaluate the intensity of past disturbances. The spatial distribution patterns of disturbances were portrayed with tree mapping. The results revealed that there were five disturbances, averaging one disturbance per decade over the past half century. The first disturbance event was probably most intense given that most canopy trees established at that time and displayed high initial growth rates. The timing of the second disturbance event coincided with the documented selective logging. The last three disturbances, having lower tree growth responses and a clumped spatial distribution of gap creation, were probably the result of recurring typhoons. The first two disturbances led to tree regeneration and secondary succession, represented mainly by long-lived deciduous trees in the forest. The subsequent disturbances facilitated the stand development process, creating a complex three-dimensional structure from a pre-existing single-age cohort. This study suggests that EBLFs affected by large disturbances can recover in a few decades and the frequent gap disturbances probably facilitate its process in the early successional stages.  相似文献   

6.
Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland‐dominated forest‐steppe area and small forest patches in a grassland‐dominated area. We found increasing climate sensitivity and decreasing first‐order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland‐dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland‐dominated area, the increase was much greater than in the forest‐dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure.  相似文献   

7.
The modification of typical age-related growth by environmental changes is poorly understood, In part because there is a lack of consensus at individual tree level regarding age-dependent growth responses to climate warming as stands develop. To increase our current understanding about how multiple drivers of environmental change can modify growth responses as trees age we used tree ring data of a mountain subtropical pine species along an altitudinal gradient covering more than 2,200 m of altitude. We applied mixed-linear models to determine how absolute and relative age-dependent growth varies depending on stand development; and to quantify the relative importance of tree age and climate on individual tree growth responses. Tree age was the most important factor for tree growth in models parameterised using data from all forest developmental stages. Contrastingly, the relationship found between tree age and growth became non-significant in models parameterised using data corresponding to mature stages. These results suggest that although absolute tree growth can continuously increase along tree size when trees reach maturity age had no effect on growth. Tree growth was strongly reduced under increased annual temperature, leading to more constant age-related growth responses. Furthermore, young trees were the most sensitive to reductions in relative growth rates, but absolute growth was strongly reduced under increased temperature in old trees. Our results help to reconcile previous contrasting findings of age-related growth responses at the individual tree level, suggesting that the sign and magnitude of age-related growth responses vary with stand development. The different responses found to climate for absolute and relative growth rates suggest that young trees are particularly vulnerable under warming climate, but reduced absolute growth in old trees could alter the species’ potential as a carbon sink in the future.  相似文献   

8.
The mortality of Scots pine trees in and around Helsinki has been reported in recent years, but the causalities of these deaths have not so far been rigorously examined. Tree-ring analyses have previously shown to effectively reveal historical growth variability and thus hint at the stress factors behind tree mortality. Here, we analyzed the tree rings of pines in two tree classes (living and dead) from an urban park in Helsinki to reveal their growth variations and to examine the obtained chronologies along with climatic data. Guided by tree-ring information, the pine growth over the past century could be divided into four episodes: average growth conditions during the first half of the twentieth century, a suppressed growth period during the 1950s and 1960s, a growth release since the mid-1970s, and a period of recent mortality. The two tree classes became particularly differentiated during the release period in that the growth of surviving pines underwent a more positive and abrupt growth anomaly in comparison to dead pines. The survival of pines could also be linked to their sensitivity to droughts in a long-term context: The growth of still-living pines showed a statistically significant moisture sensitivity over the second half of the century only. The period 2002–2003 (coinciding with drought) was observed as a dendrochronologically dated episode with a 40% mortality. Overall, the results point to the importance of tree competitive strength and climate as predisposing and inciting/contributing factors behind the tree mortality.  相似文献   

9.
Our study analyzes the growth response (release or suppression) of Norway spruce trees growing along a landslide zone in eastern Czech Republic. A total of one hundred and eighty-six increment cores were extracted from Norway spruce (Picea abies (L.) Karst.) individuals, which were affected by two different disturbances, the Girová landslide in May 2010 and an anthropogenic cut-off in the neighborhood of the landslide later the same year. Growth changes were analysed in three zones that were defined according to the type of effect the disturbance had on the surrounding vegetation. The aims of our study are to (i) detect growth changes in trees that survived the disturbances in 2010, (ii) evaluate the delay time of the growth reaction to the disturbances, (iii) compare how growth changes differed in response to the two different disturbance types (natural landslide vs. anthropogenic harvesting and deforestation), and (iv) investigate spatio-temporal differences in the growth changes. Our results indicate that tree growth changed in response to the altered environmental conditions following the 2010 disturbances. The changes vary depending on the intensity of the disturbance and its effect on the forest stand. Trees in Zone 1 responded with a slight growth release (14.6 % of responding trees), which was strongest after 2013. However, growth suppression (85.4 %) was the dominant reaction in Zone 1; with the majority of trees showing growth suppression in 2014, four years after the events. The strongest and most abrupt growth release (66.1 %) occurred in Zone 2 in 2011, after a one-year delay. Since 2010, we have observed a trend of growth suppression (33.9 %) in this zone. In Zone 3, following a one-year delay, growth release has occurred gradually in about a third of the trees (37.0 %). The majority of trees in this zone have responded with growth suppression (63.0 %) in 2010 and with a three-year delay after 2013. We also found differences in how tree growth responds to anthropogenic and landslide disturbances, as well as spatio-temporal differences related to the extent of post-disturbance changes.  相似文献   

10.
Stand Structural Dynamics of North American Boreal Forests   总被引:1,自引:0,他引:1  
Stand structure, the arrangement and interrelationships of live and dead trees, has been linked to forest regeneration, nutrient cycling, wildlife habitat, and climate regulation. The objective of this review was to synthesize literature on stand structural dynamics of North American boreal forests, addressing both live tree and coarse woody debris (CWD) characteristics under different disturbance mechanisms (fire, clearcut, wind, and spruce budworm), while identifying regional differences based on climate and surficial deposit variability. In fire origin stands, both live tree and CWD attributes are influenced initially largely by the characteristics of the stand replacing fire and later increasingly by autogenic processes. Differences in stand structure have also been observed between various stand cover types. Blowdown and insect outbreaks are two significant non-stand replacing disturbances that can alter forest stand structure through removing canopy trees, freeing up available growing space, and creating microsites for new trees to establish. Climate and surficial deposits are highly variable in the boreal forest due to its extensive geographic range, influencing stand and landscape structure by affecting tree colonization, stand composition, successional trajectories, CWD dynamics, and disturbance regimes including regional fire cycles. Further, predicted climate change scenarios are likely to cause regional-specific alterations in stand and landscape structure, with the implications on ecosystem components including wildlife, biodiversity, and carbon balance still unclear. Some stand structural attributes are found to be similar between clearcut and fire origin stands, but others appear to be quite different. Future research shall focus on examining structural variability under both disturbance regimes and management alternatives emulating both stand replacing and non-stand replacing natural disturbances.

  相似文献   


11.
Drought-related tree mortality has become a widespread phenomenon. Scots pine (Pinus sylvestris L.) is a boreal species with high ecological amplitude that reaches its southwestern limit in the Iberian Peninsula. Thus, Iberian Scots pine populations are particularly good models to study the effects of the increase in aridity predicted by climate change models. A total of 78 living and 39 dead Scots pines trees were sampled at two sites located in the NE of the Iberian Peninsula, where recent mortality events have been recorded. Annual tree rings were used to (1) date dead trees; (2) investigate if there was an association between the occurrence of tree death and severe drought periods characterized by exceptionally low ratios of summer precipitation to potential evapotranspiration (P/PET); and (3) to compare the growth patterns of trees that died with those of surviving ones. Mixed models were used to describe the relationships between tree growth (in terms of basal area increment, BAI, and the percentage of latewood, LW%) and climate variables. Our results showed a direct association between Scots pine mortality and severe drought periods characterized by low summer water availability. At the two sites, the growth patterns of dead trees were clearly distinguishable from those of the trees that survived. In particular, the BAI of dead trees was more sensitive to climate dryness (low P/PETsummer, high temperatures) and started to decline below the values of surviving neighbors 15–40 years before the time of death, implying a slow process of growth decline preceding mortality.  相似文献   

12.
In a world of accelerating changes in environmental conditions driving tree growth, tradeoffs between tree growth rate and longevity could curtail the abundance of large old trees (LOTs), with potentially dire consequences for biodiversity and carbon storage. However, the influence of tree-level tradeoffs on forest structure at landscape scales will also depend on disturbances, which shape tree size and age distribution, and on whether LOTs can benefit from improved growing conditions due to climate warming. We analyzed temporal and spatial variation in radial growth patterns from ~5000 Norway spruce (Picea abies [L.] H. Karst) live and dead trees from the Western Carpathian primary spruce forest stands. We applied mixed-linear modeling to quantify the importance of LOT growth histories and stand dynamics (i.e., competition and disturbance factors) on lifespan. Finally, we assessed regional synchronization in radial growth variability over the 20th century, and modeled the effects of stand dynamics and climate on LOTs recent growth trends. Tree age varied considerably among forest stands, implying an important role of disturbance as an age constraint. Slow juvenile growth and longer period of suppressed growth prolonged tree lifespan, while increasing disturbance severity and shorter time since last disturbance decreased it. The highest age was not achieved only by trees with continuous slow growth, but those with slow juvenile growth followed by subsequent growth releases. Growth trend analysis demonstrated an increase in absolute growth rates in response to climate warming, with late summer temperatures driving the recent growth trend. Contrary to our expectation that LOTs would eventually exhibit declining growth rates, the oldest LOTs (>400 years) continuously increase growth throughout their lives, indicating a high phenotypic plasticity of LOTs for increasing biomass, and a strong carbon sink role of primary spruce forests under rising temperatures, intensifying droughts, and increasing bark beetle outbreaks.  相似文献   

13.
Ectomycorrhizas (EM) are among the most active components of forest soil biomass because they represent the dominant soil carbon efflux from forests. However, temporal patterns of EM biomass in relation to climatic factors and host tree growth remain unclear. We sampled EM and fine roots of pine each month for 6 years (May 2003 to June 2009) in a 40–50-year-old Pinus densiflora forest in Japan. Tree ring width of host pines in the plot was measured to assess the chronological sequence of annual tree growth. EM biomass was not stable during the 6 years of monitoring and seasonal patterns were indistinct. Multiple correlation analyses revealed that the autumn precipitation in the previous year was the most determinative factor of EM biomass in the current year, with a negative correlation. In contrast, tree ring width generally showed a stable annual growth pattern throughout the monitoring period. Clarification of such a carbon allocation pattern is important in understanding forest carbon dynamics under a temperate monsoon climate.  相似文献   

14.
Macaronesian laurel forests are the only remnants of a subtropical palaeoecosystem dominant during the Tertiary in Europe and northern Africa. These biodiverse ecosystems are restricted to cloudy and temperate insular environments in the North Atlantic Ocean. Due to their reduced distribution area, these forests are particularly vulnerable to anthropogenic disturbances and changes in climatic conditions. The assessment of laurel forest trees’ response to climate variation by dendrochronological methods is limited because it was assumed that the lack of marked seasonality would prevent the formation of distinct annual tree rings. The aims of this study were to identify the presence of annual growth rings and to assess the dendrochronological potential of the most representative tree species from laurel forests in Tenerife, Canary Islands. We sampled increment cores from 498 trees of 12 species in two well-preserved forests in Tenerife Island. We evaluated tree-ring boundary distinctness, dating potential, and sensitivity of tree-ring growth to climate and, particularly, to drought occurrence. Eight species showed clear tree-ring boundaries, but synchronic annual tree rings and robust tree-ring chronologies were only obtained for Laurus novocanariensis, Ilex perado subsp. platyphylla, Persea indica and Picconia excelsa, a third of the studied species. Tree-ring width depended on water balance and drought occurrence, showing sharp reductions in growth in the face of decreased water availability, a response that was consistent among species and sites. Inter-annual tree-ring width variation was directly dependent on rainfall input in the humid period, from previous October to current April. The four negative pointer years 1995, 1999, 2008 and 2012 corresponded to severe drought events in the study area. This study gives the first assessment of dendrochronological potential and tree-ring climate sensitivity of tree species from the Tenerife laurel forest, which opens new research avenues for dendroecological studies in Macaronesian laurel forests.  相似文献   

15.
Nitrogen (N) availability relative to plant demand has been declining in recent years in terrestrial ecosystems throughout the world, a phenomenon known as N oligotrophication. The temperate forests of the northeastern U.S. have experienced a particularly steep decline in bioavailable N, which is expected to be exacerbated by climate change. This region has also experienced rapid urban expansion in recent decades that leads to forest fragmentation, and it is unknown whether and how these changes affect N availability and uptake by forest trees. Many studies have examined the impact of either urbanization or forest fragmentation on nitrogen (N) cycling, but none to our knowledge have focused on the combined effects of these co-occurring environmental changes. We examined the effects of urbanization and fragmentation on oak-dominated (Quercus spp.) forests along an urban to rural gradient from Boston to central Massachusetts (MA). At eight study sites along the urbanization gradient, plant and soil measurements were made along a 90 m transect from a developed edge to an intact forest interior. Rates of net ammonification, net mineralization, and foliar N concentrations were significantly higher in urban than rural sites, while net nitrification and foliar C:N were not different between urban and rural forests. At urban sites, foliar N and net ammonification and mineralization were higher at forest interiors compared to edges, while net nitrification and foliar C:N were higher at rural forest edges than interiors. These results indicate that urban forests in the northeastern U.S. have greater soil N availability and N uptake by trees compared to rural forests, counteracting the trend for widespread N oligotrophication in temperate forests around the globe. Such increases in available N are diminished at forest edges, however, demonstrating that forest fragmentation has the opposite effect of urbanization on coupled N availability and demand by trees.  相似文献   

16.
林火影响着林木的更新、生长发育以及林分演替, 是森林生态系统的重要干扰因子。为了评估林火对不同龄级树木生长的影响, 该文研究了西藏林芝市朗县2005年林火前后高山松(Pinus densata)的树轮变异特点。在林分内, 选择62株过火林木, 进行树芯样品采集, 且依据胸径将样树分为幼树(胸径< 10 cm)和成年树(胸径≥10 cm)。树木年轮学交叉定年结果显示样本最大年龄为102年, 最小年龄为19年, 平均年龄为48年。研究结果表明: 过火前幼树径向生长与上一年11月平均最低气温显著负相关, 成年树径向生长与当年9月平均最低气温和平均气温显著正相关; 过火后幼树和成年树的径向生长均与当年1月平均气温和平均最高气温显著负相关。成年树对火干扰的抵抗力(过火年-过火前树轮宽度降低的百分比)和恢复力(过火后-过火前树轮宽度恢复的百分比)都显著高于幼树。过火后不同龄级的树木生长都加快。在地表火干扰中, 成年树比幼树更能抵抗火干扰的影响。研究结果可为全球变化背景下森林恢复及林火应用提供科学依据。  相似文献   

17.
Several temperate tree species are expected to migrate northward and colonize boreal forests in response to climate change. Tree migrations could lead to transitions in forest types, but these could be influenced by several non‐climatic factors, such as disturbances and soil conditions. We analysed over 10,000 forest inventory plots, sampled from 1970 to 2018 in meridional Québec, Canada, to identify what environmental conditions promote or prevent regional‐scale forest transitions. We used a continuous‐time multi‐state Markov model to quantify the probabilities of transitions between forest states (temperate, boreal, mixed, pioneer) as a function of climate (mean temperature and climate moisture index during the growing season), soil conditions (pH and drainage) and disturbances (severity levels of natural disturbances and logging). We further investigate how different disturbance types and severities impact forests' short‐term transient dynamics and long‐term equilibrium using properties of Markov transition matrices. The most common transitions observed during the study period were from mixed to temperate states, as well as from pioneer to boreal forests. In our study, transitions were mainly driven by natural and anthropogenic disturbances and secondarily by climate, whereas soil characteristics exerted relatively minor constraints. While major disturbances only promoted transitions to the pioneer state, moderate disturbances increased the probability of transition from mixed to temperate states. Long‐term projections of our model under the current environmental conditions indicate that moderate disturbances would promote a northward shift of the temperate forest. Moreover, disturbances reduced turnover and convergence time for all transitions, thereby accelerating forest dynamics. Contrary to our expectation, mixed to temperate transitions were not driven by temperate tree recruitment but by mortality and growth. Overall, our results suggest that moderate disturbances could catalyse rapid forest transitions and accelerate broad‐scale biome shifts.  相似文献   

18.
Dendroecological techniques were used to investigate the stand dynamics and the disturbance history of the subalpine fir forest in the Qinling Mountains of Shaanxi Province, China. The results indicated that 68% of the fir trees experienced 1–2 release events for a total of 10–29 (an average of 15.8) years, and 1–2 suppression events for a total of 10–27 (an average of 13.4) years before they reached canopy. Large number of Abies fargesii and Betula albo-sinensis recruitment coincided temporally with larger increases in the ring-width index from the 1830s to 1880s, suggesting occurrence of a major stand-wide disturbance during this time period. Few seedlings and saplings were found in the forest, and there was a dramatic decline in recruitment after 1890, probably because of the intensive cover of understory umbrella bamboo (Fargesia spathacea). Radial growth analyses indicated frequent canopy opening resulting from small-scale disturbances in the forest. Thus, the subalpine fir forest experienced frequent small-scale disturbances and infrequent large-scale disturbances in its developmental history, and these disturbances coupled with the understory umbrella bamboo might have influenced tree growth and species recruitment.  相似文献   

19.
1. Three permanent plots (100×0 m) were established in the subalpine Norway spruce (Picea abies (L.) Karst.) forest of Paneveggio in the spring of 1993, to begin a long-term forest ecosystem research project. The main purpose of these plots was to provide information about subalpine Norway spruce stand dynamics and to provide suggestions for close-to-nature silviculture. 2. The three stands were selected to represent the most common forest structures in the Paneveggio forest. The first stand is close to forestry roads, has a relatively regular and continuous canopy, and thinning and cutting operations only ended in the 1980s; the second stand is far from forest roads and has developed without anthropogenic influence for several decades; the third one is located at the present upper limit of the pure spruce forest and, apparently, was heavily used in the past as a pasture. 3. The first step in the investigation was to describe the structure and to study the history of the three stands using both written evidence from manage- ment plans and biological archives from tree rings. 4. The stands in plots 1 and 2 began to establish after a disturbance that removed part of the previous stands according to dendroecological studies, which are partially supported by written evidence. The remaining parts of these stands were eliminated by two major disturbances that occurred during the following decades. Written records about the use of the forest lead us to assume that the initial disturbances that occurred in the two stands were logging activities as a part of a group shelterwood system. The stand in plot 2 has developed without significant human interference for about half a century as confirmed by the presence of many dead trees. The stand in plot 3 consists of old trees that were part of an open stand and a secondary population that established after cessation of grazing. 5. The study has confirmed that dendroecological techniques can be used to identify occurrence and intensity of previous disturbance in forests stands, although at Paneveggio it is difficult to distinguish between natural and anthropogenic disturbances in the tree ring record. The presence of human activity necessitates investigation of multiple lines of evidence. 6. Paneveggio's forest management plans were useful in the interpretation of the data obtained through dendroecological analysis, although events did not always correspond because data from the management plans (yearly thinning, felling, wind-throw damage) never gave stand-level details, but applied to areas of several hectares. Despite these limitations, the information included in the management plans is of crucial importance in studying stand history and only by using all these sources of information is it possible to delineate the most important features of the history and disturbance that affected the origin and subsequent growth of the forest stands.  相似文献   

20.
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号