首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diversity in phosphorus (P) acquisition strategies was assessed among three species of arbuscular mycorrhizal fungi (AMF) isolated from a single field in Switzerland. Medicago truncatula was used as a test plant. It was grown in a compartmented system with root and root-free zones separated by a fine mesh. Dual radioisotope labeling (32P and 33P) was employed in the root-free zone as follows: 33P labeling determined hyphal P uptake from different distances from roots over the entire growth period, whereas 32P labeling investigated hyphal P uptake close to the roots over the 48 hours immediately prior to harvest. Glomus intraradices, Glomus claroideum and Gigaspora margarita were able to take up and deliver P to the plants from maximal distances of 10, 6 and 1 cm from the roots, respectively. Glomus intraradices most rapidly colonized the available substrate and transported significant amounts of P towards the roots, but provided the same growth benefit as compared to Glomus claroideum, whose mycelium was less efficient in soil exploration and in P uptake and delivery to the roots. These differences are probably related to different carbon requirements by these different Glomus species. Gigaspora margarita provided low P benefits to the plants and formed dense mycelium networks close to the roots where P was probably transiently immobilized. Numerical modeling identified possible mechanisms underlying the observed differences in patterns of mycelium growth. High external hyphal production at the root-fungus interface together with rapid hyphal turnover were pointed out as important factors governing hyphal network development by Gigaspora, whereas nonlinearity in apical branching and hyphal anastomoses were key features for G. intraradices and G. claroideum, respectively.  相似文献   

2.
We investigated the physiology that underlies the influence of arbuscular mycorrhizal (AM) colonization on outcomes of interactions between plants. We grew Medicago truncatula A17 and its AM‐defective mutant dmi1 in intragenotypic (two plants per pot of the same genotype, x2) or intergenotypic (one plant of each genotype, 1 + 1) combinations, inoculated or not with Rhizophagus irregularis (formerly Glomus intraradices) or Gigaspora margarita. We measured plant growth, colonization, contributions of AM and direct P uptake pathways using 32P, and expression of plant Pi transporter genes at two levels of P supply. A17 (x2) responded positively to inoculation only at low P. The response was enhanced with 1 + 1 even at high P where colonization in A17 was reduced. With R. irregularis P uptake by the AM pathway was unaffected by P supply, whereas with G. margarita, the AM pathway was lower at high P, and direct uptake higher. Gene expression varied and was unrelated to P uptake through the two pathways. There was no evidence of plant control of P uptake via R. irregularis at high P but there was via G. margarita. Importantly, growth responses of plant genotypes grown alone did not predict outcomes of intergenotypic interactions.  相似文献   

3.
Diversity in phosphorus (P) acquisition strategies was assessed among eight isolates of arbuscular mycorrhizal fungi (AMF) belonging to three Glomus species, all obtained from the same field site. Maize (Zea mays L. cv. Corso) was used as a test plant. Compartmented cultivation containers coupled with 33P radioisotope labeling of soil P were employed to estimate (1) the distance from the roots that AMF were able to acquire soil P from, (2) the rate of soil colonization, (3) the efficiency of uptake of soil P by AMF, (4) benefits provided to maize in terms of P acquisition and growth. Glomus mosseae and G. intraradices took up P 10 cm from roots, whereas G. claroideum only up to 6 cm from the roots. G. mosseae most rapidly colonized the available soil volume and transported significant amounts of P to maize from a distance, but provided no net P uptake benefit to the plants. On the other hand, both G. intraradices and three out of four G. claroideum isolates significantly improved net P uptake by maize. These effects seem to be related to variability between and to a limited extent also within AMF species, in mycelium development, efficiency of hyphal P uptake and effects on plant P acquisition via the root pathway. In spite of absence of maize growth responses to inoculation with any of the AMF isolates, this study indicates remarkable functional diversity in the underground component of the studied field site.  相似文献   

4.
The co-existence of two arbuscular mycorrhizal fungal (AMF) species, Glomus intraradices and Glomus claroideum, in the root systems of plants was investigated in a greenhouse experiment aimed at reconstructing interactions during an early stage of primary succession on a coal-mine spoil bank in Central Europe. Two plant species, Tripleurospermum inodorum and Calamagrostis epigejos, were inoculated either with one or both AMF species. Fungal development, determined by trypan blue and alkaline phosphatase staining as well as by PCR amplification of rRNA genes with species-specific primers, and the expression of five genes with different metabolic functions in the intraradical structures of G. intraradices were followed after 6 and 9 weeks of cultivation. The two AMF closely co-existed in the root systems of both plants possibly through similar colonisation rates and competitivity. Inoculation with the two fungi, however, did not bring any additional benefit to the host plants in comparison with single inoculation; moreover, plant growth depression observed after inoculation with G. claroideum persisted also in mixed inoculation. The expression of all the assayed G. intraradices genes was affected either by host plant or by co-inoculation with G. claroideum. The effects of both factors depended on the time of sampling, which underlines the importance of addressing this topic in time-course studies.  相似文献   

5.
Most terrestrial plant species form associations with arbuscular mycorrhizal fungi (AMF) that transfer soil P to the plant via their external hyphae. The distribution of nutrients in soils is typically patchy (heterogeneous) but little is known about the ability of AMF to exploit P patches in soil. This was studied by growing symbioses of Linum usitatissimum and three AMF (Glomus intraradices, G. mosseae and Gigaspora margarita) in pots with two side-arms, which were accessible to hyphae, but not to roots. Soil in one side-arm was either unamended (P0) or enriched with P; simultaneous labelling of this soil with 32P revealed that G. intraradices responded to P enrichment both in terms of hyphal proliferation and P uptake, whereas the other AMF did not. Labelling with 33P of P0 soil in the other side arm revealed that the increased P uptake by G. intraradices from the P-enriched patch was paralleled by decreased P uptake by other parts of the mycelium. This is the first demonstration of variation in growth and nutrient uptake by an AMF as influenced by a localized P enrichment of the soil. The results are discussed in the context of functional diversity of AMF.  相似文献   

6.
Two controlled microcosm experiments aimed at a critical re-assessment of the contributions of divergent arbuscular mycorrhizal (AM) fungi to plant mineral nutrition were established that specifically targeted Plantago lanceolataGlomus intraradices (B.B/E) and –Gigaspora margarita (BEG 34) symbioses developed in a native, nutrient limited, coastal dune soil. Plant tissue nitrogen (N), phosphorus (P) and potassium (K) status as well as plant growth parameters and levels of mycorrhizal colonization were assessed at harvest. In addition to the general well-established mycorrhizal facilitation of P uptake, the study was able to demonstrate a G. intraradices-specific contribution to improved plant nitrogen and potassium nutrition. In the two respective experiments, G. intraradices-inoculated plants had 27.8% and 40.8% more total N and 55.8% and 23.3% more total K when compared to Gi. margarita inoculated counterparts. Dissimilar overall contribution of the two isolates to plant nutrition was identified in AM-genus specific differences in plant tissue N:P:K ratios. G. intraradices inoculated and non-mycorrhizal plants generally exhibited N:P:K ratios indicative of P limitation whereas for Gi. margarita mycorrhizal plants, corresponding ratios strongly implied either N or K limitation. The study provides further evidence highlighting AM functional biodiversity in respect to plant nutrient limitation experienced by mycorrhizal P. lanceolata in an ecologically relevant soil system.  相似文献   

7.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

8.
Abstract

Interactions between three genotypes (Ljsym 71-1, Ljsym 71-2 and Ljsym 72) of Lotus japoicus and one isolate from each of four species of arbuscular mycorrhizal fungi (Glomus sp. R-10, Glomus intraradices, Glomus etunicatum, and Gigaspora margarita) were investigated and compared with the wild-type ‘Gifu’ B-129. All the three genotypes showed no or defective internal colonization after inoculation with these AM fungi. In Ljsym72 mutant, the AM fungi produced deformed appressoria on the root surface, but failed to form any internal structures (internal hyphae, arbuscules and vesicles) except only in Glomus intraradices. The Ljsym71-1 and Ljsym71-2 mutants had more deformed appressoria and occasionally formed internal hyphae, arbuscules and vesicles, depending on AM fungi used. Wild-type ‘Gifu’ (nod+myc+) plants had typical colonization. The colonization of mutants by several fungi varied and provides a basis for studying recognition and compatibility between plants and mycorrhizal fungal species. These mutants also will be useful in studies of the genetics of the symbiosis between plant species and AM fungi.  相似文献   

9.
Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g–1 soil, pH 8.3) inoculated with Glomus fasciculatum, Glomus intraradices, and Glomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses to Glomus species were temperature dependent. G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C. G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C. G. intraradices depressed shoot growth and mineral uptake at 30°C. G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.  相似文献   

10.
Castanospermum australe A. Cunn. & C. Fraser is the only species of the genus Castanospermum (the Moreton Bay chestnut or black bean) native to NE Australia. One constituent of the plant, castanospermine, can inhibit the AIDS virus. The present study investigated possible symbioses between its roots and arbuscular mycorrhizal (AM) fungi. The effects of mycorrhizal fungi on the growth of the plant and yield of alkaloid castanospermine were also studied. The mycorrhizosphere soil and roots of C. australe collected from various sites in and around Sydney, Australia showed AM symbiotic associations with roots, with arbuscules and vesicles in the root cortices. Wet sieving and decanting yielded AM fungal spores, mainly Glomus spp. A positive correlation was found between AM fungal infection and the castanospermine content of seeds of field-grown trees. Field study results were confirmed by growing seedlings under greenhouse conditions and inoculating them with Glomus intraradices Schenck and Smith (INVAM isolate KS906) and Gigaspora margarita Becker & Hall (INVAM isolate BR444–2). The AM fungi increased the growth and P contents of plants and the yield of castanospermine in the leaves, irrespective of the P treatment. No correlation was found between the alkaloid contents of leaves from mycorrhizal seedlings and from non-mycorrhizal plants which received P. No significant difference in the production of castanospermine was found between P treatments when G. margarita was used as inoculum. Accepted: 14 April 1999  相似文献   

11.
The arbuscular mycorrhizal symbiosis links N mineralization to plant demand   总被引:5,自引:0,他引:5  
Arbuscular mycorrhizal (AM) fungi facilitate inorganic N (NH4 + or NO3 ) uptake by plants, but their role in N mobilization from organic sources is unclear. We hypothesized that arbuscular mycorrhizae enhance the ability of a plant to use organic residues (ORs) as a source of N. This was tested under controlled glasshouse conditions by burying a patch of OR in soil separated by 20-μm nylon mesh so that only fungal hyphae can pass through it. The fate of the N contained in the OR patch, as influenced by Glomus claroideum, Glomus clarum, or Glomus intraradices over 24 weeks, was determined using 15N as a tracer. AM fungal species enhanced N mineralization from OR to different levels. N recovery and translocation to Russian wild rye by hyphae reached 25% of mineralized N in G. clarum, which was most effective despite its smaller extraradical development in soil. Mobilization of N by G. clarum relieved plant N deficiency and enhanced plant growth. We show that AM hyphae modify soil functioning by linking plant growth to N mineralization from OR. AM species enhance N mineralization differentially leading to species-specific changes in the quality of the soil environment (soil C-to-N ratio) and structure of the soil microbial community.  相似文献   

12.
Ri T-DNA-transformed carrot roots were cultivated in two experiments either non-inoculated or inoculated with the arbuscular mycorrhizal (AM) fungi Glomus intraradices or Gigaspora margarita. The influence of two concentrations of cadmium (Cd) in the medium (2 mg l–1, 4 mg l–1) on both root and mycelium growth was tested. Both parameters were estimated at 10-day intervals for 70 or 100 days for G. intraradices and Gi. margarita, respectively. In the first experiment, G. intraradices showed a rapid spread of extraradical mycelium (ERM) and reached average densities per treatment of about 90 cm cm–2 agar medium after 70 days. At the higher Cd level, the growth of ERM was delayed in comparison to the treatment without Cd addition. Root growth was inhibited by both Cd levels; the inhibition was, however, significantly lower in the treatments inoculated with G. intraradices compared to the non-inoculated control. In the second experiment, the ERM of Gi. margarita started to grow after a period of 50 days and reached average densities per treatment of only up to 27 cm cm–2 by the end of the cultivation. The growth of Gi. margarita mycelium was not inhibited by Cd. No differences in root growth were observed between the Gi. margarita inoculated and non-inoculated treatments. The inhibitory effect of Cd on root growth differed between the non-inoculated treatments in both experiments. The study has shown that the AM fungus Glomus intraradices can alleviate Cd-induced growth inhibition to carrot hairy roots. The potential and limits of the monoxenic system in studying the interaction between AM fungi and heavy metals are discussed.  相似文献   

13.
Different species of arbuscular mycorrhizal fungi (AMF) can produce different amounts of extraradical mycelium (ERM) with differing architectures. They also have different efficiencies in gathering phosphate from the soil. These differences in phosphate uptake and ERM length or architecture may contribute to differential growth responses of plants and this may be an important contributor to plant species coexistence. The effects of the development of the ERM of AMF on the coexistence of two co-occurring plant species were investigated in root-free hyphal chambers in a rhizobox experimental unit. The dominant shrub (Salix atrocinerea Brot.) and herbaceous (Conyza bilbaoana J. Rémy) plant species found in a highly alkaline anthropogenic sediment were studied in symbiosis with four native AMF species (Glomus intraradices BEG163, Glomus mosseae BEG198, Glomus geosporum BEG199 and Glomus claroideum BEG210) that were the most abundant members of the AMF community found in the sediment. Different AMF species did not influence total plant productivity (sum of the biomass of C. bilbaoana and S. atrocinerea), but had a great impact on the individual biomass of each plant species. The AMF species with greater extracted ERM lengths (G. mosseae BEG198, G. claroideum BEG210 and the four mixed AMF) preferentially benefited the plant species with a high mycorrhizal dependency (C. bilbaoana), while the AMF species with the smallest ERM length (G. geosporum BEG199) benefited the plant species with a low mycorrhizal dependency (S. atrocinerea). Seed production of C. bilbaoana was only observed in plants inoculated with G. mosseae BEG198, G. claroideum BEG210 or the mixture of the four AMF. Our results show that AMF play an important role in the reproduction of C. bilbaoana coexisting with S. atrocinerea in the alkaline sediment and have the potential to stimulate or completely inhibit seed production. The community composition of native AMF and the length of the mycelium they produce spreading from roots into the surrounding soil can be determinant of the coexistence of naturally co-occurring plant species.  相似文献   

14.
The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and 32P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg?1 substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg?1) shoot dry weight than non-colonized controls (26.5 mg Pb kg?1) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg?1 root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants.  相似文献   

15.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

16.
Zinnia (Zinnia elegans) was inoculated with four arbuscular mycorrhizal fungi (AMF) i.e. Gigaspora margarita, Gigaspora rosea, Glomus intraradices, and Glomus mosseae, either singly or mixture of two species of Gigaspora and Glomus. Results indicated that Glomus significantly enhanced the leaf size and the shoot biomass. G. mosseae was more effective than G. intraradices. Only G. mosseae increased number and size of flowers. Mixed inoculations were not much effective in the growth-promotion than the corresponding singly inoculation with Glomus. Comparison of colonization percent demonstrated that the highest colonization by G. mosseae, and followed by G. intraradices and Gigaspora species. In semi-quantitative PCR amplifications, Glomus was dominant in the roots. Our results suggest that G. mosseae is good for inoculation to zinnia and the interaction between different AMF species should be given full consideration in the application.  相似文献   

17.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

18.
Taylor  Jeanette  Harrier  Lucy 《Plant and Soil》2000,225(1-2):53-61
Growth, development and nutrient status of micropropagated Rubus idaeus cv. Glen Prosen in response to inoculation with nine species of arbuscular mycorrhizal (AM) fungi from three different genera was investigated. The nine species of AM fungi included, Glomus clarum, G. etunicatum, G. intraradices, Gigaspora rosea, Gi. gigantea, Gi. margarita, Scutellospora calospora, S. heterogama and S. persica. Plant responses to AM fungi varied from growth enhancement to growth depression. Depressive growth effects were specific to Gigaspora species. Furthermore, particular species of AM fungi had unique effects on the mineral status of the raspberry plants. Importance of isolate selection for inoculation of micropropagated raspberry plants is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
A field study was done to assess the potential benefit of arbuscular mycorrhizal (AM) inoculation of elite strawberry plants on plant multiplication, under typical strawberry nursery conditions and, in particular, high soil P fertility (Mehlich-3 extractible P=498 mg kg−1). Commercially in vitro propagated elite plants of five cultivars (‘Chambly,’ ‘Glooscap,’ ‘Joliette,’ ‘Kent,’ and ‘Sweet Charlie’) were transplanted in noninoculated growth substrate or in substrate inoculated with Glomus intraradices or with a mixture of species (G. intraradices, Glomus mosseae, and Glomus etunicatum) at the acclimation stage and were grown for 6 weeks before transplantation in the field. We found that AM fungi can impact on plant productivity in a soil classified as excessively rich in P. Inoculated mother plants produced about 25% fewer daughter plants than the control in Chambly (P=0.03), and Glooscap produced about 50% more (P=0.008) daughter plants when inoculated with G. intraradices, while the productivity of other cultivars was not significantly decreased. Daughter plant shoot mass was not affected by treatments, but their roots had lower, higher, or similar mass, depending on the cultivar–inoculum combination. Root mass was unrelated to plant number. The average level of AM colonization of daughter plants produced by noninoculated mother plants did not exceed 2%, whereas plants produced from inoculated mothers had over 10% of their root length colonized 7 weeks after transplantation of mother plants and ∼6% after 14 weeks (harvest), suggesting that the AM fungi brought into the field by inoculated mother plants had established and spread up to the daughter plants. The host or nonhost nature of the crop species preceding strawberry plant production (barley or buckwheat) had no effect on soil mycorrhizal potential, on mother plant productivity, or on daughter plant mycorrhizal development. Thus, in soil excessively rich in P, inoculation may be the only option for management of the symbiosis.  相似文献   

20.

Aims and Background

Many plants preferentially grow roots into P-enriched soil patches, but little is known about how the presence of arbuscular mycorrhizal fungi (AMF) affects this response.

Methods

Lotus japonicus (L.) was grown in a low-P soil with (a) no additional P, (b) homogeneous P (28 mg pot?1), (c) low heterogeneous P (9.3 mg pot?1), and (d) high heterogeneous P (28 mg pot?1). Each P treatment was combined with one of three mycorrhiza treatments: no mycorrhizae, Glomus intraradices, indigenous AMF. Real-time PCR was used to assess the abundance of G. intraradices and the indigeneous AMF G. mosseae and G. claroideum.

Results

Mycorrhization and P fertilization strongly increased plant growth. Homogeneous P supply enhanced growth in both mycorrhizal treatments, while heterogeneous P fertilization increased biomass production only in treatments with indigenous AMF inoculation. Preferential root allocation into P-enriched soil was significant only in absence of AMF. The abundance of AMF species was similar in P-enriched and unfertilized soil patches.

Conclusion

Mycorrhization may completely override preferential root growth responses of plants to P- patchiness in soil. The advantage of this effect for the plants is to give roots more freedom to forage for other resources in demand for growth and to adapt to variable soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号