首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic study is presented for traits relating to nitrogen use in wheat. Quantitative trait loci (QTLs) were established for 21 traits relating to growth, yield and leaf nitrogen (N) assimilation during grain fill in hexaploid wheat (Triticum aestivum L.) using a mapping population from the cross Chinese Spring × SQ1. Glutamine synthetase (GS) isozymes and estimated locations of 126 genes were placed on the genetic map. QTLs for flag leaf GS activity, soluble protein, extract colour and fresh weight were found in similar regions implying shared control of leaf metabolism and leaf size. Flag leaf traits were negatively associated with days to anthesis both phenotypically and genetically, demonstrating the complex interactions of metabolism with development. One QTL cluster for GS activity co-localised with a GS2 gene mapped on chromosome 2A, and another with the mapped GSr gene on 4A. QTLs for GS activity were invariably co-localised with those for grain N, with increased activity associated with higher grain N, but with no or negative correlations with grain yield components. Peduncle N was positively correlated, and QTLs co-localised, with grain N and flag leaf N assimilatory traits, suggesting that stem N can be indicative of grain N status in wheat. A major QTL for ear number per plant was identified on chromosome 6B which was negatively co-localised with leaf fresh weight, peduncle N, grain N and grain yield. This locus is involved in processes defining the control of tiller number and consequently assimilate partitioning and deserves further examination. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

2.
《Process Biochemistry》2004,39(6):713-718
The effects of malting conditions on proteolytic activities in three improved sorghum varieties: ICSV400, SK5912 and KSV8 were studied. Grains were steeped for 45 h using 6 h wet and 3 h dry cycles and germinated for 8 days. Moisture contents and their effects on proteolytic activity were monitored at various intervals using standard methods. Significant positive correlations existed between moisture content and carboxypeptidase and proteinase activities during steeping. Optimum carboxypeptidase and proteinase enzyme activities were consistently recorded in both ICSV400 and SK5912 at the 40th h of steeping while those of KSV8 occurred on the 45th h. This suggests that protein hydrolysis of KSV8 is different from that of ICSV400 and SK5912. Similarly, optimum proteolytic activities occurred in all the sorghum varieties on the 5th day of germination suggesting optimum germination time for optimum protein modification. Variety and steeping time affected both carboxypeptidase and proteinase activities significantly (P<0.001) during germination. Significant positive correlations existed in the sorghum varieties ICSV400 and SK5912 between free amino nitrogen (FAN) contents and carboxypeptidase activities during both steeping and germination. In contrast, variety KSV8 showed no significant correlation between FAN contents and carboxypeptidase activities during either steeping or germination. On the other hand, while there was a highly significant positive correlation between CWS-P development and proteinase activities in all the sorghum varieties during steeping, no such relationship existed during germination.  相似文献   

3.
Three wheat cultivars ( Triticum aestivum L.), Splendeur, Hobbit and Maris Huntsman grown in pots were compared. Especially when compared to Splendeur, the flag leaf senesced most rapidly in Maris Huntsman, which presented the most rapid loss of moisture, chlorophyll and nitrogen. The uptake of exogenous nitrogen during the post-anthesis period was lower in the rapidly than in the slowly senescing variety. A higher concentration of free amino nitrogen in the flag leaf at a given sampling date was associated with a lower percentage decrease of soluble proteins at the following date. Acid proteinase activity in the flag leaf was inversely related to moisture percentage and free amino nitrogen level, but unrelated to the nitrogen loss of the flag leaf. Acid proteinase activity in the flag leaf was directly related to grain nitrogen percentage, but inversely related to grain yield. Grain yield was also directly related to the mean soluble protein content of the flag leaf through senescence.  相似文献   

4.
The effects of foliar applications of nitrogen and benzyladenine (BA) on grain yield and grain protein of wheat grown under field conditions were studied over 2 years with 5 cultivars at 2 locations. Nitrogen (N) at 20 kg.ha–1, and BA at 100 or 800 mg.l–1 were applied alone or combined at pre and post-anthesis; applications of BA at 8 mg.l–1 were also made on individual ears in order to study the effect on cell number. Weekly determinations of the chlorophyll content of the flag leaf were conducted after anthesis to study leaf senescence. At harvest, yield, yield components and grain protein percentage were determined. N and BA applications delayed chlorophyll loss in the flag leaf, but modified neither yield nor yield components. Foliarly applied BA increased grain protein in four of the five cultivars tested. It is concluded that delay of the senescence induced by BA might allow more energy to be available for N uptake by the crop leading to an increase in grain protein.Research supported by a CAFPTA grant 1656/86 and by CONICET, PID 30017700/85.CONICETComisión de Investigaciones Cientificas de la Provincia de Buenos AiresInstituto de Fisiologia Vegetal  相似文献   

5.
The role of wheat ears as a source of nitrogen (N) and carbon (C) in the grain filling process has barely been studied. To resolve this question, five wheat genotypes were labeled with 15N‐enriched nutrient solution. N remobilization and absorption were estimated via the nitrogen isotope composition of total organic matter and Rubisco. Gas exchange analyses showed that ear photosynthesis contributed substantially to grain filling in spite of the great loss of C due to respiration. Of the total kernel N, 64.7% was derived from the N acquired between sowing and anthesis, while the remaining 35.3% was derived from the N acquired between anthesis and maturity. In addition, 1.87 times more N was remobilized to the developing kernel from the ear than from the flag leaf. The higher yielding genotypes showed an increased N remobilization to the kernel compared to the lower yielding genotypes. In addition, the higher yielding genotypes remobilized more N from the ears to the kernel than the lower yielding genotypes, while the lower yielding genotypes remobilized more N from the flag leaf to the kernel. Therefore, the ears contribute significantly toward fulfilling C and N demands during grain filling.  相似文献   

6.
High grain protein content (GPC) is a frequent target of wheat breeding programmes because of its positive effect on bread and pasta quality. A wild wheat allele at the Gpc-B1 locus with a significant impact on this trait was identified previously. The precise mapping of several senescence-related traits in a set of tetraploid recombinant substitution lines (RSLs) segregating for Gpc-B1 is reported here. Flag leaf chlorophyll degradation, change in peduncle colour, and spike water content were completely linked to the Gpc-B1 locus and to the differences in GPC within a 0.3 cM interval corresponding to a physical distance of only 250 kb. The effect of Gpc-B1 was also examined in different environments and genetic backgrounds using a set of tetraploid and hexaploid pairs of isogenic lines. The results were consistent with those observed in the RSLs. The high GPC allele conferred a shorter duration of grain fill due to earlier flag leaf senescence and increased GPC in all four genetic backgrounds. The effect on grain size was more variable, depending on the genotype-environment combinations. These results are consistent with a model in which the wild-type allele of Gpc-B1 accelerates senescence in flag leaves producing pleiotropic effects on nitrogen remobilization, total GPC, and grain size.  相似文献   

7.
谷子灌浆期旗叶蛋白水解酶活性、籽粒和旗叶游离氨基酸含量均呈双峰曲线变化。第一峰在花后13天;第二峰分别在25、28天。籽粒和旗叶游离氨基酸峰稍滞后,且后者不明显。籽粒总蛋白积累和干重增加均为S型变化,与旗叶总蛋白和可溶性蛋白变化趋势相反。花后22─25天上述物质和酶活变化均出现─转折。转折点之前,蛋白质合成和周转活跃;之后,由叶片蛋白酶活性升高引起的旗叶氮素撤离对籽粒蛋白质积累仍有一定贡献(约10%)。  相似文献   

8.
Flag leaf removal at any stage of grain growth hastened senescence (reduction in chlorophyll content) of the sterile glumes whereas a removal of the latter did not alter senescence of the former. Kernel mass, grain mass per ear, harvest index and sink activity reduced more conspicuously by the removal of glumes than by the flag leaf removal. Removal of grains hastened senescence of the glumes only, although protein content increased at a later grain removal in the majority of source organs. Moisture contents of the developing grains were mostly reduced by the removal of either the flag leaf or the glumes, though flag leaf removal at anthesis affected it the most. Protein levels of the developing grains reduced at harvest only when the glumes were removed at anthesis but sugar levels in later phases always decreased irrespective of the time of removal and nature of the source organs.  相似文献   

9.
M. Aslam  L. A. Hunt 《Planta》1978,141(1):23-28
Co2 exchange and transpiration rates of the flag leaves of four spring wheat (Triticum aestivum L.) cultivars, namely Glenlea, Neepawa, Opal and Kolibri, were compared using infra-red gas-analysis technique. The plants were grown in a controlled environment under an 18-h photoperiod, with day and night temperatures of 20 and 15° C, respectively. The time course of the CO2-exchange rate (CER) of the flag leaf differed among cultivars. CER began to decrease rapidly some 2 weeks after ear emergence in Glenlea, Neepawa and Kolibri, but only after 4 weeks in Opal. The decline in CER of Glenlea, Neepawa and Opal was continuous throughout the period of grain development whereas in Kolibri CER was maintained at a constant level between the 4th and 6th weeks after ear emergence. The transpiration rates of the flag leaves of the 4 cultivars did not change markedly until 6–7 weeks after ear emergence, indicating that the reduction in CER was not primarily a response to increased stomatal resistance to the diffusion of CO2. Removing the ear of the main shoot of intact plants failed to depress CER of the subtending flag leaf until 5 weeks after ear removal. Removing the ears of all the tillers of plants in which all but 3 tillers had been removed at ear emergence did not depress CER until 4 weeks after ear emergence, but removal of the ear of the main shoot of plants where all the tillers had been removed at ear emergence reduced the CER of the flag leaf 2 weeks after ear removal. Removal of tillers at ear emergence had a marked effect on the time course of CER and transpiration rates of the flag leaf. Both CER and transpiration rates of a 4-tiller plant were maintained at a higher level throughout ear development as compared to those of a one-tiller plant. The transpiration rate of the flag leaf of Glenlea increased during the later part of the life of the leaf even for one-tiller plants with no ear, indicating that such a stomatal response may be part of the normal course of leaf aging and not a response to a feedback stimulus from the ear.  相似文献   

10.
Genotypic variation in response of barley to boron deficiency   总被引:2,自引:0,他引:2  
Responses of a range of barley (Hordeum vulgare L.) genotypes to boron (B) deficiency were studied in two experiments carried out in sand culture and in the field at Chiang Mai, Thailand. In experiment 1, two barley genotypes, Stirling (two-row) and BRB 2 (six-row) and one wheat (Triticum aestivum L.) genotype, SW 41, were evaluated in sand culture with three levels of applied B (0, 0.1 and 1.0 μM B) to the nutrient solution. It was found that B deficiency depressed flag leaf B concentration at booting, grain number and grain yield of all genotypes. In barley Stirling, B deficiency also depressed number of spikes plant-1, spikelets spike-1 and straw yield. However, no significant difference between genotypes in flag leaf B concentration was found under low B treatments. Flag leaf B concentration below 4 mg kg-1 was associated with grain set reduction and could, therefore, be used as a general indicator for B status in barley. In experiment 2, nine barley and two wheat genotypes were evaluated in the field on a low B soil with three levels of B. Boron levels were varied by applying either 2 t of lime ha-1 (BL), no B (B0) or 10 kg Borax ha-1 (B+) to the soil prior to sowing. Genotypes differed in their B response for grain spike-1, grain spikelet-1 and grain set index (GSI). The GSI of the B efficient wheat, Fang 60, exceeded 90% in all B treatments. The B inefficient wheat SW 41 and most of the barley genotypes set grain normally (GSI >80%) only at the B+. In B0 GSI of the barley genotypes ranged from 23% to 84%, and in BL from 19% to 65%. Three of the barley with severely depressed GSI in B0 and BL also had a decreased number of spikelets spike-1. In experiment 3, 21 advanced barley lines from the Barley Thailand Yield Nursery 1997/98 (BTYN 1997/98) were screened for B response in sand culture with no added B. Grain Set Index of the Fang 60 and SW 41 checks were 98 and 65%, respectively, and GSI of barley lines ranged between 5 and 90%. One advanced line was identified as B efficient and two as moderately B efficient. The remaining lines ranked between moderately inefficient to inefficient. These experiments have established that there is a range of responses to B in barley genotypes. This variation in the B response was observed in vegetative as well as reproductive growth. Boron efficiency should be considered in breeding and selection of barley in low B soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Monocarpic senescence in wheat: Influence of sterile glumes and ear   总被引:1,自引:0,他引:1  
The senescence of sterile glumes, flag leaf and the other two leaves below the ear of wheat ( Triticum aestivum L. cv. Sonalika) was studied in relation to grain development and surgical manipulation. The senescence of sterile glumes was faster than that of the leaves in terms of chlorophyll and protein degradation. The flag leaf senesced later than the other two leaves below it. Removal of sterile glumes markedly reduced the harvest index (crop: straw ratio) and average dry weight per grain as compared to removal of the flag leaf. Maximum grain weight was achieved after the glumes had senesced completely. Removal of the ear delayed senescence of all the three leaves. It is concluded that sterile glumes are important suppliers of assimilate for grain filling and that nutrient drainage is the primary cause of the monocarpic senescence in wheat.  相似文献   

12.
研究了热带落叶乔木大叶桃花心木(Swietenia macrophylla)在施氮和去除子叶后幼苗叶片的硝酸还原酶活性(NRA)变化。结果表明,在非施氮(对照)条件下,NRA随着幼苗叶片的发育先升高后降低;施氮后幼苗叶片NRA在各取样时期(除35 d外)均显著高于非施氮处理(P<0.05),并随着取样时期的延续,叶片NRA逐渐降低。在幼苗发育的不同时期去除子叶,4周后,叶片NRA均显著升高(P<0.05)。  相似文献   

13.
小麦旗叶Rubisco周转与籽粒含氮量的关系   总被引:3,自引:0,他引:3  
随着旗叶的衰老,Rubisco含量逐渐减少.延缓小麦旗叶的衰老进程(抽穗期施氮肥),可增加旗叶Rubisco的含量,提高籽粒的全氮含量.在小麦旗叶全展后28d内,Rubisco的15N丰度处于较高水平,表明仍有Rubisco的重新合成;而在28d以后,Rubisco的15N丰度处于低水平,表明无Rubisco的重新合成.但这时籽粒的15N丰度却上升.旗叶全展后14d内Rubisco的15N丰度高于旗叶中全氮的丰度,说明此时期Rubisco重新合成的速率高于其它蛋白质;旗叶衰老过程中Rubisco的15N丰度的净转移高于全氮,Rubi-sco净N转移也高于全氮,表明Rubisco向籽粒中转移的氮素多于其它蛋白质,对籽粒含氮量的影响最大.  相似文献   

14.
The mobilization of nitrogen (N) compounds and the roles played by glumes and the flag leaf during grain filling were studied in bread wheat (Triticum aestivum L. cv. Florida) grown under field conditions. Glumes lost twice as much of their total N content as that lost by the flag leaf between the milk and early dough stages. In the flag leaf, glumes and grains, Glu, Asp, Ser and Ala accounted for 85% of all the reductions in the free amino acid pool. Principal component analysis of free amino acid pools separated grains from the glumes and the flag leaf, suggesting grain specific regulations in the use of free amino acids in protein synthesis. In all three organs, no decrease in Gln was detected, probably due to steady glutamine synthetase (GS; EC 6.3.1.2) activities per soluble protein in both the flag leaf and glumes. Compared with the flag leaf, glumes presented relatively smaller amounts of the chloroplast GS associated isoform. This we show is due to a lower relative number of mesophyll cells in glumes as supported by the different anatomy and the cellular pattern of the GS immunolocalization. We argue that cellular distribution plays a key role in supporting metabolism to enable the various functions undertaken by glume tissue.  相似文献   

15.
Twenty-one durum wheat genotypes originating from different geographic areas were grown during 3 successive years. The trials were characterised by different precipitation regimes. Carbon isotope discrimination (Δ), carbon content (CC) and ash content (ma) were assessed in the flag leaf during anthesis, then in the kernel at full maturity. Differences between the 3 years, due to water availability, were noted for Δ, ma, CC and yield. Genotypic differences were also noted within each year for all the traits studied. Some genotypes from the Middle East exhibited higher flag leaf and kernel Δ than those originating from the West of the Mediterranean basin. The kernel Δ was strongly correlated with grain yield (GY). The leaf Δ correlated with GY only under strong water limitation and with biomass production (BP) in favourable water conditions. For the flag leaf, Δ was correlated with ma and with CC. Silicon content was then assessed in the flag leaf and in the kernel on a subset of 10 genotypes differing in their Δ values. Strong positive correlations were noted between silicon content and Δ and ma for the flag leaf. However, no clear relationship was found between silicon content and GY. The results obtained in this study confirm the validity of kernel Δ as a predictive criterion for GY under water stress and suggest the possible use of kernel ma as an alternative criterion to select genotypes with higher water stress tolerance.  相似文献   

16.
The effect of N availability on photosynthetic capacity, growth parameters and yield was studied in field-grown durum-wheat plants at both the leaf and canopy levels. Two contrasting nitrogen levels (120 and 0 kg ha?1) were assayed in a randomised block design with nine replicates each. Total biomass was measured at anthesis and yield and its agronomical components at maturity. Photosynthetic measurements were performed 2 weeks after anthesis in two plots of each N treatment. Flag leaves were measured, using a LI-COR 6400 combined with the chlorophyll fluorescence meter, and the whole canopy by measuring CO2 and H2O fluxes in an innovative canopy-chamber system. We showed a clear increase in photosynthetic gas exchange and chlorophyll contents with N fertilisation at both canopy and leaf levels. As a consequence the increase in yield as response to N fertilisation seems the result of a larger green leaf area combined with a higher photosynthetic capacity of the leaves attributable to an increase in the maximum carboxylation velocity of Rubisco. Moreover gas-exchange measurements of the flag leaf during grain filling seem to provide a realistic characterisation, not just of the photosynthetic performance of the crop, but also about the impact of N availability on yield. Thus, measurements performed on the flag leaf matched those at the canopy level, with proportional increases in terms of gas exchange and chlorophyll content, providing a fast, cheap and reliable estimation of canopy photosynthesis and the grain yield attained by the crop.  相似文献   

17.
18.
Comparisons of leaf structure and gas exchange characteristicshave been made between flag leaves of four old genotypes ofcultivated tetraploid wheats and three current varieties ofhexaploid Triticum aestivum grown under Mediterranean climateconditions. For some genotypes the effect of varying the sowingdate was investigated. In the hexaploid wheat Kolibri the effectof sowing date on leaf structure and gas exchange of the penultimateleaf was also studied. Flag leaves differed significantly in photosynthetic capacityand leaf structure characteristics between genotypes, withineach ploidy level. When the mean values for each ploidy levelwere considered, there were no significant differences in valuesfor photosynthesis per unit leaf area, stomatal conductance,intercellular CO2 concentration, residual CO2 conductance andwater-use efficiency between the tetraploid and hexaploid wheatssown on the same date. When comparisons were made of leaf structurethe only significant differences observed were in adaxial andabaxial stomatal frequencies and leaf area: mean values of theseparameters were higher in tetraploid than in hexaploid wheats. The changes in leaf structure in response to varying sowingdate were significant and followed the same pattern in all thegenotypes studied: a xeromorphic adaptation was observed inlater sowings in response to warmer climate. Such structuralchanges affected some gas exchange characteristics. For example,the area of flag leaves decreased by 60% in the hexaploid wheatKolibri from first to last sowing, which led to a transpirativeloss of 49% per single leaf, in spite of the fact that transpirationrate per unit leaf area increased by 26%. Penultimate leavesof cv. Kolibri followed a fairly similar adaptive pattern inlater sowings as compared with flag leaves. The adaptive significanceof changes in leaf structure and gas exchange characteristicswith varying sowing date under Mediterranean climate conditionsis discussed. Key words: Photosynthesis, leaf structure, wheat  相似文献   

19.
Cultivar differences in leaf photosynthesis of rice bred in Japan   总被引:9,自引:0,他引:9  
The grain yield of rice (Oryza sativa L.), as well as of other cereal crops, is limited to a large extent, by the supply of photosynthates produced during grain filling period. In this study, flag leaf photosynthesis (LPS) after heading was compared among 32 cultivars bred during the past century in Japan, to determine if the improvement of LPS has occurred with the breeding advance of high yielding cultivars. Measurement of LPS was made for 5 consecutive years in the paddy field, on the flag leaf of the main stem, at heading (LPS-0), and 2 weeks (LPS-2) and 4 weeks (LPS-4) after heading. LPS decreased with advance of leaf senescence from LPS-0 to LPS-2, and then to LPS-4. However, if nitrogen was top-dressed at the heading time, high LPS-2 was maintained, particularly in the newer cultivars. A significant positive correlation between LPS and the released year of cultivar was found at LPS-2, especially in the nitrogen top-dressed plot, but not at LPS-0 or LPS-4. Cultivar difference in LPS of the senescing leaves were not stable through the different years, whereas LPS-0 was stable over years, suggesting that the LPS in the senescent leaf is susceptible to the environmental variation due to the effects on leaf senescence. Cultivar difference in LPS at any stage was closely associated with mesophyll conductance to CO2, and stomatal conductance was also associated with cultivar difference in such a high LPS as LPS-0 and nitrogen top-dressed LPS-2. Significant correlation between LPS and specific leaf weight was not observed at any stage of the flag leaf.Abbreviations CV coefficient of variation - gm mesophyll conductance - gs stomatal conductance - LPS apparent photosynthetic rate per unit leaf area (leaf photosynthesis) - LPS-0 LPS at heading - LPS-2 LPS at active grain filling - LPS-4 LPS at maturity of grain - NT non-top dressed plot - PPFD photosynthetic photon flux density - rm mesophyll resistance - rs stomatal diffusion resistance against CO2 - rs(H2O) stomatal diffusion resistance against H2O - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase - SLW specific leaf weight - TD nitrogen top-dressed plot  相似文献   

20.
The role of ear photosynthesis in grain filling was studied in a number of durum wheat (Triticum turgidum var durum L.) landraces and varieties from the Middle East, North Africa, and from the collections of ‘Institut National de la Recherche Agronomique’ (INRA, France) and ‘Centro International de Mejora de Maiz y Trigo’ (CIMMYT, Mexico). Plants were grown in the field in a Mediterranean climate. Flag leaves (blade plus sheath) and ears were kept in the dark from 1 week after anthesis to maturity which reduced grain weight by 22.4% and 59.0%, respectively. In a further experiment, the carbon isotope discrimination ratio (Δ) of ear bracts, awns and flag leaves was measured on samples taken at anthesis and on mature kernels. The mean value of Δ for the water soluble fraction of bracts (17.0‰) and awns (17.7‰) were lower than those of leaves (19.5‰) and fairly similar to those of kernels (17.4‰) averaged across all genotypes. Data indicate that most of the photosynthates in the grain come from ear parts and not from flag leaves. In addition, a higher water use efficiency (WUE) of ear parts than of the flag leaf is suggested by their lower Δ values. Gas exchange in ears and flag leaves was measured during grain filling. Averaged over all genotypes, CO2 diffusive conductance was about five times higher in the flag leaf than in the spike (with distal portions of awns outside the photosynthetic chamber) 2 weeks after anthesis. In absolute terms, the dark respiration rate (Rd) was greater than the net photosynthesis rate (Pn) by a factor of 1.74 in the spike, whereas Rd was much smaller, only 22.1, 65.7 and 24.8% of Pn in blade, sheath and awns, respectively. Data indicate that photosynthesis, and hence the water use efficiency (photosynthesis/transpiration), is greatly underestimated in ears because of the high rates of respiration which diminish the measured rates of net CO2 exchange. Results of 13C discrimination and gas exchange show that genotypes from North Africa have higher WUE than those from the Middle East. The high Rd values of ears as well as their low diffusive conductance suggest that CO2 from respiration may be used as source of carbon for ear photosynthesis. In the same way, the anatomy of glumes, for example, supports the role of bracts using internal CO2 as source of photosynthesis. In the first experiment, the Δ in mature grains from culms with darkened ears compared with control culms provided further evidence in support of this hypothesis. Thus, the Δ from kernels of control plants was 0.40 higher than that from ear-darkened plants, probably because of some degree of refixation (recycling) of respired CO2 in the grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号