首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
红松阔叶混交林不同大小林隙小气候特征   总被引:7,自引:0,他引:7  
段文标  王晶  李岩 《应用生态学报》2008,19(12):2561-2566
利用HOBO自动气象站对小兴安岭红松阔叶混交林不同大小林隙、郁闭林分和空旷地的小气候因子进行了为期一个生长季的测定.结果表明:红松阔叶混交林林隙与对照样地的光照、地面温度和气温的日变化及其在生长季的变化趋势均呈单峰型曲线.林隙和对照样地空气相对湿度的日变化均为早晨和傍晚较高,正午较低,呈高-低-高的变化趋势;生长季内呈单峰型曲线,其中郁闭林分相对湿度最大,其次为小、中、大3个林隙,空旷地最小.林隙和对照样地降水量及降雨次数随林冠层郁闭程度的增加呈递减趋势,大林隙降雨量约为小林隙的1.4倍.在生长季内,空旷地、大、中和小林隙以及郁闭林分最大风速分别为3.34、2.97、2.87、2.41和1.84 m·s-1.  相似文献   

2.
红松阔叶混交林林隙光量子通量密度的时空分布格局   总被引:3,自引:1,他引:2  
Li M  Duan WB  Chen LX 《应用生态学报》2011,22(4):880-884
以小兴安岭原始红松阔叶混交林林隙为对象,采用网格法布点,对生长季林隙内各样点光量子通量密度(photosynthetic photon flux density,PPFD)进行连续观测,利用基本统计学和地统计学方法分析其时空分布格局.结果表明:红松阔叶混交林林隙的PPFD高值区日变化明显,最大值出现在12:00,位于林隙北侧.林隙的PPFD 6月最高,7、8、9月依次递减,其中7月PPFD不同位置间的变异系数最大;各月均为中等变异.不同月份林隙PPFD空间异质性的强度和尺度不同,6月变程最大,7月基台值和结构比最大;各月林隙PPFD斑块复杂程度不同,最大值均位于林隙东北侧.郁闭林分和空旷地的月平均PPFD变化次序与林隙一致.各样点月平均PPFD为空旷地最高,林隙次之,郁闭林分最低.  相似文献   

3.
在天然红松混交林3种不同林型(椴树红松混交林(TP)、云冷杉红松混交林(PAP)、枫桦红松混交林(BP))内,各选取小、中、大3个林隙,并分别以各自的郁闭林分作为对照,分析了2012年6—9月各林型不同大小林隙及其郁闭林分0~10 cm的土壤有机碳(SOC)和全氮(TN)含量,旨在阐明林隙大小对不同类型天然红松混交林土壤有机碳和全氮变化的影响,从而为小兴安岭林区天然红松混交林林隙更新和森林可持续经营提供基础数据。结果表明:在3种天然红松混交林内,林隙大小对SOC含量影响不显著;仅在PAP内,林隙大小对TN含量影响显著,在其他林型内均不显著;SOC、TN含量在3种林型内均呈现随月份不同差异显著的趋势(P0.05),而且相同月份不同林型之间的SOC和TN含量均差异显著(P0.05);PAP和BP林隙内SOC含量表现为大林隙小林隙中林隙,TN含量为大林隙中林隙小林隙,TP林隙内SOC、TN含量随林隙大小变化均为中林隙小林隙大林隙;SOC含量在3种林型内均表现为林隙内郁闭林分,TN含量在TP和BP内均为林隙内郁闭林分,PAP内却相反;SOC含量在不同林型林隙内的大小次序均为PAPTPBP,TN含量却为TPPAPBP;SOC、TN含量随月份变化大部分呈现单峰型曲线,在7或8月达到峰值,PAP林隙内TN含量在9月达到峰值;土壤碳氮比(C/N)在3个林型内不同大小林隙及郁闭林分之间均没有显著差异(P0.05)。  相似文献   

4.
以小兴安岭地区红松混交林(椴树红松混交林、云冷杉红松混交林和枫桦红松混交林)大、中、小3个林隙为研究对象,对林隙和郁闭林分土壤铵态氮(NH4+-N)、硝态氮(NO3--N)、可溶性全氮(TSN)、可溶性有机氮(SON)、微生物氮(MBN)和全氮(TN)含量进行分析,探讨不同混交林林隙中土壤氮形态特征。结果表明:林隙和郁闭林分土壤以有机氮为主,占TN 98%以上。林隙中土壤NO3--N含量高于NH4+-N含量;SON含量高于NH4+-N和NO3--N含量。红松混交林中土壤NH4+-N、NO3--N、SON和MBN含量在大、小林隙之间以及林隙与郁闭林分之间差异显著,尤其是MBN含量表现为郁闭林分小林隙中林隙大林隙,与林隙面积呈极显著负相关;3个林型中NO3--N/TN和MBN/TN随着林隙面积增大而减小;椴树红松混交林和云冷杉红松混交林林隙中NH4+-N/TN、TSN/TN和SON/TN随林隙面积增大而减小,枫桦红松混交林林隙中随林隙面积增大而增大。林隙和郁闭林分中土壤TSN与SON均呈现极显著正相关;林隙土壤NH4+-N与NO3--N和MBN呈显著相关,但在郁闭林中未表现出此关系。  相似文献   

5.
阔叶红松混交林林隙大小和掘根微立地对小气候的影响   总被引:2,自引:0,他引:2  
在小兴安岭阔叶红松混交林2.55 hm2样地内,选取由掘根倒木形成且具有坑和丘微立地的3个代表性林隙,并以空旷地和郁闭林分为对照,利用多通道HOBO自动气象站于2011年7-9月测定了不同大小林隙中心和丘顶部的光合有效辐射(PAR)、气温、相对湿度以及林隙中心的总辐射和降水量,比较了不同月份不同大小林隙中心和丘顶部微气候因子的差异,分析了不同大小林隙中心微气候因子的月变化以及不同大小林隙在典型天气条件下林隙中心和丘顶部微气候因子的日变化.结果表明:3个不同大小林隙的月均PAR和月均气温排序是大林隙>中林隙>小林隙,月均相对湿度排序是小林隙>中林隙>大林隙;同一林隙中,丘顶部月均PAR和月均气温大于林隙中心,月均相对湿度为林隙中心>丘顶部;不同大小林隙和对照月均总辐射与月均气温均为7月>8月>9月,空旷地>大林隙>中林隙>小林隙>郁闭林分,月均相对湿度为郁闭林分>小林隙>中林隙>大林隙>空旷地.郁闭林分与各林隙以及与空旷地之间的月均相对湿度差异均显著;7-9月总降水量按照空旷地、大林隙、中林隙、小林隙、郁闭林分的次序依次递减;无论晴天与阴天,丘顶部日均PAR和日均气温都大于林隙中心,日均相对湿度则相反;无论丘顶部还是林隙中心,晴天日均PAR和日均气温都大于阴天,日均相对湿度则为阴天>晴天.  相似文献   

6.
2012年5月,在小兴安岭凉水国家级自然保护区阔叶红松混交林2.55 hm2的固定样地内,调查了由掘根风倒形成的38对丘坑复合体所处的7个小林隙、5个中林隙和3个大林隙以及7个郁闭林分的基本状况.于2012年6—9月,每月选定6个典型晴天,测定处于大林隙、中林隙和小林隙以及郁闭林分内每个丘坑复合体不同微立地(坑底、坑壁、丘顶、丘面及完整立地)的土壤温度、土壤含水量和空气相对湿度.结果表明: 6—9月,丘顶的土壤温度平均值最大,坑底最小;坑底土壤含水量和空气相对湿度的平均值最大,丘顶最小.上述指标在大多数微立地之间差异显著.6—9月,位于不同大小林隙和郁闭林分的丘坑复合体土壤温度总平均值依次为:大林隙>中林隙>小林隙>郁闭林分;各月份土壤水分大小次序并不一致;6月、8月和9月丘坑复合体各个微立地月均空气相对湿度大小顺序均为郁闭林分>小林隙>中林隙>大林隙,7月的排列次序有所不同.上述指标在不同大小林隙及郁闭林分内丘坑复合体大多数微立地之间差异显著.不同大小林隙和郁闭林分内丘坑复合体各微立地月均土壤温度和空气相对湿度均为7月最大,9月最小;除完整立地6月月均土壤含水量最大以外,其余微立地均为7月最大,9月最小.丘坑复合体微气候的变化主要受林隙大小、微立地和时间等的影响.  相似文献   

7.
阔叶红松混交林林隙大小和掘根微立地对小气候的影响   总被引:1,自引:0,他引:1  
在小兴安岭阔叶红松混交林2.55 hm2样地内,选取由掘根倒木形成且具有坑和丘微立地的3个代表性林隙,并以空旷地和郁闭林分为对照,利用多通道HOBO自动气象站于2011年7-9月测定了不同大小林隙中心和丘顶部的光合有效辐射(PAR)、气温、相对湿度以及林隙中心的总辐射和降水量,比较了不同月份不同大小林隙中心和丘顶部微气候因子的差异,分析了不同大小林隙中心微气候因子的月变化以及不同大小林隙在典型天气条件下林隙中心和丘顶部微气候因子的日变化.结果表明: 3个不同大小林隙的月均PAR和月均气温排序是大林隙>中林隙>小林隙,月均相对湿度排序是小林隙>中林隙>大林隙;同一林隙中,丘顶部月均PAR和月均气温大于林隙中心,月均相对湿度为林隙中心>丘顶部;不同大小林隙和对照月均总辐射与月均气温均为7月>8月>9月,空旷地>大林隙>中林隙>小林隙>郁闭林分,月均相对湿度为郁闭林分>小林隙>中林隙>大林隙>空旷地.郁闭林分与各林隙以及与空旷地之间的月均相对湿度差异均显著;7-9月总降水量按照空旷地、大林隙、中林隙、小林隙、郁闭林分的次序依次递减;无论晴天与阴天,丘顶部日均PAR和日均气温都大于林隙中心,日均相对湿度则相反;无论丘顶部还是林隙中心,晴天日均PAR和日均气温都大于阴天,日均相对湿度则为阴天>晴天.  相似文献   

8.
阔叶红松混交林林隙大小和林隙内位置对小气候的影响   总被引:6,自引:0,他引:6  
在阔叶红松混交林的大、中、小林隙的中心和通过林隙中心的南、北、东、西冠空隙边缘共5个观测点安装HOBO自动气象站,测定2010年6-9月的气温、相对湿度、光量子通量密度(PPFD)以及林隙中心的总辐射和降水量,并在郁闭林分和空旷地设对照,分析了不同大小林隙之间以及林隙中心与林隙边缘之间小气候的差异及其随时间的动态变化,比较了晴天和阴天对林隙小气候因子日变化的影响.结果表明:PPFD依照大林隙、中林隙和小林隙的次序依次降低;对于同一林隙,林隙中心的PPFD大于边缘处;林隙中心的月均气温和月均总辐射均为7月>6月>8月>9月,并按照空旷地、大林隙、中林隙、小林隙和郁闭林分的次序依次递减;月均相对湿度为8月>7月>9月>6月,并按照郁闭林分、小林隙、中林隙、大林隙和空旷地的次序依次递减;不同大小林隙和空旷地观测期间降水总量和各月降水量基本上按照空旷地、大林隙、中林隙和小林隙的次序依次减少.晴天,大林隙PPFD、气温和相对湿度的变化幅度大于小林隙,阴天则相反.  相似文献   

9.
采用野外调查、样品采集和统计分析等相结合的方法,对小兴安岭天然红松混交林3种不同林型(椴树红松混交林(TP)、枫桦红松混交林(BP)、云冷杉红松混交林(PAP))的林隙及其邻近郁闭林分的土壤特征因子和树木更新的相关性进行了研究,旨在阐明林隙土壤特征因子对树木更新的影响,从而为小兴安岭天然红松混交林植被更新、退化生态系统的恢复和可持续经营提供基础数据和实践参考。结果表明:郁闭林分土壤有机质、全氮质量分数显著高于3种不同林型的林隙。有效磷和速效钾含量在BP内与其他林型之间差异显著。3种林型林隙内p H值均略高于其郁闭林分,但与其差异均不显著。3种林型林隙内更新总密度、幼树更新密度与郁闭林分差异显著(P0.05),PAP林隙中更新总密度和幼树更新密度最高。BP林隙面积与更新密度相关不显著,乔木幼苗、幼树更新密度与有机质(r=-0.400,r=-0.475)、全氮均呈显著负相关(r=-0.519,r=-0.603)。TP林隙内全氮与乔木幼苗更新密度呈正相关(r=0.092),而与乔木幼树更新密度呈显著负相关(r=-0.585)。PAP林隙内全氮与乔木幼苗、幼树更新密度均呈负相关。郁闭林分幼苗更新密度分别与有机质、全氮、速效钾、p H值、脲酶和蛋白酶呈负相关。主成分分析表明,全氮是影响林隙和郁闭林分树木更新的关键因素。  相似文献   

10.
红松阔叶混交林林隙大小对土壤水分空间异质性的影响   总被引:4,自引:0,他引:4  
2011年8-10月采用嵌套的网格化方法布点,利用土壤时域反射仪连续测定了小兴安岭阔叶红松混交林不同大小林隙内不同深度的土壤水分,并根据地统计学原理与方法分析其空间异质性.结果表明:研究区中林隙的土壤含水量最丰富,其次是大林隙和小林隙;大林隙空间样点的土壤水分极差最大,其次是中林隙和小林隙;大、中、小林隙各深度土壤含水量的块金值分别为0.001~0.404、0.001 ~0.273、0.001 ~0.261.随机部分引起的土壤水分异质性和系统总的空间异质性程度依次为大林隙>中林隙>小林隙.中林隙土壤水分的空间分布格局最复杂,大林隙土壤水分格局变异的空间依赖性最强;中林隙高等级土壤水分斑块(土壤含水量为50%~60%)占据的面积最大,其次是大林隙,小林隙没有最高等级斑块的分布.对于相同月份、相同深度的土壤含水量,小林隙等级分布最简单,大林隙和中林隙则相对复杂;土壤含水量最大值随着林隙的增大而增大.  相似文献   

11.
小兴安岭红松阔叶混交林林隙土壤温度的时空分布格局   总被引:3,自引:0,他引:3  
段文标  李岩  王小梅 《应用生态学报》2009,20(10):2357-2364
采用网格法和十字样线法布设样点,在各样点安置地面温度表和曲管地温表,于2006年5—9月,测定了小兴安岭红松阔叶混交林林隙地表温度、地表最低和最高温度以及浅层(5、10、15和20 cm)土壤温度,分析了该区林隙土壤温度的时空分布格局.结果表明:研究区林隙地表温度的高值区均未出现在林隙中心,其出现位置具有明显的日变化规律,出现次序依次为林隙的西北侧、北侧和东侧;在地表温度的高值区域内,最高温度由高到低的时间排序为14:00、12:00、10:00和16:00,其他时间林隙地表温度的分布较均匀;不同月份研究区林隙地表温度空间分布的复杂程度及斑块等级有所不同;各月林隙地表温度的高值区均位于林隙西北侧和东侧,呈不对称分布;树木生长季初期(5月)和末期(9月),研究区林隙地表温度平均日较差较大,而树木生长旺季(6—8月)却相对较小;东西方向上各观测点5、10、15和20 cm土壤温度呈双峰型日变化规律,南北方向上呈不明显的单峰型日变化趋势;各月在东西方向上的土壤温度呈双峰型变化趋势,南北方向上除5月呈随机变化以外,其余月份均呈单峰型变化趋势.  相似文献   

12.
李猛  段文标  陈立新 《应用生态学报》2009,20(12):2853-2860
以小兴安岭原始红松阔叶混交林林隙为研究对象,通过对林隙内光量子通量密度(PPFD)、气温和空气相对湿度进行连续观测,比较其间的时空分布格局.结果表明:晴天和阴天阔叶红松林林隙的PPFD日最大值均出现在11:00—13:00,晴天林隙内各个时段最大值出现位置不同,日最大值出现在林隙北侧林冠边缘处;而阴天各个时段最大值均处于林隙的中心.林隙内月平均PPFD 为6月最高、9月最低,极差7月最大.林隙内晴天气温的峰值出现在9:00—15:00,而阴天气温峰值在15:00—19:00,均位于林隙中心南8 m.5:00—9:00林隙各点阴天的气温都高于晴天,9:00—19:00则相反.月平均气温为6月最高、9月最低.晴天和阴天空气相对湿度的峰值均出现在5:00—9:00,日最大值在林隙西侧林冠边缘处,且阴天的相对湿度始终大于晴天.月平均相对湿度为7月最高、6月最低.晴天PPFD的异质性大于阴天,而气温和相对湿度的异质性则不明显.生长季内不同月份PPFD、气温和空气相对湿度的最大值所处位置不同.PPFD和气温的月均值在林隙中心及附近变化梯度较大,而相对湿度的月均值则在林隙边缘变化梯度较大.  相似文献   

13.
长白山云冷杉林幼苗幼树空间分布格局及其更新特征   总被引:5,自引:0,他引:5  
杨华  李艳丽  沈林  亢新刚  岳刚  王妍 《生态学报》2014,34(24):7311-7319
长白山云冷杉针阔混交林是我国东北主要的森林类型之一,其乔木树种幼苗幼树的结构和动态决定着未来林分的结构和生长动态。在长白山地区设置一块具有代表性的云冷杉针阔混交林幼苗幼树更新样地,统计分析幼苗幼树更新特征,绘制地径结构图、树高结构图及其空间分布图。运用点格局分析中的单变量O-ring统计方法,分析更新树种的空间分布格局;用双变量O-ring统计方法,分析更新树种种间的空间关联性。研究结果表明:(1)更新树种组成有冷杉(Abies nephrolepis)、色木槭(Acer mono)、紫椴(Tilia amurensis)、红皮云杉(Picea koraiensis)、红松(Pinus koraiensis)、蒙古栎(Quercus mongolica)、春榆(Ulmus japonica)7种,其中以冷杉、色木槭为主,更新幼苗幼树的地径近似呈倒J型分布,树高结构近似呈双峰分布;(2)所有更新树种、冷杉、色木槭在小尺度1—10 m的范围内呈聚集分布,随着尺度增加,聚集程度减弱,逐渐趋于均匀分布和随机分布,紫椴、云杉和红松在空间所有尺度上以随机分布为主;(3)更新树种之间的空间关联性在小尺度范围上正关联性比较多,较大尺度范围上负关联性比较多,随着尺度增加,空间关联性减弱。  相似文献   

14.
陈列  高露双  张赟  张思行  赵秀海 《生态学报》2013,33(4):1285-1291
运用树木年轮学的基本原理和方法,选取了长白山北坡保存完好的典型性植被阔叶红松林,探讨了杨桦红松林和椴树红松林内建群种红松(Pinus koraiensis)径向生长对气候要素的响应.结果表明,长白山北坡红松的径向生长对降水较为敏感,杨桦红松林和椴树红松林中,红松年轮宽度均与当年7月以及上一年9月的降水呈显著正相关关系.不同林型内红松的生长与气候因子的关系也有差异.椴树红松的年轮宽度还与上年7月的降水显著负相关,与当年3、4月份的平均气温呈显著正相关.而杨桦红松林内红松年轮宽度和平均温度没有显著的相关关系.特征年分析进一步验证了响应函数相关分析的结果,即当年生长季以及上年生长季末的降水充足促进了红松的径向生长;椴树红松林中,初春温度的升高有利于红松的生长.  相似文献   

15.
Hou L  Lei R D  Liu J J  Shang L B 《农业工程》2008,28(9):4070-4077
Soil CO2 efflux in forest ecosystems during dormant season is one of the key components of the forest ecosystem carbon balance. Little work has been done to quantify soil CO2 efflux in most forests in China in special time because of difficulty in taking measurements. Soil respiration in a natural secondary Pinus tabulaeformis forest at Huoditang in the Qinling Mountains was measured from October to December in 2006 by means of open-path dynamic chamber technique. Relationships of soil respiration rate (Rs) with mean soil temperature (MST) and mean volumetric soil moisture content (MVSC) in different depths (0-5 cm and 5-10 cm) were examined in the current study. We found that (1) At the same observation site (upper-part, middle-part or under-part), there were tremendous temporal and spatial variations in Rs with variation coefficients of 48.38%, 82.51% and 81.88% in October, November and December, respectively; (2) There was a significant exponent relationship between diurnal mean soil respiration rate (Fc) and diurnal mean soil temperature (DMST) when DMST > 8.5°C for both soil depths (0-5 cm and 5-10 cm) examined. The temperature sensitivity of soil respiration, known as the Q10 value, was 1.297 and 1.323 in soil depths of 0-5 cm and 5-10 cm, respectively; (3) Relationship between Rs and MVSC was complex in soil depths of 0-5 cm and 5-10 cm; (4) Soil CO2 efflux from October to December in 2006 in the experimental area was (977.37 ± 88.43) to (997.19 ± 80.73) gCm−2 (p = 0.005).  相似文献   

16.
黄土高原水土保持林对土壤水分的影响   总被引:8,自引:0,他引:8  
张建军  李慧敏  徐佳佳 《生态学报》2011,31(23):7056-7066
黄土高原植被恢复的限制因素主要是土壤水分,植被与土壤水分关系的研究对黄土高原植被恢复具有重要意义.2008年7月1日至2009年10月31日间采用EnviroSMART土壤水分定位监测系统以每30min监测1次的频度,对晋西黄土区刺槐人工林地、油松人工林地、次生林地的土壤水分变化进行了研究.研究得出:次生林地0-150 cm土层中平均蓄水量为331.95mm,刺槐人工林地为233.85 mm,有整地措施的油松人工林地为314.85mm,刺槐人工林比次生林多消耗的98.10mm土壤水分主要来源于80 cm以下土层.次生林主要消耗0-80 cm土层的水分,而人工林不但对0-80 cm土层水分的消耗量大于次生林,对深层土壤的消耗也较次生林大,这将有可能导致人工林地深层土壤的“干化”.在土壤水分减少期(11-1月)刺槐人工林土壤水分的日均损耗量为0.86mm、油松人工林为0.82 mm、次生林为0.84 mm.土壤水分缓慢恢复期(2-5月)刺槐人工林地土壤水分的恢复速度0.90mm/d,油松人工林地为0.53 mm/d、次生林地为0.79 mm/d.土壤水分剧烈变化期(5-10月)刺槐人工林地土壤水分含量的极差为95.71mm,油松人工林地为179.1mm,次生林地为72.03mm.在干旱少雨的黄土高原进行植被恢复时,应多采取封山育林等方式,依靠自然力量形成能够与当地土壤水资源相协调的次生林,是防止人工植被过度耗水形成“干化层”、保障水土保持植被持续发挥生态服务功能的关键.  相似文献   

17.
小兴安岭阔叶红松混交林林隙特征   总被引:3,自引:1,他引:2  
对小兴安岭阔叶红松混交林林隙基本特征进行了研究。结果表明:林隙的线状密度为31.78个/km,冠空隙和扩展林隙所占的面积比例分别为15.71%和30.78%;冠空隙的年干扰频率为0.46%,干扰轮回期约为434.8a。冠空隙的大小变化在42.12—372.52m2之间,平均为153.37m2;扩展林隙的大小变化在98.65m2—633.10m2之间,平均为300.44m2。冠空隙和扩展林隙面积分布格局均符合Weibull分布。林隙形成方式主要为干基折断,占总形成木总数的35.29%,其次为掘根风倒,占28.43%。平均每个林隙的形成木为4.98株,由红松、白桦、枫桦、冷杉形成,径级在20—30 cm之间,高度在15—30 m之间。冠空隙的直径与高度比值的相对频率的分布呈单峰型曲线,当比值为0.30—0.45时,出现峰值;而扩展林隙的直径与高度比值的相对频率的分布呈双峰型曲线,当比值分别为0.75—0.90和1.05—1.15时,出现峰值。林隙边缘木胸径级的多度分布和高度级多度分布符合Weibull分布,但不符合正态分布。约13.41%的边缘木未出现偏冠现象,偏冠率在0.5—0.7之间的边缘木占70.49%。  相似文献   

18.
中国温带阔叶红松林不同演替系列土壤有机碳矿化特征   总被引:4,自引:0,他引:4  
张玲  张东来  毛子军 《生态学报》2017,37(19):6370-6378
土壤有机碳矿化与陆地生态系统碳循环和全球气候变化关系密切,为准确评估中国温带小兴安岭阔叶红松林不同演替系列土壤有机碳矿化特征及变化规律。以年代序列法代替群落次生演替过程,采用室内恒温培养(碱液吸收法)测定阔叶红松林不同演替系列(中生演替系列、湿生演替系列、旱生演替系列)6种群落类型土壤有机碳矿化量和矿化速率。3个演替系列土壤有机碳含量均表现出一致的剖面变化特征,随着土层深度的加深有机碳矿化量逐渐降少。且不同演替系列土层间有机碳矿化量不同,中生演替系列原始阔叶红松林土壤有机碳累计矿化量最大,其次为旱生演替系列,湿生演替系列最小。3个演替系列土壤有机碳矿化速率随时间变化呈现基本一致的趋势,即培养前期快速下降、后期逐渐趋于平稳。3个演替系列6种群落类型土壤有机碳矿化差异显著,表现为原始阔叶红松林白桦次生林云冷杉红松林红松枫桦次生林蒙古栎红松林蒙古栎、黑桦次生林。阔叶红松林不同演替系列土壤有机矿化采用非线性指数拟合效果较好。阔叶红松林不同演替系列土壤有机碳矿化与土壤全氮、凋落物量显著正相关,与土壤含水率、容重、土壤酸碱度显著负相关。不同演替系列群落的演替历史、土壤质地和养分状况等生态因子是导致阔叶红松林不同演替系列土壤有机碳矿化差异的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号